/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2019 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Ray Tracing Build Large Shader Set tests *//*--------------------------------------------------------------------*/ #include "vktRayTracingBuildLargeTests.hpp" #include "vkDefs.hpp" #include "vktTestCase.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkImageWithMemory.hpp" #include "vkTypeUtil.hpp" #include "vkRayTracingUtil.hpp" #include "deClock.h" #include namespace vkt { namespace RayTracing { namespace { using namespace vk; using namespace std; static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR; struct CaseDef { deUint32 width; deUint32 height; deUint32 squaresGroupCount; deUint32 geometriesGroupCount; deUint32 instancesGroupCount; bool deferredOperation; VkAccelerationStructureBuildTypeKHR buildType; deUint32 workerThreadsCount; }; deUint32 getShaderGroupSize (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupHandleSize(); } deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupBaseAlignment(); } Move makePipeline (const DeviceInterface& vkd, const VkDevice device, vk::BinaryCollection& collection, de::MovePtr& rayTracingPipeline, VkPipelineLayout pipelineLayout, const deUint32 groupCount, const bool deferredOperation, const deUint32 threadCount) { Move raygenShader = createShaderModule(vkd, device, collection.get("rgen"), 0); rayTracingPipeline->setDeferredOperation(deferredOperation, threadCount); rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, raygenShader, 0); for (deUint32 groupNdx = 0; groupNdx < groupCount; ++groupNdx) { const std::string shaderName = "call" + de::toString(groupNdx); Move callShader = createShaderModule(vkd, device, collection.get(shaderName), 0); rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR, callShader, 1 + groupNdx); } Move pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout); return pipeline; } VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, VkFormat format) { const VkImageUsageFlags usage = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; (VkImageCreateFlags)0u, // VkImageCreateFlags flags; VK_IMAGE_TYPE_2D, // VkImageType imageType; format, // VkFormat format; makeExtent3D(width, height, 1u), // VkExtent3D extent; 1u, // deUint32 mipLevels; 1u, // deUint32 arrayLayers; VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples; VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling; usage, // VkImageUsageFlags usage; VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode; 0u, // deUint32 queueFamilyIndexCount; DE_NULL, // const deUint32* pQueueFamilyIndices; VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout; }; return imageCreateInfo; } class RayTracingBuildLargeTestInstance : public TestInstance { public: RayTracingBuildLargeTestInstance (Context& context, const CaseDef& data); ~RayTracingBuildLargeTestInstance (void); tcu::TestStatus iterate (void); protected: deUint32 iterateNoWorkers (void); deUint32 iterateWithWorkers (void); void checkSupportInInstance (void) const; de::MovePtr runTest (const deUint32 threadCount); deUint32 validateBuffer (de::MovePtr buffer); de::SharedPtr initTopAccelerationStructure (VkCommandBuffer cmdBuffer, de::SharedPtr& bottomLevelAccelerationStructure); de::SharedPtr initBottomAccelerationStructure (VkCommandBuffer cmdBuffer); private: CaseDef m_data; }; RayTracingBuildLargeTestInstance::RayTracingBuildLargeTestInstance (Context& context, const CaseDef& data) : vkt::TestInstance (context) , m_data (data) { } RayTracingBuildLargeTestInstance::~RayTracingBuildLargeTestInstance (void) { } class RayTracingTestCase : public TestCase { public: RayTracingTestCase (tcu::TestContext& context, const char* name, const CaseDef data); ~RayTracingTestCase (void); virtual void initPrograms (SourceCollections& programCollection) const; virtual TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; private: std::string generateDummyWork (const deUint32 shaderNdx) const; CaseDef m_data; }; RayTracingTestCase::RayTracingTestCase (tcu::TestContext& context, const char* name, const CaseDef data) : vkt::TestCase (context, name) , m_data (data) { DE_ASSERT((m_data.width * m_data.height) == (m_data.squaresGroupCount * m_data.geometriesGroupCount * m_data.instancesGroupCount)); } RayTracingTestCase::~RayTracingTestCase (void) { } void RayTracingTestCase::checkSupport(Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline"); const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures(); if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE ) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline"); const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures(); if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE) TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure"); if (m_data.buildType == VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR && accelerationStructureFeaturesKHR.accelerationStructureHostCommands == DE_FALSE) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructureHostCommands"); if (m_data.deferredOperation) context.requireDeviceFunctionality("VK_KHR_deferred_host_operations"); } std::string RayTracingTestCase::generateDummyWork (const deUint32 shaderNdx) const { std::string result; for (deUint32 n = 0; n < shaderNdx % 256; ++n) { result += " color.b = color.b + 2 * " + de::toString(n) + ";\n"; result += " color.g = color.g + 3 * " + de::toString(n) + ";\n"; result += " color.b = color.b ^ color.g;\n"; result += " color.b = color.b % 223;\n"; result += " color.g = color.g % 227;\n"; result += " color.g = color.g ^ color.b;\n"; } return result; } void RayTracingTestCase::initPrograms (SourceCollections& programCollection) const { const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) callableDataEXT float dummy;" "layout(set = 0, binding = 1) uniform accelerationStructureEXT topLevelAS;\n" "\n" "void main()\n" "{\n" " uint n = " << m_data.width << " * gl_LaunchIDEXT.y + gl_LaunchIDEXT.x;\n" " executeCallableEXT(n, 0);\n" "}\n"; programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions; } for (deUint32 y = 0; y < m_data.height; ++y) for (deUint32 x = 0; x < m_data.width; ++x) { const deUint32 shaderNdx = m_data.width * y + x; const bool dummyWork = (shaderNdx % 43 == 0); std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) callableDataInEXT float dummy;\n" "layout(r32ui, set = 0, binding = 0) uniform uimage2D image0_0;\n" "void main()\n" "{\n" " uint r = (" << m_data.width << " * " << y / 3 << " + " << x << ") % 199;\n" " uvec4 color = uvec4(r,0,0,1);\n" << (dummyWork ? generateDummyWork(shaderNdx) : "") << " imageStore(image0_0, ivec2(gl_LaunchIDEXT.xy), color);\n" "}\n"; programCollection.glslSources.add("call" + de::toString(shaderNdx)) << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions; } } TestInstance* RayTracingTestCase::createInstance (Context& context) const { return new RayTracingBuildLargeTestInstance(context, m_data); } de::SharedPtr RayTracingBuildLargeTestInstance::initTopAccelerationStructure (VkCommandBuffer cmdBuffer, de::SharedPtr& bottomLevelAccelerationStructure) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); de::MovePtr result = makeTopLevelAccelerationStructure(); result->setInstanceCount(1); result->setBuildType(m_data.buildType); result->setDeferredOperation(m_data.deferredOperation); result->addInstance(bottomLevelAccelerationStructure); result->createAndBuild(vkd, device, cmdBuffer, allocator); return de::SharedPtr(result.release()); } de::SharedPtr RayTracingBuildLargeTestInstance::initBottomAccelerationStructure (VkCommandBuffer cmdBuffer) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); tcu::UVec2 startPos = tcu::UVec2(0u, 0u); de::MovePtr result = makeBottomLevelAccelerationStructure(); result->setBuildType(m_data.buildType); result->setDeferredOperation(m_data.deferredOperation); result->setGeometryCount(m_data.geometriesGroupCount); for (size_t geometryNdx = 0; geometryNdx < m_data.geometriesGroupCount; ++geometryNdx) { std::vector geometryData; geometryData.reserve(m_data.squaresGroupCount * 3u); for (size_t squareNdx = 0; squareNdx < m_data.squaresGroupCount; ++squareNdx) { const deUint32 n = m_data.width * startPos.y() + startPos.x(); const deUint32 m = (13 * (n + 1)) % (m_data.width * m_data.height); const float x0 = float(startPos.x() + 0) / float(m_data.width); const float y0 = float(startPos.y() + 0) / float(m_data.height); const float x1 = float(startPos.x() + 1) / float(m_data.width); const float y1 = float(startPos.y() + 1) / float(m_data.height); const float xm = (x0 + x1) / 2.0f; const float ym = (y0 + y1) / 2.0f; geometryData.push_back(tcu::Vec3(x0, y0, -1.0f)); geometryData.push_back(tcu::Vec3(xm, y1, -1.0f)); geometryData.push_back(tcu::Vec3(x1, ym, -1.0f)); startPos.y() = m / m_data.width; startPos.x() = m % m_data.width; } result->addGeometry(geometryData, true); } result->createAndBuild(vkd, device, cmdBuffer, allocator); return de::SharedPtr(result.release()); } de::MovePtr RayTracingBuildLargeTestInstance::runTest (const deUint32 threadCount) { const InstanceInterface& vki = m_context.getInstanceInterface(); const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const VkQueue queue = m_context.getUniversalQueue(); Allocator& allocator = m_context.getDefaultAllocator(); const VkFormat format = VK_FORMAT_R32_UINT; const deUint32 pixelCount = m_data.width * m_data.height; const deUint32 callableShaderCount = m_data.width * m_data.height; const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice); const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice); const