• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Given a node in a tree, return all of the peer dependency sets that
2// it is a part of, with the entry (top or non-peer) edges into the sets
3// identified.
4//
5// With this information, we can determine whether it is appropriate to
6// replace the entire peer set with another (and remove the old one),
7// push the set deeper into the tree, and so on.
8//
9// Returns a Map of { edge => Set(peerNodes) },
10
11const peerEntrySets = node => {
12  // this is the union of all peer groups that the node is a part of
13  // later, we identify all of the entry edges, and create a set of
14  // 1 or more overlapping sets that this node is a part of.
15  const unionSet = new Set([node])
16  for (const node of unionSet) {
17    for (const edge of node.edgesOut.values()) {
18      if (edge.valid && edge.peer && edge.to) {
19        unionSet.add(edge.to)
20      }
21    }
22    for (const edge of node.edgesIn) {
23      if (edge.valid && edge.peer) {
24        unionSet.add(edge.from)
25      }
26    }
27  }
28  const entrySets = new Map()
29  for (const peer of unionSet) {
30    for (const edge of peer.edgesIn) {
31      // if not valid, it doesn't matter anyway.  either it's been previously
32      // peerConflicted, or it's the thing we're interested in replacing.
33      if (!edge.valid) {
34        continue
35      }
36      // this is the entry point into the peer set
37      if (!edge.peer || edge.from.isTop) {
38        // get the subset of peer brought in by this peer entry edge
39        const sub = new Set([peer])
40        for (const peer of sub) {
41          for (const edge of peer.edgesOut.values()) {
42            if (edge.valid && edge.peer && edge.to) {
43              sub.add(edge.to)
44            }
45          }
46        }
47        // if this subset does not include the node we are focused on,
48        // then it is not relevant for our purposes.  Example:
49        //
50        // a -> (b, c, d)
51        // b -> PEER(d) b -> d -> e -> f <-> g
52        // c -> PEER(f, h) c -> (f <-> g, h -> g)
53        // d -> PEER(e) d -> e -> f <-> g
54        // e -> PEER(f)
55        // f -> PEER(g)
56        // g -> PEER(f)
57        // h -> PEER(g)
58        //
59        // The unionSet(e) will include c, but we don't actually care about
60        // it.  We only expanded to the edge of the peer nodes in order to
61        // find the entry edges that caused the inclusion of peer sets
62        // including (e), so we want:
63        //   Map{
64        //     Edge(a->b) => Set(b, d, e, f, g)
65        //     Edge(a->d) => Set(d, e, f, g)
66        //   }
67        if (sub.has(node)) {
68          entrySets.set(edge, sub)
69        }
70      }
71    }
72  }
73
74  return entrySets
75}
76
77module.exports = peerEntrySets
78