// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Declares a Simulator for loongisa instructions if we are not generating a // native loongisa binary. This Simulator allows us to run and debug loongisa // code generation on regular desktop machines. V8 calls into generated code via // the GeneratedCode wrapper, which will start execution in the Simulator or // forwards to the real entry on a loongisa HW platform. #ifndef V8_EXECUTION_LOONG64_SIMULATOR_LOONG64_H_ #define V8_EXECUTION_LOONG64_SIMULATOR_LOONG64_H_ // globals.h defines USE_SIMULATOR. #include "src/common/globals.h" template int Compare(const T& a, const T& b) { if (a == b) return 0; else if (a < b) return -1; else return 1; } // Returns the negative absolute value of its argument. template ::value>::type> T Nabs(T a) { return a < 0 ? a : -a; } #if defined(USE_SIMULATOR) // Running with a simulator. #include "src/base/hashmap.h" #include "src/base/strings.h" #include "src/codegen/assembler.h" #include "src/codegen/loong64/constants-loong64.h" #include "src/execution/simulator-base.h" #include "src/utils/allocation.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Utility functions class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class SimInstructionBase : public InstructionBase { public: Type InstructionType() const { return type_; } inline Instruction* instr() const { return instr_; } inline int32_t operand() const { return operand_; } protected: SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {} explicit SimInstructionBase(Instruction* instr) {} int32_t operand_; Instruction* instr_; Type type_; private: DISALLOW_ASSIGN(SimInstructionBase); }; class SimInstruction : public InstructionGetters { public: SimInstruction() {} explicit SimInstruction(Instruction* instr) { *this = instr; } SimInstruction& operator=(Instruction* instr) { operand_ = *reinterpret_cast(instr); instr_ = instr; type_ = InstructionBase::InstructionType(); DCHECK(reinterpret_cast(&operand_) == this); return *this; } }; class Simulator : public SimulatorBase { public: friend class Loong64Debugger; // Registers are declared in order. enum Register { no_reg = -1, zero_reg = 0, ra, gp, sp, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3, t4, t5, t6, t7, t8, tp, fp, s0, s1, s2, s3, s4, s5, s6, s7, s8, pc, // pc must be the last register. kNumSimuRegisters, // aliases v0 = a0, v1 = a1 }; // Condition flag registers. enum CFRegister { fcc0, fcc1, fcc2, fcc3, fcc4, fcc5, fcc6, fcc7, kNumCFRegisters }; // Floating point registers. enum FPURegister { f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, kNumFPURegisters }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. Reading the pc value adheres to the LOONG64 // architecture specification and is off by a 8 from the currently executing // instruction. void set_register(int reg, int64_t value); void set_register_word(int reg, int32_t value); void set_dw_register(int dreg, const int* dbl); V8_EXPORT_PRIVATE int64_t get_register(int reg) const; double get_double_from_register_pair(int reg); // Same for FPURegisters. void set_fpu_register(int fpureg, int64_t value); void set_fpu_register_word(int fpureg, int32_t value); void set_fpu_register_hi_word(int fpureg, int32_t value); void set_fpu_register_float(int fpureg, float value); void set_fpu_register_double(int fpureg, double value); void set_fpu_register_invalid_result64(float original, float rounded); void set_fpu_register_invalid_result(float original, float rounded); void set_fpu_register_word_invalid_result(float original, float rounded); void set_fpu_register_invalid_result64(double original, double rounded); void set_fpu_register_invalid_result(double original, double rounded); void set_fpu_register_word_invalid_result(double original, double rounded); int64_t get_fpu_register(int fpureg) const; int32_t get_fpu_register_word(int fpureg) const; int32_t get_fpu_register_signed_word(int fpureg) const; int32_t get_fpu_register_hi_word(int fpureg) const; float get_fpu_register_float(int fpureg) const; double get_fpu_register_double(int fpureg) const; void set_cf_register(int cfreg, bool value); bool