/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/private/SkFloatingPoint.h" #include "src/core/SkRasterPipeline.h" #include "src/core/SkReadBuffer.h" #include "src/core/SkWriteBuffer.h" #include "src/shaders/gradients/SkTwoPointConicalGradient.h" #include // Please see https://skia.org/dev/design/conical for how our shader works. bool SkTwoPointConicalGradient::FocalData::set(SkScalar r0, SkScalar r1, SkMatrix* matrix) { fIsSwapped = false; fFocalX = sk_ieee_float_divide(r0, (r0 - r1)); if (SkScalarNearlyZero(fFocalX - 1)) { // swap r0, r1 matrix->postTranslate(-1, 0); matrix->postScale(-1, 1); std::swap(r0, r1); fFocalX = 0; // because r0 is now 0 fIsSwapped = true; } // Map {focal point, (1, 0)} to {(0, 0), (1, 0)} const SkPoint from[2] = { {fFocalX, 0}, {1, 0} }; const SkPoint to[2] = { {0, 0}, {1, 0} }; SkMatrix focalMatrix; if (!focalMatrix.setPolyToPoly(from, to, 2)) { return false; } matrix->postConcat(focalMatrix); fR1 = r1 / SkScalarAbs(1 - fFocalX); // focalMatrix has a scale of 1/(1-f) // The following transformations are just to accelerate the shader computation by saving // some arithmatic operations. if (this->isFocalOnCircle()) { matrix->postScale(0.5, 0.5); } else { matrix->postScale(fR1 / (fR1 * fR1 - 1), 1 / sqrt(SkScalarAbs(fR1 * fR1 - 1))); } matrix->postScale(SkScalarAbs(1 - fFocalX), SkScalarAbs(1 - fFocalX)); // scale |1 - f| return true; } sk_sp SkTwoPointConicalGradient::Create(const SkPoint& c0, SkScalar r0, const SkPoint& c1, SkScalar r1, const Descriptor& desc) { SkMatrix gradientMatrix; Type gradientType; if (SkScalarNearlyZero((c0 - c1).length())) { if (SkScalarNearlyZero(std::max(r0, r1)) || SkScalarNearlyEqual(r0, r1)) { // Degenerate case; avoid dividing by zero. Should have been caught by caller but // just in case, recheck here. return nullptr; } // Concentric case: we can pretend we're radial (with a tiny twist). const SkScalar scale = sk_ieee_float_divide(1, std::max(r0, r1)); gradientMatrix = SkMatrix::Translate(-c1.x(), -c1.y()); gradientMatrix.postScale(scale, scale); gradientType = Type::kRadial; } else { const SkPoint centers[2] = { c0 , c1 }; const SkPoint unitvec[2] = { {0, 0}, {1, 0} }; if (!gradientMatrix.setPolyToPoly(centers, unitvec, 2)) { // Degenerate case. return nullptr; } gradientType = SkScalarNearlyZero(r1 - r0) ? Type::kStrip : Type::kFocal; } FocalData focalData; if (gradientType == Type::kFocal) { const auto dCenter = (c0 - c1).length(); if (!focalData.set(r0 / dCenter, r1 / dCenter, &gradientMatrix)) { return nullptr; } } return sk_sp(new SkTwoPointConicalGradient(c0, r0, c1, r1, desc, gradientType, gradientMatrix, focalData)); } SkTwoPointConicalGradient::SkTwoPointConicalGradient( const SkPoint& start, SkScalar startRadius, const SkPoint& end, SkScalar endRadius, const Descriptor& desc, Type type, const SkMatrix& gradientMatrix, const FocalData& data) : SkGradientShaderBase(desc, gradientMatrix) , fCenter1(start) , fCenter2(end) , fRadius1(startRadius) , fRadius2(endRadius) , fType(type) { // this is degenerate, and should be caught by our caller SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2); if (type == Type::kFocal) { fFocalData = data; } } bool SkTwoPointConicalGradient::isOpaque() const { // Because areas outside the cone are left untouched, we cannot treat the // shader as opaque even if the gradient itself is opaque. // TODO(junov): Compute whether the cone fills the plane crbug.com/222380 return false; } // Returns the original non-sorted version of the gradient SkShader::GradientType SkTwoPointConicalGradient::asAGradient(GradientInfo* info) const { if (info) { commonAsAGradient(info); info->fPoint[0] = fCenter1; info->fPoint[1] = fCenter2; info->fRadius[0] = fRadius1; info->fRadius[1] = fRadius2; } return kConical_GradientType; } sk_sp SkTwoPointConicalGradient::CreateProc(SkReadBuffer& buffer) { DescriptorScope desc; if (!desc.unflatten(buffer)) { return nullptr; } SkPoint c1 = buffer.readPoint(); SkPoint c2 = buffer.readPoint(); SkScalar r1 = buffer.readScalar(); SkScalar r2 = buffer.readScalar(); if (!buffer.isValid()) { return