/* * Copyright © 2020 Google LLC * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * @file * * Removes unused components of SSA defs. * * Due to various optimization passes (or frontend implementations, * particularly prog_to_nir), we may have instructions generating vectors * whose components don't get read by any instruction. * * For memory loads, while it can be tricky to eliminate unused low components * or channels in the middle of a writemask (you might need to increment some * offset from a load_uniform, for example), it is trivial to just drop the * trailing components. * For vector ALU and load_const, only used by other ALU instructions, * this pass eliminates arbitrary channels as well as duplicate channels, * and reswizzles the uses. * * This pass is probably only of use to vector backends -- scalar backends * typically get unused def channel trimming by scalarizing and dead code * elimination. */ #include "nir.h" #include "nir_builder.h" #include "util/u_math.h" /* * Round up a vector size to a vector size that's valid in NIR. At present, NIR * supports only vec2-5, vec8, and vec16. Attempting to generate other sizes * will fail validation. */ static unsigned round_up_components(unsigned n) { return (n > 5) ? util_next_power_of_two(n) : n; } static bool shrink_dest_to_read_mask(nir_ssa_def *def) { /* early out if there's nothing to do. */ if (def->num_components == 1) return false; /* don't remove any channels if used by an intrinsic */ nir_foreach_use(use_src, def) { if (use_src->parent_instr->type == nir_instr_type_intrinsic) return false; } unsigned mask = nir_ssa_def_components_read(def); int last_bit = util_last_bit(mask); /* If nothing was read, leave it up to DCE. */ if (!mask) return false; unsigned rounded = round_up_components(last_bit); assert(rounded <= def->num_components); last_bit = rounded; if (def->num_components > last_bit) { def->num_components = last_bit; return true; } return false; } static void reswizzle_alu_uses(nir_ssa_def *def, uint8_t *reswizzle) { nir_foreach_use(use_src, def) { /* all uses must be ALU instructions */ assert(use_src->parent_instr->type == nir_instr_type_alu); nir_alu_src *alu_src = (nir_alu_src*)use_src; /* reswizzle ALU sources */ for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) alu_src->swizzle[i] = reswizzle[alu_src->swizzle[i]]; } } static bool is_only_used_by_alu(nir_ssa_def *def) { nir_foreach_use(use_src, def) { if (use_src->parent_instr->type != nir_instr_type_alu) return false; } return true; } static bool opt_shrink_vector(nir_builder *b, nir_alu_instr *instr) { nir_ssa_def *def = &instr->dest.dest.ssa; unsigned mask = nir_ssa_def_components_read(def); /* If nothing was read, leave it up to DCE. */ if (mask == 0) return false; /* don't remove any channels if used by non-ALU */ if (!is_only_used_by_alu(def)) return false; uint8_t reswizzle[NIR_MAX_VEC_COMPONENTS] = { 0 }; nir_ssa_scalar srcs[NIR_MAX_VEC_COMPONENTS] = { 0 }; unsigned num_components = 0; for (unsigned i = 0; i < def->num_components; i++) { if (!((mask >> i) & 0x1)) continue; nir_ssa_scalar scalar = nir_get_ssa_scalar(instr->src[i].src.ssa, instr->src[i].swizzle[0]); /* Try reuse a component with the same value */ unsigned j; for (j = 0; j < num_components; j++) { if (scalar.def == srcs[j].def && scalar.comp == srcs[j].comp) { reswizzle[i] = j; break; } } /* Otherwise, just append the value */ if (j == num_components) { srcs[num_components] = scalar; reswizzle[i] = num_components++; } } /* return if no component was removed */ if (num_components == def->num_components) return false; /* create new vecN and replace uses */ nir_ssa_def *new_vec = nir_vec_scalars(b, srcs, num_components); nir_ssa_def_rewrite_uses(def, new_vec); reswizzle_alu_uses(new_vec, reswizzle); return true; } static bool opt_shrink_vectors_alu(nir_builder *b, nir_alu_instr *instr) { nir_ssa_def *def = &instr->dest.dest.ssa; /* Nothing to shrink */ if (def->num_components == 1) return false; switch (instr->op) { /* don't use nir_op_is_vec() as not all vector sizes are supported. */ case nir_op_vec4: case nir_op_vec3: case nir_op_vec2: return opt_shrink_vector(b, instr); default: if (nir_op_infos[instr->op].output_size != 0) return false; break; } /* don't remove any channels if used by non-ALU */ if (!is_only_used_by_alu(def)) return false; unsigned mask = nir_ssa_def_components_read(def); unsigned