get_cf_register(int cfreg) const; void set_fcsr_rounding_mode(FPURoundingMode mode); unsigned int get_fcsr_rounding_mode(); void set_fcsr_bit(uint32_t cc, bool value); bool test_fcsr_bit(uint32_t cc); bool set_fcsr_round_error(double original, double rounded); bool set_fcsr_round64_error(double original, double rounded); bool set_fcsr_round_error(float original, float rounded); bool set_fcsr_round64_error(float original, float rounded); void round_according_to_fcsr(double toRound, double* rounded, int32_t* rounded_int); void round64_according_to_fcsr(double toRound, double* rounded, int64_t* rounded_int); void round_according_to_fcsr(float toRound, float* rounded, int32_t* rounded_int); void round64_according_to_fcsr(float toRound, float* rounded, int64_t* rounded_int); // Special case of set_register and get_register to access the raw PC value. void set_pc(int64_t value); V8_EXPORT_PRIVATE int64_t get_pc() const; Address get_sp() const { return static_cast
(get_register(sp)); } // Accessor to the internal simulator stack area. uintptr_t StackLimit(uintptr_t c_limit) const; // Executes LOONG64 instructions until the PC reaches end_sim_pc. void Execute(); template Return Call(Address entry, Args... args) { return VariadicCall(this, &Simulator::CallImpl, entry, args...); } // Alternative: call a 2-argument double function. double CallFP(Address entry, double d0, double d1); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(char* input); char* last_debugger_input() { return last_debugger_input_; } // Redirection support. static void SetRedirectInstruction(Instruction* instruction); // ICache checking. static bool ICacheMatch(void* one, void* two); static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_ra, end_sim_pc). bool has_bad_pc() const; private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_ra = -1, // A pc value used to signal the simulator to stop execution. Generally // the ra is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2, // Unpredictable value. Unpredictable = 0xbadbeaf }; V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count, const intptr_t* arguments); // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Helpers for data value tracing. enum TraceType { BYTE, HALF, WORD, DWORD, FLOAT, DOUBLE, FLOAT_DOUBLE, WORD_DWORD }; // Read and write memory. inline uint32_t ReadBU(int64_t addr); inline int32_t ReadB(int64_t addr); inline void WriteB(int64_t addr, uint8_t value); inline void WriteB(int64_t addr, int8_t value); inline uint16_t ReadHU(int64_t addr, Instruction* instr); inline int16_t ReadH(int64_t addr, Instruction* instr); // Note: Overloaded on the sign of the value. inline void WriteH(int64_t addr, uint16_t value, Instruction* instr); inline void WriteH(int64_t addr, int16_t value, Instruction* instr); inline uint32_t ReadWU(int64_t addr, Instruction* instr); inline int32_t ReadW(int64_t addr, Instruction* instr, TraceType t = WORD); inline void WriteW(int64_t addr, int32_t value, Instruction* instr); void WriteConditionalW(int64_t addr, int32_t value, Instruction* instr, int32_t rt_reg); inline int64_t Read2W(int64_t addr, Instruction* instr); inline void Write2W(int64_t addr, int64_t value, Instruction* instr); inline void WriteConditional2W(int64_t addr, int64_t value, Instruction* instr, int32_t rt_reg); inline double ReadD(int64_t addr, Instruction* instr); inline void WriteD(int64_t addr, double value, Instruction* instr); template T ReadMem(int64_t addr, Instruction* instr); template void WriteMem(int64_t addr, T value, Instruction* instr); // Helper for debugging memory access. inline void DieOrDebug(); void TraceRegWr(int64_t value, TraceType t = DWORD); void TraceMemWr(int64_t addr, int64_t value, TraceType t); void TraceMemRd(int64_t addr, int64_t value, TraceType t = DWORD); template void TraceMemRd(int64_t addr, T value); template void TraceMemWr(int64_t addr, T value); SimInstruction instr_; // Executing is handled based on the instruction type. void DecodeTypeOp6(); void DecodeTypeOp7(); void DecodeTypeOp8(); void DecodeTypeOp10(); void DecodeTypeOp12(); void DecodeTypeOp14(); void DecodeTypeOp17(); void