/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2020 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Ray Tracing Shader Binding Table tests *//*--------------------------------------------------------------------*/ #include "vktRayTracingShaderBindingTableTests.hpp" #include "vkDefs.hpp" #include "vktTestCase.hpp" #include "vktTestGroupUtil.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkImageWithMemory.hpp" #include "vkTypeUtil.hpp" #include "vkImageUtil.hpp" #include "deRandom.hpp" #include "tcuTexture.hpp" #include "tcuTextureUtil.hpp" #include "tcuTestLog.hpp" #include "tcuImageCompare.hpp" #include "vkRayTracingUtil.hpp" namespace vkt { namespace RayTracing { namespace { using namespace vk; using namespace vkt; static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR; enum ShaderTestType { STT_HIT = 0, STT_MISS = 1, STT_CALL = 2, STT_COUNT = 3 }; const deUint32 CHECKERBOARD_WIDTH = 8; const deUint32 CHECKERBOARD_HEIGHT = 8; const deUint32 HIT_GEOMETRY_COUNT = 3; const deUint32 HIT_INSTANCE_COUNT = 1 + CHECKERBOARD_WIDTH * CHECKERBOARD_HEIGHT / ( 2 * HIT_GEOMETRY_COUNT ); const deUint32 MAX_SBT_RECORD_OFFSET = 3; const deUint32 MAX_HIT_SBT_RECORD_STRIDE = HIT_GEOMETRY_COUNT + 1; const deUint32 SBT_RANDOM_SEED = 1410; struct TestParams; class TestConfiguration { public: virtual std::vector> initBottomAccelerationStructures (Context& context, TestParams& testParams) = 0; virtual de::MovePtr initTopAccelerationStructure (Context& context, TestParams& testParams, std::vector >& bottomLevelAccelerationStructures) = 0; virtual de::MovePtr initUniformBuffer (Context& context, TestParams& testParams) = 0; virtual void initRayTracingShaders (de::MovePtr& rayTracingPipeline, Context& context, TestParams& testParams) = 0; virtual void initShaderBindingTables (de::MovePtr& rayTracingPipeline, Context& context, TestParams& testParams, VkPipeline pipeline, deUint32 shaderGroupHandleSize, deUint32 shaderGroupBaseAlignment, de::MovePtr& raygenShaderBindingTable, de::MovePtr& hitShaderBindingTable, de::MovePtr& missShaderBindingTable, de::MovePtr& callableShaderBindingTable, VkStridedDeviceAddressRegionKHR& raygenShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& hitShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& missShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& callableShaderBindingTableRegion) = 0; virtual bool verifyImage (BufferWithMemory* resultBuffer, Context& context, TestParams& testParams) = 0; virtual VkFormat getResultImageFormat () = 0; virtual size_t getResultImageFormatSize () = 0; virtual VkClearValue getClearValue () = 0; }; struct TestParams { deUint32 width; deUint32 height; ShaderTestType shaderTestType; deUint32 sbtOffset; bool shaderRecordPresent; deUint32 sbtRecordOffset; deUint32 sbtRecordOffsetPassedToTraceRay; deUint32 sbtRecordStride; deUint32 sbtRecordStridePassedToTraceRay; de::SharedPtr testConfiguration; }; std::vector getShaderCounts () { std::vector shaderCount(STT_COUNT); shaderCount[STT_HIT] = HIT_INSTANCE_COUNT + HIT_GEOMETRY_COUNT * MAX_HIT_SBT_RECORD_STRIDE + MAX_SBT_RECORD_OFFSET + 1; shaderCount[STT_MISS] = MAX_SBT_RECORD_OFFSET + HIT_INSTANCE_COUNT + 1; shaderCount[STT_CALL] = MAX_SBT_RECORD_OFFSET + HIT_INSTANCE_COUNT + 1; return shaderCount; } deUint32 getShaderGroupHandleSize (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupHandleSize(); } deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupBaseAlignment(); } VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, VkFormat format) { const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; (VkImageCreateFlags)0u, // VkImageCreateFlags flags; VK_IMAGE_TYPE_2D, // VkImageType imageType; format, // VkFormat format; makeExtent3D(width, height, 1), // VkExtent3D extent; 1u, // deUint32 mipLevels; 1u, // deUint32 arrayLayers; VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples; VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling; VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, // VkImageUsageFlags usage; VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode; 0u, // deUint32 queueFamilyIndexCount; DE_NULL, // const deUint32* pQueueFamilyIndices; VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout; }; return imageCreateInfo; } class CheckerboardConfiguration : public TestConfiguration { public: std::vector> initBottomAccelerationStructures (Context& context, TestParams& testParams) override; de::MovePtr initTopAccelerationStructure (Context& context, TestParams& testParams, std::vector >& bottomLevelAccelerationStructures) override; de::MovePtr initUniformBuffer (Context& context, TestParams& testParams) override; void initRayTracingShaders (de::MovePtr& rayTracingPipeline, Context& context, TestParams& testParams) override; void initShaderBindingTables (de::MovePtr& rayTracingPipeline, Context& context, TestParams& testParams, VkPipeline pipeline, deUint32 shaderGroupHandleSize, deUint32 shaderGroupBaseAlignment, de::MovePtr& raygenShaderBindingTable, de::MovePtr& hitShaderBindingTable, de::MovePtr& missShaderBindingTable, de::MovePtr& callableShaderBindingTable, VkStridedDeviceAddressRegionKHR& raygenShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& hitShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& missShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& callableShaderBindingTableRegion) override; bool verifyImage (BufferWithMemory* resultBuffer, Context& context, TestParams& testParams) override; VkFormat getResultImageFormat () override; size_t getResultImageFormatSize () override; VkClearValue getClearValue () override; }; std::vector > CheckerboardConfiguration::initBottomAccelerationStructures (Context& context, TestParams& testParams) { DE_UNREF(context); std::vector corners; for (deUint32 y = 0; y < testParams.height; ++y) for (deUint32 x = 0; x < testParams.width; ++x) { if (((x + y) % 2) == 0) continue; corners.push_back(tcu::Vec3((float)x, (float)y, 0.0f)); } de::Random rnd(SBT_RANDOM_SEED); rnd.shuffle(begin(corners), end(corners)); tcu::Vec3 v0(0.0, 1.0, 0.0); tcu::Vec3 v1(0.0, 0.0, 0.0); tcu::Vec3 v2(1.0, 1.0, 0.0); tcu::Vec3 v3(1.0, 0.0, 0.0); std::vector > result; for (size_t cornerNdx = 0; cornerNdx < corners.size(); cornerNdx += HIT_GEOMETRY_COUNT) { de::MovePtr bottomLevelAccelerationStructure = makeBottomLevelAccelerationStructure(); size_t geometryCount = std::min(corners.size() - cornerNdx, size_t(HIT_GEOMETRY_COUNT)); bottomLevelAccelerationStructure->setGeometryCount(geometryCount); for (size_t idx = cornerNdx; idx < cornerNdx + geometryCount; ++idx) { de::SharedPtr geometry = makeRaytracedGeometry(VK_GEOMETRY_TYPE_TRIANGLES_KHR, VK_FORMAT_R32G32B32_SFLOAT, VK_INDEX_TYPE_NONE_KHR); geometry->addVertex(corners[idx] + v0); geometry->addVertex(corners[idx] + v1); geometry->addVertex(corners[idx] + v2); geometry->addVertex(corners[idx] + v2); geometry->addVertex(corners[idx] + v1); geometry->addVertex(corners[idx] + v3); bottomLevelAccelerationStructure->addGeometry(geometry); } result.push_back(de::SharedPtr(bottomLevelAccelerationStructure.release())); } return result; } de::MovePtr CheckerboardConfiguration::initTopAccelerationStructure (Context& context, TestParams& testParams, std::vector >& bottomLevelAccelerationStructures) { DE_UNREF(context); DE_UNREF(testParams); de::MovePtr result = makeTopLevelAccelerationStructure(); deUint32 instanceCount = deUint32(bottomLevelAccelerationStructures.size()); result->setInstanceCount(instanceCount); VkTransformMatrixKHR identityMatrix = { { { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f, 0.0f } } }; for (deUint32 i = 0; i < instanceCount; ++i) result->addInstance(bottomLevelAccelerationStructures[i], identityMatrix, 0u, 0xFF, (testParams.shaderTestType == STT_MISS) ? 0 : i); return result; } de::MovePtr CheckerboardConfiguration::initUniformBuffer (Context& context, TestParams& testParams) { const DeviceInterface& vkd = context.getDeviceInterface(); const VkDevice device = context.getDevice(); Allocator& allocator = context.getDefaultAllocator(); const VkBufferCreateInfo uniformBufferCreateInfo = makeBufferCreateInfo(sizeof(tcu::UVec4), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT); de::MovePtr uniformBuffer = de::MovePtr(new BufferWithMemory(vkd, device, allocator, uniformBufferCreateInfo, MemoryRequirement::HostVisible)); tcu::UVec4 uniformValue; // x = sbtRecordOffset, y = sbtRecordStride, z = missIndex switch (testParams.shaderTestType) { case STT_HIT: { uniformValue = tcu::UVec4(testParams.sbtRecordOffsetPassedToTraceRay, testParams.sbtRecordStride, 0, 0); break; } case STT_MISS: { uniformValue = tcu::UVec4(0, 0, testParams.sbtRecordOffsetPassedToTraceRay, 0); break; } case STT_CALL: { uniformValue = tcu::UVec4(testParams.sbtRecordOffsetPassedToTraceRay, testParams.sbtRecordStride, 0, 0); break; } default: TCU_THROW(InternalError, "Wrong shader test type"); } deMemcpy(uniformBuffer->getAllocation().getHostPtr(), &uniformValue, sizeof(tcu::UVec4)); flushMappedMemoryRange(vkd, device, uniformBuffer->getAllocation().getMemory(), uniformBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE); return uniformBuffer; } void CheckerboardConfiguration::initRayTracingShaders (de::MovePtr& rayTracingPipeline, Context& context, TestParams& testParams) { const DeviceInterface& vkd = context.getDeviceInterface(); const VkDevice device = context.getDevice(); std::vector shaderCount = getShaderCounts(); switch (testParams.shaderTestType) { case STT_HIT: { if (testParams.shaderRecordPresent) { // shaders: rgen, chit_shaderRecord (N times), miss_0 rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0); for (deUint32 idx = 0; idx < shaderCount[STT_HIT]; ++idx) rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("chit_shaderRecord"), 0), 1+idx); rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_HIT]); } else { // shaders: rgen, chit_0 .. chit_N, miss_0 rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0); for (deUint32 idx = 0; idx < shaderCount[STT_HIT]; ++idx) { std::stringstream csname; csname << "chit_" << idx; rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 1 + idx); } rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_HIT]); } rayTracingPipeline->setMaxPayloadSize(16u); break; } case STT_MISS: { if (testParams.shaderRecordPresent) { // shaders: rgen, chit_0, miss_shaderRecord ( N times ) rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0); rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("chit_0"), 0), 1); for (deUint32 idx = 0; idx < shaderCount[STT_MISS]; ++idx) rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_shaderRecord"), 0), 2 + idx); } else { // shaders: rgen, chit_0, miss_0 .. miss_N rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0); rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("chit_0"), 0), 1); for (deUint32 idx = 0; idx < shaderCount[STT_MISS]; ++idx) { std::stringstream csname; csname << "miss_" << idx; rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 2 + idx); } } rayTracingPipeline->setMaxPayloadSize(16u); break; } case STT_CALL: { if (testParams.shaderRecordPresent) { // shaders: rgen, chit_call_0 .. chit_call_N, miss_0, call_shaderRecord ( N times ) rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0); for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx) { std::stringstream csname; csname << "chit_call_" << idx; rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 1 + idx); } rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_CALL]); for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx) rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("call_shaderRecord"), 0), 2 + shaderCount[STT_CALL] + idx); } else { // shaders: rgen, chit_call_0 .. chit_call_N, miss_0, call_0 .. call_N rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("rgen"), 0), 0); for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx) { std::stringstream csname; csname << "chit_call_" << idx; rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 1 + idx); } rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get("miss_0"), 0), 1 + shaderCount[STT_CALL]); for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx) { std::stringstream csname; csname << "call_" << idx; rayTracingPipeline->addShader(VK_SHADER_STAGE_CALLABLE_BIT_KHR, createShaderModule(vkd, device, context.getBinaryCollection().get(csname.str()), 0), 2 + shaderCount[STT_CALL] + idx); } } rayTracingPipeline->setMaxPayloadSize(16u); break; } default: TCU_THROW(InternalError, "Wrong shader test type"); } } void CheckerboardConfiguration::initShaderBindingTables (de::MovePtr& rayTracingPipeline, Context& context, TestParams& testParams, VkPipeline pipeline, deUint32 shaderGroupHandleSize, deUint32 shaderGroupBaseAlignment, de::MovePtr& raygenShaderBindingTable, de::MovePtr& hitShaderBindingTable, de::MovePtr& missShaderBindingTable, de::MovePtr& callableShaderBindingTable, VkStridedDeviceAddressRegionKHR& raygenShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& hitShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& missShaderBindingTableRegion, VkStridedDeviceAddressRegionKHR& callableShaderBindingTableRegion) { const DeviceInterface& vkd = context.getDeviceInterface(); const VkDevice device = context.getDevice(); Allocator& allocator = context.getDefaultAllocator(); std::vector shaderCount = getShaderCounts(); // shaderBindingTableOffset must be multiple of shaderGroupBaseAlignment deUint32 shaderBindingTableOffset = testParams.sbtOffset * shaderGroupBaseAlignment; // ShaderRecordKHR size must be multiple of shaderGroupHandleSize deUint32 shaderRecordAlignedSize = deAlign32(shaderGroupHandleSize + deUint32(sizeof(tcu::UVec4)), shaderGroupHandleSize); switch (testParams.shaderTestType) { case STT_HIT: { raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 ); if(testParams.shaderRecordPresent) hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, shaderCount[STT_HIT], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset, sizeof(tcu::UVec4)); else hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, shaderCount[STT_HIT], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset); missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1 + shaderCount[STT_HIT], 1 ); raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); if (testParams.shaderRecordPresent) hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), shaderBindingTableOffset), shaderRecordAlignedSize, shaderCount[STT_HIT] * shaderRecordAlignedSize); else hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), shaderBindingTableOffset), shaderGroupHandleSize, shaderCount[STT_HIT] * shaderGroupHandleSize); missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); // fill ShaderRecordKHR data if (testParams.shaderRecordPresent) { deUint8* hitAddressBegin = (deUint8*)hitShaderBindingTable->getAllocation().getHostPtr() + shaderBindingTableOffset; for (size_t idx = 0; idx < shaderCount[STT_HIT]; ++idx) { deUint8* shaderRecordAddress = hitAddressBegin + idx * shaderRecordAlignedSize + size_t(shaderGroupHandleSize); tcu::UVec4 shaderRecord(deUint32(idx), 0, 0, 0); deMemcpy(shaderRecordAddress, &shaderRecord, sizeof(tcu::UVec4)); } flushMappedMemoryRange(vkd, device, hitShaderBindingTable->getAllocation().getMemory(), hitShaderBindingTable->getAllocation().getOffset(), VK_WHOLE_SIZE); } break; } case STT_MISS: { raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 ); hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, 1 ); if (testParams.shaderRecordPresent) missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2, shaderCount[STT_MISS], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset, sizeof(tcu::UVec4)); else missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2, shaderCount[STT_MISS], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset); raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), 0, shaderGroupHandleSize); if (testParams.shaderRecordPresent) missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), shaderBindingTableOffset), shaderRecordAlignedSize, shaderCount[STT_MISS] * shaderRecordAlignedSize); else missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), shaderBindingTableOffset), shaderGroupHandleSize, shaderCount[STT_MISS] * shaderGroupHandleSize); callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); if (testParams.shaderRecordPresent) { deUint8* missAddressBegin = (deUint8*)missShaderBindingTable->getAllocation().getHostPtr() + shaderBindingTableOffset; for (size_t idx = 0; idx < shaderCount[STT_MISS]; ++idx) { deUint8* shaderRecordAddress = missAddressBegin + idx * shaderRecordAlignedSize + size_t(shaderGroupHandleSize); tcu::UVec4 shaderRecord(deUint32(idx), 0, 0, 0); deMemcpy(shaderRecordAddress, &shaderRecord, sizeof(tcu::UVec4)); } flushMappedMemoryRange(vkd, device, missShaderBindingTable->getAllocation().getMemory(), missShaderBindingTable->getAllocation().getOffset(), VK_WHOLE_SIZE); } break; } case STT_CALL: { raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0, 1 ); hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1, shaderCount[STT_CALL]); missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1 + shaderCount[STT_CALL], 1 ); if (testParams.shaderRecordPresent) callableShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2 + shaderCount[STT_CALL], shaderCount[STT_CALL], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset, sizeof(tcu::UVec4)); else callableShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 2 + shaderCount[STT_CALL], shaderCount[STT_CALL], 0u, 0u, MemoryRequirement::Any, 0u, shaderBindingTableOffset); raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderCount[STT_CALL] * shaderGroupHandleSize); missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); if (testParams.shaderRecordPresent) callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, callableShaderBindingTable->get(), shaderBindingTableOffset), shaderRecordAlignedSize, shaderCount[STT_CALL] * shaderRecordAlignedSize); else callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, callableShaderBindingTable->get(), shaderBindingTableOffset), shaderGroupHandleSize, shaderCount[STT_CALL] * shaderGroupHandleSize); if (testParams.shaderRecordPresent) { deUint8* callAddressBegin = (deUint8*)callableShaderBindingTable->getAllocation().getHostPtr() + shaderBindingTableOffset; for (size_t idx = 0; idx < shaderCount[STT_CALL]; ++idx) { deUint8* shaderRecordAddress = callAddressBegin + idx * shaderRecordAlignedSize + size_t(shaderGroupHandleSize); tcu::UVec4 shaderRecord(deUint32(idx), 0, 0, 0); deMemcpy(shaderRecordAddress, &shaderRecord, sizeof(tcu::UVec4)); } flushMappedMemoryRange(vkd, device, callableShaderBindingTable->getAllocation().getMemory(), callableShaderBindingTable->getAllocation().getOffset(), VK_WHOLE_SIZE); } break; } default: TCU_THROW(InternalError, "Wrong shader test type"); } } bool CheckerboardConfiguration::verifyImage (BufferWithMemory* resultBuffer, Context& context, TestParams& testParams) { // create result image tcu::TextureFormat imageFormat = vk::mapVkFormat(getResultImageFormat()); tcu::ConstPixelBufferAccess resultAccess(imageFormat, testParams.width, testParams.height, 1, resultBuffer->getAllocation().getHostPtr()); // recreate geometry indices and instance offsets std::vector corners; for (deUint32 y = 0; y < testParams.height; ++y) for (deUint32 x = 0; x < testParams.width; ++x) { if (((x + y) % 2) == 0) continue; corners.push_back(tcu::UVec4(x, y, 0, 0)); } de::Random rnd(SBT_RANDOM_SEED); rnd.shuffle(begin(corners), end(corners)); deUint32 instanceOffset = 0; for (size_t cornerNdx = 0; cornerNdx < corners.size(); cornerNdx += HIT_GEOMETRY_COUNT, ++instanceOffset) { size_t geometryCount = std::min(corners.size() - cornerNdx, size_t(HIT_GEOMETRY_COUNT)); deUint32 geometryIndex = 0; for (size_t idx = cornerNdx; idx < cornerNdx + geometryCount; ++idx, ++geometryIndex) { corners[idx].z() = instanceOffset; corners[idx].w() = geometryIndex; } } std::vector reference(testParams.width * testParams.height); tcu::PixelBufferAccess referenceAccess(imageFormat, testParams.width, testParams.height, 1, reference.data()); // clear image with miss values tcu::UVec4 missValue((testParams.shaderTestType == STT_MISS) ? testParams.sbtRecordOffset : 0, 0, 0, 0); tcu::clear(referenceAccess, missValue); // for each pixel - set its color to proper value for (const auto& pixel : corners) { deUint32 shaderIndex; switch (testParams.shaderTestType) { case STT_HIT: { shaderIndex = testParams.sbtRecordOffset + pixel.z() + pixel.w() * testParams.sbtRecordStride; break; } case STT_MISS: { shaderIndex = 0;// pixel.z(); break; } case STT_CALL: { shaderIndex = testParams.sbtRecordOffset + pixel.z() + pixel.w() * testParams.sbtRecordStride; break; } default: TCU_THROW(InternalError, "Wrong shader test type"); } referenceAccess.setPixel(tcu::UVec4(shaderIndex, 0, 0, 0), pixel.x(), pixel.y()); } // compare result and reference return tcu::intThresholdCompare(context.getTestContext().getLog(), "Result comparison", "", referenceAccess, resultAccess, tcu::UVec4(0), tcu::COMPARE_LOG_RESULT); } VkFormat CheckerboardConfiguration::getResultImageFormat () { return VK_FORMAT_R32_UINT; } size_t CheckerboardConfiguration::getResultImageFormatSize () { return sizeof(deUint32); } VkClearValue CheckerboardConfiguration::getClearValue () { return makeClearValueColorU32(0xFF, 0u, 0u, 0u); } class ShaderBindingTableIndexingTestCase : public TestCase { public: ShaderBindingTableIndexingTestCase (tcu::TestContext& context, const char* name, const TestParams data); ~ShaderBindingTableIndexingTestCase (void); virtual void checkSupport (Context& context) const; virtual void initPrograms (SourceCollections& programCollection) const; virtual TestInstance* createInstance (Context& context) const; private: TestParams m_data; }; class ShaderBindingTableIndexingTestInstance : public TestInstance { public: ShaderBindingTableIndexingTestInstance (Context& context, const TestParams& data); ~ShaderBindingTableIndexingTestInstance (void); tcu::TestStatus iterate (void); protected: de::MovePtr runTest (); private: TestParams m_data; }; ShaderBindingTableIndexingTestCase::ShaderBindingTableIndexingTestCase (tcu::TestContext& context, const char* name, const TestParams data) : vkt::TestCase (context, name) , m_data (data) { } ShaderBindingTableIndexingTestCase::~ShaderBindingTableIndexingTestCase (void) { } void ShaderBindingTableIndexingTestCase::checkSupport (Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline"); const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures(); if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE ) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline"); const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures(); if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE) TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure"); } void ShaderBindingTableIndexingTestCase::initPrograms (SourceCollections& programCollection) const { const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); std::vector shaderCount = getShaderCounts(); { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadEXT uvec4 hitValue;\n" "layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n" "layout(set = 0, binding = 1) uniform TraceRaysParamsUBO\n" "{\n" " uvec4 trParams; // x = sbtRecordOffset, y = sbtRecordStride, z = missIndex\n" "};\n" "layout(set = 0, binding = 2) uniform accelerationStructureEXT topLevelAS;\n" "\n" "void main()\n" "{\n" " float tmin = 0.0;\n" " float tmax = 1.0;\n" " vec3 origin = vec3(float(gl_LaunchIDEXT.x) + 0.5f, float(gl_LaunchIDEXT.y) + 0.5f, 0.5f);\n" " vec3 direct = vec3(0.0, 0.0, -1.0);\n" " hitValue = uvec4(0,0,0,0);\n" " traceRayEXT(topLevelAS, 0, 0xFF, trParams.x, trParams.y, trParams.z, origin, tmin, direct, tmax, 0);\n" " imageStore(result, ivec2(gl_LaunchIDEXT.xy), hitValue);\n" "}\n"; programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(css.str())) << buildOptions; } for(deUint32 idx = 0; idx < shaderCount[STT_HIT]; ++idx) { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n" "void main()\n" "{\n" " hitValue = uvec4("<< idx << ",0,0,1);\n" "}\n"; std::stringstream csname; csname << "chit_" << idx; programCollection.glslSources.add(csname.str()) << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions; } { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(shaderRecordEXT) buffer block\n" "{\n" " uvec4 info;\n" "};\n" "layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n" "void main()\n" "{\n" " hitValue = info;\n" "}\n"; programCollection.glslSources.add("chit_shaderRecord") << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions; } for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx) { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) callableDataEXT uvec4 value;\n" "layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n" "void main()\n" "{\n" " executeCallableEXT(" << idx << ", 0);\n" " hitValue = value;\n" "}\n"; std::stringstream csname; csname << "chit_call_" << idx; programCollection.glslSources.add(csname.str()) << glu::ClosestHitSource(updateRayTracingGLSL(css.str())) << buildOptions; } for (deUint32 idx = 0; idx < shaderCount[STT_MISS]; ++idx) { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n" "void main()\n" "{\n" " hitValue = uvec4(" << idx <<",0,0,1);\n" "}\n"; std::stringstream csname; csname << "miss_" << idx; programCollection.glslSources.add(csname.str()) << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions; } { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(shaderRecordEXT) buffer block\n" "{\n" " uvec4 info;\n" "};\n" "layout(location = 0) rayPayloadInEXT uvec4 hitValue;\n" "void main()\n" "{\n" " hitValue = info;\n" "}\n"; programCollection.glslSources.add("miss_shaderRecord") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions; } for (deUint32 idx = 0; idx < shaderCount[STT_CALL]; ++idx) { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) callableDataInEXT uvec4 result;\n" "void main()\n" "{\n" " result = uvec4(" << idx << ",0,0,1);\n" "}\n"; std::stringstream csname; csname << "call_" << idx; programCollection.glslSources.add(csname.str()) << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions; } { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(shaderRecordEXT) buffer block\n" "{\n" " uvec4 info;\n" "};\n" "layout(location = 0) callableDataInEXT uvec4 result;\n" "void main()\n" "{\n" " result = info;\n" "}\n"; programCollection.glslSources.add("call_shaderRecord") << glu::CallableSource(updateRayTracingGLSL(css.str())) << buildOptions; } } TestInstance* ShaderBindingTableIndexingTestCase::createInstance (Context& context) const { return new ShaderBindingTableIndexingTestInstance(context, m_data); } ShaderBindingTableIndexingTestInstance::ShaderBindingTableIndexingTestInstance (Context& context, const TestParams& data) : vkt::TestInstance (context) , m_data (data) { } ShaderBindingTableIndexingTestInstance::~ShaderBindingTableIndexingTestInstance (void) { } de::MovePtr ShaderBindingTableIndexingTestInstance::runTest () { const InstanceInterface& vki = m_context.getInstanceInterface(); const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const VkQueue queue = m_context.getUniversalQueue(); Allocator& allocator = m_context.getDefaultAllocator(); const deUint32 pixelCount = m_data.width * m_data.height * 1; const Move descriptorSetLayout = DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES) .addSingleBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, ALL_RAY_TRACING_STAGES) .addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES) .build(vkd, device); const Move descriptorPool = DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) .addType(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) .addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) .build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const Move descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const Move pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get()); de::MovePtr rayTracingPipeline = de::newMovePtr(); m_data.testConfiguration->initRayTracingShaders(rayTracingPipeline, m_context, m_data); Move pipeline = rayTracingPipeline->createPipeline(vkd, device, *pipelineLayout); de::MovePtr raygenShaderBindingTable; de::MovePtr hitShaderBindingTable; de::MovePtr missShaderBindingTable; de::MovePtr callableShaderBindingTable; VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion; VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion; VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion; VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion; m_data.testConfiguration->initShaderBindingTables(rayTracingPipeline, m_context, m_data, *pipeline, getShaderGroupHandleSize(vki, physicalDevice), getShaderGroupBaseAlignment(vki, physicalDevice), raygenShaderBindingTable, hitShaderBindingTable, missShaderBindingTable, callableShaderBindingTable, raygenShaderBindingTableRegion, hitShaderBindingTableRegion, missShaderBindingTableRegion, callableShaderBindingTableRegion); const VkFormat imageFormat = m_data.testConfiguration->getResultImageFormat(); const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, imageFormat); const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u); const de::MovePtr image = de::MovePtr(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any)); const Move imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_2D, imageFormat, imageSubresourceRange); const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(pixelCount*m_data.testConfiguration->getResultImageFormatSize(), VK_BUFFER_USAGE_TRANSFER_DST_BIT); const VkImageSubresourceLayers resultBufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u); const VkBufferImageCopy resultBufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, 1), resultBufferImageSubresourceLayers); de::MovePtr resultBuffer = de::MovePtr(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible)); const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL); const Move cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex); const Move cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); std::vector > bottomLevelAccelerationStructures; de::MovePtr topLevelAccelerationStructure; de::MovePtr uniformBuffer; beginCommandBuffer(vkd, *cmdBuffer, 0u); { const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, **image, imageSubresourceRange); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier); const VkClearValue clearValue = m_data.testConfiguration->getClearValue(); vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange); const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR | VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, **image, imageSubresourceRange); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, &postImageBarrier); bottomLevelAccelerationStructures = m_data.testConfiguration->initBottomAccelerationStructures(m_context, m_data); for (auto& blas : bottomLevelAccelerationStructures) blas->createAndBuild(vkd, device, *cmdBuffer, allocator); topLevelAccelerationStructure = m_data.testConfiguration->initTopAccelerationStructure(m_context, m_data, bottomLevelAccelerationStructures); topLevelAccelerationStructure->createAndBuild(vkd, device, *cmdBuffer, allocator); uniformBuffer = m_data.testConfiguration->initUniformBuffer(m_context, m_data); VkDescriptorBufferInfo uniformBufferInfo = makeDescriptorBufferInfo(uniformBuffer->get(), 0ull, sizeof(tcu::UVec4)); const TopLevelAccelerationStructure* topLevelAccelerationStructurePtr = topLevelAccelerationStructure.get(); VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType; DE_NULL, // const void* pNext; 1u, // deUint32 accelerationStructureCount; topLevelAccelerationStructurePtr->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures; }; DescriptorSetUpdateBuilder() .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo) .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &uniformBufferInfo) .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(2u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet) .update(vkd, device); vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL); vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline); cmdTraceRays(vkd, *cmdBuffer, &raygenShaderBindingTableRegion, &missShaderBindingTableRegion, &hitShaderBindingTableRegion, &callableShaderBindingTableRegion, m_data.width, m_data.height, 1); const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier); vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **resultBuffer, 1u, &resultBufferImageRegion); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier); } endCommandBuffer(vkd, *cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer.get()); invalidateMappedMemoryRange(vkd, device, resultBuffer->getAllocation().getMemory(), resultBuffer->getAllocation().getOffset(), VK_WHOLE_SIZE); return resultBuffer; } tcu::TestStatus ShaderBindingTableIndexingTestInstance::iterate (void) { // run test using arrays of pointers const de::MovePtr buffer = runTest(); if (!m_data.testConfiguration->verifyImage(buffer.get(), m_context, m_data)) return tcu::TestStatus::fail("Fail"); return