#include #include #include #include "pthread_impl.h" #include "atomic.h" struct ksigevent { union sigval sigev_value; int sigev_signo; int sigev_notify; int sigev_tid; }; struct start_args { volatile int b; struct sigevent *sev; }; /* * barrier val: * 0: init state * 2: child thread arrive: when child thread is the first thread to arrive, will wait, otherwise, will wake * 3: parent thread arrive: when parent thread is the first thread to arrive, will wait, otherwise, will wake * 4: parent thread should wait for the child to finish synchronizing (state: CHILD_DONE) * 5: child thread done */ enum ThreadState { INIT_STATE = 0, CHILD_ARRIVE = 2, PARENT_ARRIVE, PARENT_WAIT, CHILD_DONE, }; static void dummy_0() { } weak_alias(dummy_0, __pthread_tsd_run_dtors); static void cleanup_fromsig(void *p) { pthread_t self = __pthread_self(); __pthread_tsd_run_dtors(); #ifdef FEATURE_PTHREAD_CANCEL self->cancel = 0; self->canceldisable = 0; self->cancelasync = 0; #endif self->cancelbuf = 0; __reset_tls(); longjmp(p, 1); } static void __child_sync(volatile int *barrier) { if (a_swap(barrier, CHILD_ARRIVE) == INIT_STATE) { __wait(barrier, 0, CHILD_ARRIVE, 0); } else { __wake(barrier, 1, 0); } a_swap(barrier, CHILD_DONE); __wake(barrier, 1, 0); } static void __parent_sync(volatile int *barrier) { if (a_swap(barrier, PARENT_ARRIVE) == CHILD_ARRIVE) { __wake(barrier, 1, 0); } else { __wait(barrier, 0, PARENT_ARRIVE, 0); } if (a_swap(barrier, PARENT_WAIT) != CHILD_DONE) { __wait(barrier, 0, PARENT_WAIT, 0); } } static void *start(void *arg) { pthread_t self = __pthread_self(); struct start_args *args = arg; jmp_buf jb; void (*notify)(union sigval) = args->sev->sigev_notify_function; union sigval val = args->sev->sigev_value; __child_sync(&args->b); #ifdef FEATURE_PTHREAD_CANCEL if (self->cancel) return 0; #endif for (;;) { siginfo_t si; while (sigwaitinfo(SIGTIMER_SET, &si) < 0); if (si.si_code == SI_TIMER && !setjmp(jb)) { #ifndef HWASAN_REMOVE_CLEANUP pthread_cleanup_push(cleanup_fromsig, jb); #endif notify(val); #ifndef HWASAN_REMOVE_CLEANUP pthread_cleanup_pop(1); #endif } if (self->timer_id < 0) break; } __syscall(SYS_timer_delete, self->timer_id & INT_MAX); return 0; } int timer_create(clockid_t clk, struct sigevent *restrict evp, timer_t *restrict res) { static volatile int init = 0; pthread_t td; pthread_attr_t attr; int r; struct start_args args; struct ksigevent ksev, *ksevp=0; int timerid; sigset_t set; switch (evp ? evp->sigev_notify : SIGEV_SIGNAL) { case SIGEV_NONE: case SIGEV_SIGNAL: case SIGEV_THREAD_ID: if (evp) { ksev.sigev_value = evp->sigev_value; ksev.sigev_signo = evp->sigev_signo; ksev.sigev_notify = evp->sigev_notify; if (evp->sigev_notify == SIGEV_THREAD_ID) ksev.sigev_tid = evp->sigev_notify_thread_id; else ksev.sigev_tid = 0; ksevp = &ksev; } if (syscall(SYS_timer_create, clk, ksevp, &timerid) < 0) return -1; *res = (void *)(intptr_t)timerid; break; case SIGEV_THREAD: if (!init) { struct sigaction sa = { .sa_handler = SIG_DFL }; __libc_sigaction(SIGTIMER, &sa, 0); a_store(&init, 1); } if (evp->sigev_notify_attributes) attr = *evp->sigev_notify_attributes; else pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); a_store(&args.b, 0); args.sev = evp; __block_app_sigs(&set); __syscall(SYS_rt_sigprocmask, SIG_BLOCK, SIGTIMER_SET, 0, _NSIG/8); r = pthread_create(&td, &attr, start, &args); __restore_sigs(&set); if (r) { errno = r; return -1; } ksev.sigev_value.sival_ptr = 0; ksev.sigev_signo = SIGTIMER; ksev.sigev_notify = SIGEV_THREAD_ID; ksev.sigev_tid = td->tid; if (syscall(SYS_timer_create, clk, &ksev, &timerid) < 0) { timerid = -1; #ifdef FEATURE_PTHREAD_CANCEL td->cancel = 1; #endif } td->timer_id = timerid; __parent_sync(&args.b); if (timerid < 0) return -1; *res = (void *)(INTPTR_MIN | (uintptr_t)td>>1); break; default: errno = EINVAL; return -1; } return 0; }