DecodeTypeOp22(); inline int32_t rj_reg() const { return instr_.RjValue(); } inline int64_t rj() const { return get_register(rj_reg()); } inline uint64_t rj_u() const { return static_cast(get_register(rj_reg())); } inline int32_t rk_reg() const { return instr_.RkValue(); } inline int64_t rk() const { return get_register(rk_reg()); } inline uint64_t rk_u() const { return static_cast(get_register(rk_reg())); } inline int32_t rd_reg() const { return instr_.RdValue(); } inline int64_t rd() const { return get_register(rd_reg()); } inline uint64_t rd_u() const { return static_cast(get_register(rd_reg())); } inline int32_t fa_reg() const { return instr_.FaValue(); } inline float fa_float() const { return get_fpu_register_float(fa_reg()); } inline double fa_double() const { return get_fpu_register_double(fa_reg()); } inline int32_t fj_reg() const { return instr_.FjValue(); } inline float fj_float() const { return get_fpu_register_float(fj_reg()); } inline double fj_double() const { return get_fpu_register_double(fj_reg()); } inline int32_t fk_reg() const { return instr_.FkValue(); } inline float fk_float() const { return get_fpu_register_float(fk_reg()); } inline double fk_double() const { return get_fpu_register_double(fk_reg()); } inline int32_t fd_reg() const { return instr_.FdValue(); } inline float fd_float() const { return get_fpu_register_float(fd_reg()); } inline double fd_double() const { return get_fpu_register_double(fd_reg()); } inline int32_t cj_reg() const { return instr_.CjValue(); } inline bool cj() const { return get_cf_register(cj_reg()); } inline int32_t cd_reg() const { return instr_.CdValue(); } inline bool cd() const { return get_cf_register(cd_reg()); } inline int32_t ca_reg() const { return instr_.CaValue(); } inline bool ca() const { return get_cf_register(ca_reg()); } inline uint32_t sa2() const { return instr_.Sa2Value(); } inline uint32_t sa3() const { return instr_.Sa3Value(); } inline uint32_t ui5() const { return instr_.Ui5Value(); } inline uint32_t ui6() const { return instr_.Ui6Value(); } inline uint32_t lsbw() const { return instr_.LsbwValue(); } inline uint32_t msbw() const { return instr_.MsbwValue(); } inline uint32_t lsbd() const { return instr_.LsbdValue(); } inline uint32_t msbd() const { return instr_.MsbdValue(); } inline uint32_t cond() const { return instr_.CondValue(); } inline int32_t si12() const { return (instr_.Si12Value() << 20) >> 20; } inline uint32_t ui12() const { return instr_.Ui12Value(); } inline int32_t si14() const { return (instr_.Si14Value() << 18) >> 18; } inline int32_t si16() const { return (instr_.Si16Value() << 16) >> 16; } inline int32_t si20() const { return (instr_.Si20Value() << 12) >> 12; } inline void SetResult(const int32_t rd_reg, const int64_t alu_out) { set_register(rd_reg, alu_out); TraceRegWr(alu_out); } inline void SetFPUWordResult(int32_t fd_reg, int32_t alu_out) { set_fpu_register_word(fd_reg, alu_out); TraceRegWr(get_fpu_register(fd_reg), WORD); } inline void SetFPUWordResult2(int32_t fd_reg, int32_t alu_out) { set_fpu_register_word(fd_reg, alu_out); TraceRegWr(get_fpu_register(fd_reg)); } inline void SetFPUResult(int32_t fd_reg, int64_t alu_out) { set_fpu_register(fd_reg, alu_out); TraceRegWr(get_fpu_register(fd_reg)); } inline void SetFPUResult2(int32_t fd_reg, int64_t alu_out) { set_fpu_register(fd_reg, alu_out); TraceRegWr(get_fpu_register(fd_reg), DOUBLE); } inline void SetFPUFloatResult(int32_t fd_reg, float alu_out) { set_fpu_register_float(fd_reg, alu_out); TraceRegWr(get_fpu_register(fd_reg), FLOAT); } inline void SetFPUDoubleResult(int32_t fd_reg, double alu_out) { set_fpu_register_double(fd_reg, alu_out); TraceRegWr(get_fpu_register(fd_reg), DOUBLE); } // Used for breakpoints. void SoftwareInterrupt(); // Stop helper functions. bool IsWatchpoint(uint64_t code); void PrintWatchpoint(uint64_t code); void HandleStop(uint64_t code, Instruction* instr); bool IsStopInstruction(Instruction* instr); bool IsEnabledStop(uint64_t code); void EnableStop(uint64_t code); void DisableStop(uint64_t code); void IncreaseStopCounter(uint64_t code); void PrintStopInfo(uint64_t code); // Executes