tcu::TestStatus::pass("Pass"); } /* Test the advertised shader group handle alignment requirements work as expected. The tests will prepare shader binding tables using shader record buffers for padding and achieving the desired alignments. +------------------------------------------- | Shader | Shader | Aligned | | Group | Record | Shader | ... | Handle | Buffer | Group | | | (padding) | Handle | +------------------------------------------- The number of geometries to try (hence the number of alignments and shader record buffers to try) is 32/align + 1, so 33 in the case of align=1, and 2 in the case of align=32. This allows us to test all possible alignment values. Geometries are triangles put alongside the X axis. The base triangle is: 0,1| x | x x | x 0.5,0.5 | x x x | x x | xxxxxxxxxxx +------------- 0,0 1,0 A triangle surrounding point (0.5, 0.5), in the [0, 1] range of both the X and Y axis. As more than one triangle is needed, each triangle is translated one more unit in the X axis, so each triangle is in the [i, i+1] range. The Y axis doesn't change, triangles are always in the [0,1] range. Triangles have Z=5, and one ray is traced per triangle, origin (i+0.5, 0.5, 0) direction (0, 0, 1), where i is gl_LaunchIDEXT.x. For each geometry, the shader record buffer contents vary depending on the geometry index and the desired alignment (padding). Alignment Element Type Element Count Data 1 uint8_t 1 0x80 | geometryID 2 uint16_t 1 0xABC0 | geometryID 4+ uint32_t alignment/4 For each element: 0xABCDE0F0 | (element << 8) | geometryID The test will try to verify everything works properly and all shader record buffers can be read with the right values. */ struct ShaderGroupHandleAlignmentParams { const uint32_t alignment; ShaderGroupHandleAlignmentParams (uint32_t alignment_) : alignment (alignment_) { DE_ASSERT(alignment >= 1u && alignment <= 32u); DE_ASSERT(deIsPowerOfTwo32(static_cast(alignment))); } uint32_t geometryCount () const { return (32u / alignment + 1u); } uint32_t shaderRecordElementCount () const { return ((alignment <= 4u) ? 1u : (alignment / 4u)); } std::string glslElementType () const { if (alignment == 1u) return "uint8_t"; if (alignment == 2u) return "uint16_t"; return "uint32_t"; } std::string glslExtension () const { if (alignment == 1u) return "GL_EXT_shader_explicit_arithmetic_types_int8"; if (alignment == 2u) return "GL_EXT_shader_explicit_arithmetic_types_int16"; return "GL_EXT_shader_explicit_arithmetic_types_int32"; } std::vector getRecordData (uint32_t geometryID) const { std::vector recordData; switch (alignment) { case 1u: recordData.push_back(static_cast(0x80u | geometryID)); break; case 2u: recordData.push_back(uint8_t{0xABu}); recordData.push_back(static_cast(0xC0u | geometryID)); break; default: { const auto elemCount = shaderRecordElementCount(); for (uint32_t i = 0u; i < elemCount; ++i) { recordData.push_back(uint8_t{0xABu}); recordData.push_back(uint8_t{0xCDu}); recordData.push_back(static_cast(0xE0u | i)); recordData.push_back(static_cast(0xF0u | geometryID)); } } break; } return recordData; } }; class ShaderGroupHandleAlignmentCase : public TestCase { public: ShaderGroupHandleAlignmentCase (tcu::TestContext& testCtx, const std::string& name, const ShaderGroupHandleAlignmentParams& params) : TestCase (testCtx, name) , m_params (params) { } virtual ~ShaderGroupHandleAlignmentCase (void) {} void checkSupport (Context& context) const override; void initPrograms (vk::SourceCollections& programCollection) const override; TestInstance* createInstance (Context& context) const override; protected: ShaderGroupHandleAlignmentParams m_params; }; class ShaderGroupHandleAlignmentInstance : public TestInstance { public: ShaderGroupHandleAlignmentInstance (Context& context, const ShaderGroupHandleAlignmentParams& params) : TestInstance (context) , m_params (params) {} virtual ~ShaderGroupHandleAlignmentInstance (void) {} tcu::TestStatus iterate (void) override; protected: ShaderGroupHandleAlignmentParams m_params; }; void ShaderGroupHandleAlignmentCase::checkSupport (Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline"); const auto& vki = context.getInstanceInterface(); const auto physicalDevice = context.getPhysicalDevice(); const auto rtProperties = makeRayTracingProperties(vki, physicalDevice); if (m_params.alignment < rtProperties->getShaderGroupHandleAlignment()) TCU_THROW(NotSupportedError, "Required shader group handle alignment not supported"); switch (m_params.alignment) { case 1u: { const auto& int8Features = context.getShaderFloat16Int8Features(); if (!int8Features.shaderInt8) TCU_THROW(NotSupportedError, "shaderInt8 not supported"); const auto& int8StorageFeatures = context.get8BitStorageFeatures(); if (!int8StorageFeatures.storageBuffer8BitAccess) TCU_THROW(NotSupportedError, "storageBuffer8BitAccess not supported"); } break; case 2u: { context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SHADER_INT16); const auto& int16StorageFeatures = context.get16BitStorageFeatures(); if (!int16StorageFeatures.storageBuffer16BitAccess) TCU_THROW(NotSupportedError, "storageBuffer16BitAccess not supported"); } break; default: break; } } void ShaderGroupHandleAlignmentCase::initPrograms (vk::SourceCollections& programCollection) const { const ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); const auto elemType = m_params.glslElementType(); const auto geometryCount = m_params.geometryCount(); const auto elementCount = m_params.shaderRecordElementCount(); const auto extension = m_params.glslExtension(); std::ostringstream descriptors; descriptors << "layout(set=0, binding=0) uniform accelerationStructureEXT topLevelAS;\n" << "layout(set=0, binding=1, std430) buffer SSBOBlock {\n" << " " << elemType << " data[" << geometryCount << "][" << elementCount << "];\n" << "} ssbo;\n" ; const auto descriptorsStr = descriptors.str(); std::ostringstream commonHeader; commonHeader << "#version 460 core\n" << "#extension GL_EXT_ray_tracing : require\n" << "#extension " << extension << " : require\n" ; const auto commontHeaderStr = commonHeader.str(); std::ostringstream rgen; rgen << commontHeaderStr << "\n" << descriptorsStr << "layout(location=0) rayPayloadEXT vec4 unused;\n" << "\n" << "void main()\n" << "{\n" << " const uint rayFlags = 0;\n" << " const uint cullMask = 0xFF;\n" << " const float tMin = 0.0;\n" << " const float tMax = 10.0;\n" << " const vec3 origin = vec3(float(gl_LaunchIDEXT.x) + 0.5, 0.5, 0.0);\n" << " const vec3 direction = vec3(0.0, 0.0, 1.0);\n" << " const uint sbtOffset = 0;\n" << " const uint sbtStride = 1;\n" << " const uint missIndex = 