nullptr; } return SkGradientShader::MakeTwoPointConical(c1, r1, c2, r2, desc.fColors, std::move(desc.fColorSpace), desc.fPos, desc.fCount, desc.fTileMode, desc.fGradFlags, desc.fLocalMatrix); } void SkTwoPointConicalGradient::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writePoint(fCenter1); buffer.writePoint(fCenter2); buffer.writeScalar(fRadius1); buffer.writeScalar(fRadius2); } void SkTwoPointConicalGradient::appendGradientStages(SkArenaAlloc* alloc, SkRasterPipeline* p, SkRasterPipeline* postPipeline) const { const auto dRadius = fRadius2 - fRadius1; if (fType == Type::kRadial) { p->append(SkRasterPipeline::xy_to_radius); // Tiny twist: radial computes a t for [0, r2], but we want a t for [r1, r2]. auto scale = std::max(fRadius1, fRadius2) / dRadius; auto bias = -fRadius1 / dRadius; p->append_matrix(alloc, SkMatrix::Translate(bias, 0) * SkMatrix::Scale(scale, 1)); return; } if (fType == Type::kStrip) { auto* ctx = alloc->make(); SkScalar scaledR0 = fRadius1 / this->getCenterX1(); ctx->fP0 = scaledR0 * scaledR0; p->append(SkRasterPipeline::xy_to_2pt_conical_strip, ctx); p->append(SkRasterPipeline::mask_2pt_conical_nan, ctx); postPipeline->append(SkRasterPipeline::apply_vector_mask, &ctx->fMask); return; } auto* ctx = alloc->make(); ctx->fP0 = 1/fFocalData.fR1; ctx->fP1 = fFocalData.fFocalX; if (fFocalData.isFocalOnCircle()) { p->append(SkRasterPipeline::xy_to_2pt_conical_focal_on_circle); } else if (fFocalData.isWellBehaved()) { p->append(SkRasterPipeline::xy_to_2pt_conical_well_behaved, ctx); } else if (fFocalData.isSwapped() || 1 - fFocalData.fFocalX < 0) { p->append(SkRasterPipeline::xy_to_2pt_conical_smaller, ctx); } else { p->append(SkRasterPipeline::xy_to_2pt_conical_greater, ctx); } if (!fFocalData.isWellBehaved()) { p->append(SkRasterPipeline::mask_2pt_conical_degenerates, ctx); } if (1 - fFocalData.fFocalX < 0) { p->append(SkRasterPipeline::negate_x); } if (!fFocalData.isNativelyFocal()) { p->append(SkRasterPipeline::alter_2pt_conical_compensate_focal, ctx); } if (fFocalData.isSwapped()) { p->append(SkRasterPipeline::alter_2pt_conical_unswap); } if (!fFocalData.isWellBehaved()) { postPipeline->append(SkRasterPipeline::apply_vector_mask, &ctx->fMask); } } skvm::F32 SkTwoPointConicalGradient::transformT(skvm::Builder* p, skvm::Uniforms* uniforms, skvm::Coord coord, skvm::I32* mask) const { auto mag = [](skvm::F32 x, skvm::F32 y) { return sqrt(x*x + y*y); }; // See https://skia.org/dev/design/conical, and onAppendStages() above. // There's a lot going on here, and I'm not really sure what's independent // or disjoint, what can be reordered, simplified, etc. Tweak carefully. const skvm::F32 x = coord.x, y = coord.y; if (fType == Type::kRadial) { float denom = 1.0f / (fRadius2 - fRadius1), scale = std::max(fRadius1, fRadius2) * denom, bias = -fRadius1 * denom; return mag(x,y) * p->uniformF(uniforms->pushF(scale)) + p->uniformF(uniforms->pushF(bias )); } if (fType == Type::kStrip) { float r = fRadius1 / this->getCenterX1(); skvm::F32 t = x + sqrt(p->splat(r*r) - y*y); *mask = (t == t); // t != NaN return t; } const skvm::F32 invR1 = p->uniformF(uniforms->pushF(1 / fFocalData.fR1)); skvm::F32 t; if (fFocalData.isFocalOnCircle()) { t = (y/x) * y + x; // (x^2 + y^2) / x ~~> x + y^2/x ~~> y/x * y + x } else if (fFocalData.isWellBehaved()) { t = mag(x,y) - x*invR1; } else { skvm::F32 k = sqrt(x*x - y*y); if (fFocalData.isSwapped() || 1 - fFocalData.fFocalX < 0) { k = -k; } t = k - x*invR1; } if (!fFocalData.isWellBehaved()) { // TODO: not sure why we consider t == 0 degenerate *mask = (t > 0.0f); // and implicitly, t != NaN } const skvm::F32 focalX = p->uniformF(uniforms->pushF(fFocalData.fFocalX)); if (1 - fFocalData.fFocalX < 0) { t = -t; } if (!fFocalData.isNativelyFocal()) { t += focalX; } if ( fFocalData.isSwapped()) { t = 1.0f - t; } return t; } ///////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "src/gpu/gradients/GrGradientShader.h" std::unique_ptr SkTwoPointConicalGradient::asFragmentProcessor( const GrFPArgs& args) const { return GrGradientShader::MakeConical(*this, args); } #endif