one instruction. void InstructionDecode(Instruction* instr); // Execute one instruction placed in a branch delay slot. // ICache. static void CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr); static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, size_t size); static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, void* page); enum Exception { none, kIntegerOverflow, kIntegerUnderflow, kDivideByZero, kNumExceptions }; // Exceptions. void SignalException(Exception e); // Handle arguments and return value for runtime FP functions. void GetFpArgs(double* x, double* y, int32_t* z); void SetFpResult(const double& result); void CallInternal(Address entry); // Architecture state. // Registers. int64_t registers_[kNumSimuRegisters]; // Floating point Registers. int64_t FPUregisters_[kNumFPURegisters]; // Condition flags Registers. bool CFregisters_[kNumCFRegisters]; // FPU control register. uint32_t FCSR_; // Simulator support. // Allocate 1MB for stack. size_t stack_size_; char* stack_; bool pc_modified_; int64_t icount_; int break_count_; base::EmbeddedVector trace_buf_; // Debugger input. char* last_debugger_input_; v8::internal::Isolate* isolate_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; // Stop is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops_[code].count is unset. // The value watched_stops_[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops_[kMaxStopCode + 1]; // Synchronization primitives. enum class MonitorAccess { Open, RMW, }; enum class TransactionSize { None = 0, Word = 4, DoubleWord = 8, }; // The least-significant bits of the address are ignored. The number of bits // is implementation-defined, between 3 and minimum page size. static const uintptr_t kExclusiveTaggedAddrMask = ~((1 << 3) - 1); class LocalMonitor { public: LocalMonitor(); // These functions manage the state machine for the local monitor, but do // not actually perform loads and stores. NotifyStoreConditional only // returns true if the store conditional is allowed; the global monitor will // still have to be checked to see whether the memory should be updated. void NotifyLoad(); void NotifyLoadLinked(uintptr_t addr, TransactionSize size); void NotifyStore(); bool NotifyStoreConditional(uintptr_t addr, TransactionSize size); private: void Clear(); MonitorAccess access_state_; uintptr_t tagged_addr_; TransactionSize size_; }; class GlobalMonitor { public: class LinkedAddress { public: LinkedAddress(); private: friend class GlobalMonitor; // These functions manage the state machine for the global monitor, but do // not actually perform loads and stores. void Clear_Locked(); void NotifyLoadLinked_Locked(uintptr_t addr); void NotifyStore_Locked(); bool NotifyStoreConditional_Locked(uintptr_t addr, bool is_requesting_thread); MonitorAccess access_state_; uintptr_t tagged_addr_; LinkedAddress* next_; LinkedAddress* prev_; // A scd can fail due to background cache evictions. Rather than // simulating this, we'll just occasionally introduce cases where an // store conditional fails. This will happen once after every // kMaxFailureCounter exclusive stores. static const int kMaxFailureCounter = 5; int failure_counter_; }; // Exposed so it can be accessed by Simulator::{Read,Write}Ex*. base::Mutex mutex; void NotifyLoadLinked_Locked(uintptr_t addr, LinkedAddress* linked_address); void NotifyStore_Locked(LinkedAddress* linked_address); bool NotifyStoreConditional_Locked(uintptr_t addr, LinkedAddress* linked_address); // Called when the simulator is destroyed. void RemoveLinkedAddress(LinkedAddress* linked_address); static GlobalMonitor* Get(); private: // Private constructor. Call {GlobalMonitor::Get()} to get the singleton. GlobalMonitor() = default; friend class base::LeakyObject; bool IsProcessorInLinkedList_Locked(LinkedAddress* linked_address) const; void PrependProcessor_Locked(LinkedAddress* linked_address); LinkedAddress* head_ = nullptr; }; LocalMonitor local_monitor_; GlobalMonitor::LinkedAddress global_monitor_thread_; }; } // namespace internal } // namespace v8 #endif // defined(USE_SIMULATOR) #endif // V8_EXECUTION_LOONG64_SIMULATOR_LOONG64_H_