Move descriptorSetLayout = DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES) .addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES) .build(vkd, device); const Move descriptorPool = DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) .addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) .build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const Move descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const Move pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get()); const Move cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex); const Move cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); de::MovePtr rayTracingPipeline = de::newMovePtr(); const Move pipeline = makePipeline(vkd, device, m_context.getBinaryCollection(), rayTracingPipeline, *pipelineLayout, callableShaderCount, m_data.deferredOperation, threadCount); const de::MovePtr raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1u); const de::MovePtr callableShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1u, callableShaderCount); const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, callableShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize * callableShaderCount); const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, format); const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u); const de::MovePtr image = de::MovePtr(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any)); const Move imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_2D, format, imageSubresourceRange); const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount*sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT); const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u); const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, 1u), bufferImageSubresourceLayers); de::MovePtr buffer = de::MovePtr(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible)); const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL); const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, **image, imageSubresourceRange); const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, **image, imageSubresourceRange); const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); const VkClearValue clearValue = makeClearValueColorU32(5u, 5u, 5u, 255u); de::SharedPtr bottomLevelAccelerationStructure; de::SharedPtr topLevelAccelerationStructure; beginCommandBuffer(vkd, *cmdBuffer, 0u); { cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier); vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, &postImageBarrier); bottomLevelAccelerationStructure = initBottomAccelerationStructure(*cmdBuffer); topLevelAccelerationStructure = initTopAccelerationStructure(*cmdBuffer, bottomLevelAccelerationStructure); const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get(); VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType; DE_NULL, // const void* pNext; 1u, // deUint32 accelerationStructureCount; topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures; }; DescriptorSetUpdateBuilder() .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo) .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet) .update(vkd, device); vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL); vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline); cmdTraceRays(vkd, *cmdBuffer, &raygenShaderBindingTableRegion, &missShaderBindingTableRegion, &hitShaderBindingTableRegion, &callableShaderBindingTableRegion, m_data.width, m_data.height, 1); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier); vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier); } endCommandBuffer(vkd, *cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer.get()); invalidateMappedMemoryRange(vkd, device, buffer->getAllocation().getMemory(), buffer->getAllocation().getOffset(), pixelCount * sizeof(deUint32)); return buffer; } void RayTracingBuildLargeTestInstance::checkSupportInInstance (void) const { const InstanceInterface& vki = m_context.getInstanceInterface(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const vk::VkPhysicalDeviceProperties& properties = m_context.getDeviceProperties(); const deUint32 requiredAllocations = 8u + TopLevelAccelerationStructure::getRequiredAllocationCount() + m_data.instancesGroupCount * BottomLevelAccelerationStructure::getRequiredAllocationCount(); de::MovePtr rayTracingProperties = makeRayTracingProperties(vki, physicalDevice); if (rayTracingProperties->getMaxPrimitiveCount() < m_data.squaresGroupCount) TCU_THROW(NotSupportedError, "Triangles required more than supported"); if (rayTracingProperties->getMaxGeometryCount() < m_data.geometriesGroupCount) TCU_THROW(NotSupportedError, "Geometries required more