0;\n" << " traceRayEXT(topLevelAS, rayFlags, cullMask, sbtOffset, sbtStride, missIndex, origin, tMin, direction, tMax, 0);\n" << "}\n" ; std::ostringstream chit; chit << commontHeaderStr << "\n" << descriptorsStr << "layout(location=0) rayPayloadInEXT vec4 unused;\n" << "layout(shaderRecordEXT, std430) buffer srbBlock {\n" << " " << elemType << " data[" << elementCount << "];\n" << "} srb;\n" << "\n" << "void main()\n" << "{\n" << " for (uint i = 0; i < " << elementCount << "; ++i) {\n" << " ssbo.data[gl_LaunchIDEXT.x][i] = srb.data[i];\n" << " }\n" << "}\n" ; std::ostringstream miss; miss << commontHeaderStr << "\n" << descriptorsStr << "layout(location=0) rayPayloadInEXT vec4 unused;\n" << "\n" << "void main()\n" << "{\n" << "}\n" ; programCollection.glslSources.add("rgen") << glu::RaygenSource(rgen.str()) << buildOptions; programCollection.glslSources.add("chit") << glu::ClosestHitSource(chit.str()) << buildOptions; programCollection.glslSources.add("miss") << glu::MissSource(miss.str()) << buildOptions; } TestInstance* ShaderGroupHandleAlignmentCase::createInstance (Context& context) const { return new ShaderGroupHandleAlignmentInstance(context, m_params); } tcu::TestStatus ShaderGroupHandleAlignmentInstance::iterate (void) { const auto& vki = m_context.getInstanceInterface(); const auto physDev = m_context.getPhysicalDevice(); const auto& vkd = m_context.getDeviceInterface(); const auto device = m_context.getDevice(); auto& alloc = m_context.getDefaultAllocator(); const auto qIndex = m_context.getUniversalQueueFamilyIndex(); const auto queue = m_context.getUniversalQueue(); const auto stages = (VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR); const auto geoCount = m_params.geometryCount(); const auto triangleZ = 5.0f; // Command pool and buffer. const auto cmdPool = makeCommandPool(vkd, device, qIndex); const auto cmdBufferPtr = allocateCommandBuffer(vkd, device, cmdPool.get(), VK_COMMAND_BUFFER_LEVEL_PRIMARY); const auto cmdBuffer = cmdBufferPtr.get(); beginCommandBuffer(vkd, cmdBuffer); // Build acceleration structures. auto topLevelAS = makeTopLevelAccelerationStructure(); auto bottomLevelAS = makeBottomLevelAccelerationStructure(); // Create the needed amount of geometries (triangles) with the right coordinates. const tcu::Vec3 baseLocation (0.5f, 0.5f, triangleZ); const float vertexOffset = 0.25f; // From base location, to build a triangle around it. for (uint32_t i = 0; i < geoCount; ++i) { // Triangle "center" or base location. const tcu::Vec3 triangleLocation (baseLocation.x() + static_cast(i), baseLocation.y(), baseLocation.z()); // Actual triangle. const std::vector triangle { tcu::Vec3(triangleLocation.x() - vertexOffset, triangleLocation.y() - vertexOffset, triangleLocation.z()), tcu::Vec3(triangleLocation.x() + vertexOffset, triangleLocation.y() - vertexOffset, triangleLocation.z()), tcu::Vec3(triangleLocation.x(), triangleLocation.y() + vertexOffset, triangleLocation.z()), }; bottomLevelAS->addGeometry(triangle, true/*triangles*/); } bottomLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc); de::SharedPtr blasSharedPtr (bottomLevelAS.release()); topLevelAS->setInstanceCount(1); topLevelAS->addInstance(blasSharedPtr, identityMatrix3x4, 0u, 0xFF, 0u, VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR); topLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc); // Get some ray tracing properties. uint32_t shaderGroupHandleSize = 0u; uint32_t shaderGroupBaseAlignment = 1u; { const auto rayTracingPropertiesKHR = makeRayTracingProperties(vki, physDev); shaderGroupHandleSize = rayTracingPropertiesKHR->getShaderGroupHandleSize(); shaderGroupBaseAlignment = rayTracingPropertiesKHR->getShaderGroupBaseAlignment(); } // SSBO to copy results over from the shaders. const auto shaderRecordSize = m_params.alignment; const auto hitSBTStride = shaderGroupHandleSize + shaderRecordSize; const auto ssboSize = static_cast(geoCount * hitSBTStride); const auto ssboInfo = makeBufferCreateInfo(ssboSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT); BufferWithMemory ssbo (vkd, device, alloc, ssboInfo, MemoryRequirement::HostVisible); auto& ssboAlloc = ssbo.getAllocation(); void* ssboData = ssboAlloc.getHostPtr(); deMemset(ssboData, 0, static_cast(ssboSize)); // Descriptor set layout and pipeline layout. DescriptorSetLayoutBuilder setLayoutBuilder; setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, stages); setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, stages); const auto setLayout = setLayoutBuilder.build(vkd, device); const auto pipelineLayout = makePipelineLayout(vkd, device, setLayout.get()); // Descriptor pool and set. DescriptorPoolBuilder poolBuilder; poolBuilder.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR); poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1u); const auto descriptorPool = poolBuilder.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const auto descriptorSet = makeDescriptorSet(vkd, device, descriptorPool.get(), setLayout.get()); // Update descriptor set. { const VkWriteDescriptorSetAccelerationStructureKHR accelDescInfo = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, nullptr, 1u, topLevelAS.get()->getPtr(), }; const auto ssboDescInfo = makeDescriptorBufferInfo(ssbo.get(), 0ull, ssboSize); DescriptorSetUpdateBuilder updateBuilder; updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelDescInfo); updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &ssboDescInfo); updateBuilder.update(vkd, device); } // Shader modules. auto rgenModule = makeVkSharedPtr(createShaderModule(vkd, device, m_context.getBinaryCollection().get("rgen"), 0)); auto missModule = makeVkSharedPtr(createShaderModule(vkd, device, m_context.getBinaryCollection().get("miss"), 0)); auto chitModule = makeVkSharedPtr(createShaderModule(vkd, device, m_context.getBinaryCollection().get("chit"), 0)); // Create raytracing pipeline and shader binding tables. Move pipeline; de::MovePtr raygenSBT; de::MovePtr missSBT; de::MovePtr hitSBT; de::MovePtr callableSBT; VkStridedDeviceAddressRegionKHR raygenSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); VkStridedDeviceAddressRegionKHR missSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); VkStridedDeviceAddressRegionKHR hitSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); VkStridedDeviceAddressRegionKHR callableSBTRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); // Create shader record buffer data. using DataVec = std::vector; std::vector srbData; for (uint32_t i = 0; i < geoCount; ++i) { srbData.emplace_back(m_params.getRecordData(i)); } std::vector srbDataPtrs; srbDataPtrs.reserve(srbData.size()); std::transform(begin(srbData), end(srbData), std::back_inserter(srbDataPtrs), [](const