last_bit = util_last_bit(mask); unsigned num_components = util_bitcount(mask); unsigned rounded = round_up_components(num_components); assert(rounded <= def->num_components); num_components = rounded; /* return, if there is nothing to do */ if (mask == 0 || num_components == def->num_components) return false; const bool is_bitfield_mask = last_bit == num_components; if (is_bitfield_mask) { /* just reduce the number of components and return */ def->num_components = num_components; instr->dest.write_mask = mask; return true; } uint8_t reswizzle[NIR_MAX_VEC_COMPONENTS] = { 0 }; unsigned index = 0; for (unsigned i = 0; i < last_bit; i++) { /* skip unused components */ if (!((mask >> i) & 0x1)) continue; /* reswizzle the sources */ for (int k = 0; k < nir_op_infos[instr->op].num_inputs; k++) { instr->src[k].swizzle[index] = instr->src[k].swizzle[i]; reswizzle[i] = index; } index++; } assert(index == num_components); /* update dest */ def->num_components = num_components; instr->dest.write_mask = BITFIELD_MASK(num_components); /* update uses */ reswizzle_alu_uses(def, reswizzle); return true; } static bool opt_shrink_vectors_intrinsic(nir_builder *b, nir_intrinsic_instr *instr) { switch (instr->intrinsic) { case nir_intrinsic_load_uniform: case nir_intrinsic_load_ubo: case nir_intrinsic_load_input: case nir_intrinsic_load_input_vertex: case nir_intrinsic_load_per_vertex_input: case nir_intrinsic_load_interpolated_input: case nir_intrinsic_load_ssbo: case nir_intrinsic_load_push_constant: case nir_intrinsic_load_constant: case nir_intrinsic_load_shared: case nir_intrinsic_load_global: case nir_intrinsic_load_global_constant: case nir_intrinsic_load_kernel_input: case nir_intrinsic_load_scratch: break; default: return false; } /* Must be a vectorized intrinsic that we can resize. */ assert(instr->num_components != 0); /* Trim the dest to the used channels */ if (shrink_dest_to_read_mask(&instr->dest.ssa)) { instr->num_components = instr->dest.ssa.num_components; return true; } return false; } static bool opt_shrink_vectors_load_const(nir_load_const_instr *instr) { nir_ssa_def *def = &instr->def; /* early out if there's nothing to do. */ if (def->num_components == 1) return false; /* don't remove any channels if used by non-ALU */ if (!is_only_used_by_alu(def)) return false; unsigned mask = nir_ssa_def_components_read(def); /* If nothing was read, leave it up to DCE. */ if (!mask) return false; uint8_t reswizzle[NIR_MAX_VEC_COMPONENTS] = { 0 }; unsigned num_components = 0; for (unsigned i = 0; i < def->num_components; i++) { if (!((mask >> i) & 0x1)) continue; /* Try reuse a component with the same constant */ unsigned j; for (j = 0; j < num_components; j++) { if (instr->value[i].u64 == instr->value[j].u64) { reswizzle[i] = j; break; } } /* Otherwise, just append the value */ if (j == num_components) { instr->value[num_components] = instr->value[i]; reswizzle[i] = num_components++; } } unsigned rounded = round_up_components(num_components); assert(rounded <= def->num_components); num_components = rounded; if (num_components == def->num_components) return false; def->num_components = num_components; reswizzle_alu_uses(def, reswizzle); return true; } static bool opt_shrink_vectors_ssa_undef(nir_ssa_undef_instr *instr) { return shrink_dest_to_read_mask(&instr->def); } static bool opt_shrink_vectors_instr(nir_builder *b, nir_instr *instr) { b->cursor = nir_before_instr(instr); switch (instr->type) { case nir_instr_type_alu: return opt_shrink_vectors_alu(b, nir_instr_as_alu(instr)); case nir_instr_type_intrinsic: return opt_shrink_vectors_intrinsic(b, nir_instr_as_intrinsic(instr)); case nir_instr_type_load_const: return opt_shrink_vectors_load_const(nir_instr_as_load_const(instr)); case nir_instr_type_ssa_undef: return opt_shrink_vectors_ssa_undef(nir_instr_as_ssa_undef(instr)); default: return false; } return true; } bool nir_opt_shrink_vectors(nir_shader *shader) { bool progress = false; nir_foreach_function(function, shader) { if (!function->impl) continue; nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block_reverse(block, function->impl) { nir_foreach_instr_reverse(instr, block) { progress |= opt_shrink_vectors_instr(&b, instr); } } if (progress) { nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance); } else { nir_metadata_preserve(function->impl, nir_metadata_all); } } return progress; }