than supported"); if (rayTracingProperties->getMaxInstanceCount() < m_data.instancesGroupCount) TCU_THROW(NotSupportedError, "Instances required more than supported"); if (properties.limits.maxMemoryAllocationCount < requiredAllocations) TCU_THROW(NotSupportedError, "Test requires more allocations allowed"); } deUint32 RayTracingBuildLargeTestInstance::validateBuffer (de::MovePtr buffer) { const deUint32* bufferPtr = (deUint32*)buffer->getAllocation().getHostPtr(); deUint32 failures = 0; deUint32 pos = 0; for (deUint32 y = 0; y < m_data.height; ++y) for (deUint32 x = 0; x < m_data.width; ++x) { const deUint32 expectedValue = (m_data.width * (y / 3) + x) % 199; if (bufferPtr[pos] != expectedValue) failures++; ++pos; } return failures; } deUint32 RayTracingBuildLargeTestInstance::iterateNoWorkers (void) { de::MovePtr buffer = runTest(0); const deUint32 failures = validateBuffer(buffer); return failures; } deUint32 RayTracingBuildLargeTestInstance::iterateWithWorkers (void) { de::MovePtr singleThreadBuffer = runTest(0); const deUint32 singleThreadFailures = validateBuffer(singleThreadBuffer); de::MovePtr multiThreadBuffer = runTest(m_data.workerThreadsCount); const deUint32 multiThreadFailures = validateBuffer(multiThreadBuffer); const deUint32 failures = singleThreadFailures + multiThreadFailures; return failures; } tcu::TestStatus RayTracingBuildLargeTestInstance::iterate (void) { checkSupportInInstance(); const deUint32 failures = m_data.workerThreadsCount == 0 ? iterateNoWorkers() : iterateWithWorkers(); if (failures == 0) return tcu::TestStatus::pass("Pass"); else return tcu::TestStatus::fail("failures=" + de::toString(failures)); } } // anonymous tcu::TestCaseGroup* createBuildLargeShaderSetTests (tcu::TestContext& testCtx) { // Build large shader set using CPU host threading de::MovePtr group(new tcu::TestCaseGroup(testCtx, "large_shader_set")); const deUint32 sizes[] = { 8, 16, 32, 64 }; const struct { const char* buildTypeName; bool deferredOperation; const VkAccelerationStructureBuildTypeKHR buildType; } buildTypes[] = { { "gpu", false, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR }, { "cpu_ht", true, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR }, }; const deUint32 threads[] = { 1, 2, 3, 4, 8, std::numeric_limits::max() }; for (size_t buildNdx = 0; buildNdx < DE_LENGTH_OF_ARRAY(buildTypes); ++buildNdx) { de::MovePtr buildTypeGroup(new tcu::TestCaseGroup(testCtx, buildTypes[buildNdx].buildTypeName)); for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx]; const deUint32 squaresGroupCount = largestGroup; const deUint32 geometriesGroupCount = 1; const deUint32 instancesGroupCount = 1; const CaseDef caseDef = { sizes[sizesNdx], // deUint32 width; sizes[sizesNdx], // deUint32 height; squaresGroupCount, // deUint32 squaresGroupCount; geometriesGroupCount, // deUint32 geometriesGroupCount; instancesGroupCount, // deUint32 instancesGroupCount; buildTypes[buildNdx].deferredOperation, // bool deferredOperation; buildTypes[buildNdx].buildType, // VkAccelerationStructureBuildTypeKHR buildType; 0, // deUint32 threadsCount; }; const std::string testName = de::toString(largestGroup); buildTypeGroup->addChild(new RayTracingTestCase(testCtx, testName.c_str(), caseDef)); } group->addChild(buildTypeGroup.release()); } for (size_t threadsNdx = 0; threadsNdx < DE_LENGTH_OF_ARRAY(threads); ++threadsNdx) { for (size_t buildNdx = 0; buildNdx < DE_LENGTH_OF_ARRAY(buildTypes); ++buildNdx) { if (buildTypes[buildNdx].buildType != VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR) continue; const std::string suffix = threads[threadsNdx] == std::numeric_limits::max() ? "max" : de::toString(threads[threadsNdx]); const std::string buildTypeGroupName = std::string(buildTypes[buildNdx].buildTypeName) + '_' + suffix; de::MovePtr buildTypeGroup (new tcu::TestCaseGroup(testCtx, buildTypeGroupName.c_str())); for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx]; const deUint32 squaresGroupCount = largestGroup; const deUint32 geometriesGroupCount = 1; const deUint32 instancesGroupCount = 1; const CaseDef caseDef = { sizes[sizesNdx], // deUint32 width; sizes[sizesNdx], // deUint32 height; squaresGroupCount, // deUint32 squaresGroupCount; geometriesGroupCount, // deUint32 geometriesGroupCount; instancesGroupCount, // deUint32 instancesGroupCount; buildTypes[buildNdx].deferredOperation, // bool deferredOperation; buildTypes[buildNdx].buildType, // VkAccelerationStructureBuildTypeKHR buildType; threads[threadsNdx], // deUint32 workerThreadsCount; }; const std::string testName = de::toString(largestGroup); buildTypeGroup->addChild(new RayTracingTestCase(testCtx, testName.c_str(), caseDef)); } group->addChild(buildTypeGroup.release()); } } return group.release(); } } // RayTracing } // vkt