DataVec& data) { return data.data(); }); // Generate ids for the closest hit and miss shaders according to the test parameters. { const auto rayTracingPipeline = de::newMovePtr(); rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, rgenModule, 0u); rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, missModule, 1u); for (uint32_t i = 0; i < geoCount; ++i) rayTracingPipeline->addShader(VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, chitModule, 2u + i); pipeline = rayTracingPipeline->createPipeline(vkd, device, pipelineLayout.get()); raygenSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 0u, 1u); raygenSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenSBT->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); missSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 1u, 1u); missSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missSBT->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); hitSBT = rayTracingPipeline->createShaderBindingTable(vkd, device, pipeline.get(), alloc, shaderGroupHandleSize, shaderGroupBaseAlignment, 2u, geoCount, 0u, 0u, MemoryRequirement::Any, 0u, 0u, shaderRecordSize, srbDataPtrs.data(), false/*autoalign*/); hitSBTRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitSBT->get(), 0), hitSBTStride, hitSBTStride*geoCount); } // Trace rays and verify ssbo contents. vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline.get()); vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr); vkd.cmdTraceRaysKHR(cmdBuffer, &raygenSBTRegion, &missSBTRegion, &hitSBTRegion, &callableSBTRegion, geoCount, 1u, 1u); const auto shaderToHostBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); cmdPipelineMemoryBarrier(vkd, cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_HOST_BIT, &shaderToHostBarrier); endCommandBuffer(vkd, cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer); invalidateAlloc(vkd, device, ssboAlloc); // Verify SSBO. const auto ssboDataAsBytes = reinterpret_cast(ssboData); size_t ssboDataIdx = 0u; bool fail = false; auto& log = m_context.getTestContext().getLog(); for (const auto& dataVec : srbData) for (const uint8_t byte : dataVec) { const uint8_t outputByte = ssboDataAsBytes[ssboDataIdx++]; if (byte != outputByte) { std::ostringstream msg; msg << std::hex << std::setfill('0') << "Unexpectd output data: " << "0x" << std::setw(2) << static_cast(outputByte) << " vs " << "0x" << std::setw(2) << static_cast(byte) ; log << tcu::TestLog::Message << msg.str() << tcu::TestLog::EndMessage; fail = true; } } if (fail) return tcu::TestStatus::fail("Unexpected output data found; check log for details"); return tcu::TestStatus::pass("Pass"); } } // anonymous tcu::TestCaseGroup* createShaderBindingTableTests (tcu::TestContext& testCtx) { // Tests veryfying shader binding tables de::MovePtr group(new tcu::TestCaseGroup(testCtx, "shader_binding_table")); struct ShaderTestTypeData { ShaderTestType shaderTestType; const char* name; } shaderTestTypes[] = { { STT_HIT, "indexing_hit" }, { STT_MISS, "indexing_miss" }, { STT_CALL, "indexing_call" }, }; struct ShaderBufferOffsetData { deUint32 sbtOffset; const char* name; } shaderBufferOffsets[] = { { 0u, "sbt_offset_0" }, { 4u, "sbt_offset_4" }, { 7u, "sbt_offset_7" }, { 16u, "sbt_offset_16" }, }; struct ShaderRecordData { bool present; const char* name; } shaderRecords[] = { { false, "no_shaderrecord" }, { true, "shaderrecord" }, }; for (size_t shaderTestNdx = 0; shaderTestNdx < DE_LENGTH_OF_ARRAY(shaderTestTypes); ++shaderTestNdx) { de::MovePtr shaderTestGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderTestTypes[shaderTestNdx].name)); for (size_t sbtOffsetNdx = 0; sbtOffsetNdx < DE_LENGTH_OF_ARRAY(shaderBufferOffsets); ++sbtOffsetNdx) { de::MovePtr sbtOffsetGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderBufferOffsets[sbtOffsetNdx].name)); for (size_t shaderRecordNdx = 0; shaderRecordNdx < DE_LENGTH_OF_ARRAY(shaderRecords); ++shaderRecordNdx) { de::MovePtr shaderRecordGroup(new tcu::TestCaseGroup(group->getTestContext(), shaderRecords[shaderRecordNdx].name)); deUint32 maxSbtRecordStride = (shaderTestTypes[shaderTestNdx].shaderTestType == STT_HIT) ? MAX_HIT_SBT_RECORD_STRIDE + 1 : 1; deUint32 maxSbtRecordOffset = MAX_SBT_RECORD_OFFSET; const deUint32 maxSbtRecordOffsetWithExtraBits = (shaderTestTypes[shaderTestNdx].shaderTestType == STT_MISS) ? MAX_SBT_RECORD_OFFSET | (~((1u << 16) - 1)) //< Only 16 least significant bits matter for miss indices : MAX_SBT_RECORD_OFFSET | (~((1u << 4) - 1)); //< Only 4 least significant bits matter for SBT record offsets for (deUint32 sbtRecordOffset = 0; sbtRecordOffset <= maxSbtRecordOffset; ++sbtRecordOffset) for (deUint32 sbtRecordStride = 0; sbtRecordStride <= maxSbtRecordStride; ++sbtRecordStride) { if ((shaderTestTypes[shaderTestNdx].shaderTestType != STT_HIT) && (sbtRecordStride == maxSbtRecordStride)) { continue; } TestParams testParams { CHECKERBOARD_WIDTH, CHECKERBOARD_HEIGHT, shaderTestTypes[shaderTestNdx].shaderTestType, shaderBufferOffsets[sbtOffsetNdx].sbtOffset, shaderRecords[shaderRecordNdx].present, sbtRecordOffset, (sbtRecordOffset == maxSbtRecordOffset) ? maxSbtRecordOffsetWithExtraBits : sbtRecordOffset, //< Only first 4 least significant bits matter for SBT record stride sbtRecordStride, (sbtRecordStride == maxSbtRecordStride) ? maxSbtRecordStride | (~((1u << 4) - 1)) : sbtRecordStride, de::SharedPtr(new CheckerboardConfiguration()) }; std::stringstream str; str << sbtRecordOffset << "_" << sbtRecordStride; if (testParams.sbtRecordStride != testParams.sbtRecordStridePassedToTraceRay) { str << "_extraSBTRecordStrideBits"; } if (testParams.sbtRecordOffset != testParams.sbtRecordOffsetPassedToTraceRay) { str << "_extrabits"; } shaderRecordGroup->addChild(new ShaderBindingTableIndexingTestCase(group->getTestContext(), str.str().c_str(), testParams)); } sbtOffsetGroup->addChild(shaderRecordGroup.release()); } shaderTestGroup->addChild(sbtOffsetGroup.release()); } group->addChild(shaderTestGroup.release()); } { const uint32_t kAlignments[] = { 1u, 2u, 4u, 8u, 16u, 32u }; de::MovePtr handleAlignmentGroup (new tcu::TestCaseGroup(testCtx, "handle_alignment", "Test allowed handle alignments")); for (const auto alignment : kAlignments) { const auto alignStr = std::to_string(alignment); const auto testName = "alignment_" + alignStr; // Check aligning shader group handles handleAlignmentGroup->addChild(new ShaderGroupHandleAlignmentCase(testCtx, testName, ShaderGroupHandleAlignmentParams{alignment})); } group->addChild(handleAlignmentGroup.release()); } return group.release(); } } // RayTracing } // vkt