/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2016 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//* * \file vktSparseResourcesShaderIntrinsicsStorage.cpp * \brief Sparse Resources Shader Intrinsics for storage images *//*--------------------------------------------------------------------*/ #include "vktSparseResourcesShaderIntrinsicsStorage.hpp" #include "vkBarrierUtil.hpp" #include "vkObjUtil.hpp" using namespace vk; namespace vkt { namespace sparse { tcu::UVec3 computeWorkGroupSize (const tcu::UVec3& gridSize) { const deUint32 maxComputeWorkGroupInvocations = 128u; const tcu::UVec3 maxComputeWorkGroupSize = tcu::UVec3(128u, 128u, 64u); const deUint32 xWorkGroupSize = std::min(std::min(gridSize.x(), maxComputeWorkGroupSize.x()), maxComputeWorkGroupInvocations); const deUint32 yWorkGroupSize = std::min(std::min(gridSize.y(), maxComputeWorkGroupSize.y()), maxComputeWorkGroupInvocations / xWorkGroupSize); const deUint32 zWorkGroupSize = std::min(std::min(gridSize.z(), maxComputeWorkGroupSize.z()), maxComputeWorkGroupInvocations / (xWorkGroupSize*yWorkGroupSize)); return tcu::UVec3(xWorkGroupSize, yWorkGroupSize, zWorkGroupSize); } void SparseShaderIntrinsicsCaseStorage::initPrograms (vk::SourceCollections& programCollection) const { const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); const std::string imageTypeStr = getShaderImageType(formatDescription, m_imageType); const std::string formatDataStr = getShaderImageDataType(formatDescription); const std::string formatQualStr = getShaderImageFormatQualifier(m_format); const std::string coordString = getShaderImageCoordinates(m_imageType, "%local_int_GlobalInvocationID_x", "%local_ivec2_GlobalInvocationID_xy", "%local_ivec3_GlobalInvocationID_xyz"); // Create compute program std::ostringstream src; const std::string typeImgComp = getImageComponentTypeName(formatDescription); const std::string typeImgCompVec4 = getImageComponentVec4TypeName(formatDescription); const std::string typeImageSparse = getSparseImageTypeName(); const std::string typeUniformConstImageSparse = getUniformConstSparseImageTypeName(); const std::string opTypeImageSparse = getOpTypeImageSparse(m_imageType, m_format, typeImgComp, false); const std::string opTypeImageResidency = getOpTypeImageResidency(m_imageType); // it's not possible to declare two OpTypeImage aliases for the same data type - we have to eliminate %type_image_residency when %type_image_sparse is the same const std::string typeImageResidencyName = (opTypeImageSparse == opTypeImageResidency) ? "%type_image_sparse" : "%type_image_residency"; SpirvVersion spirvVersion = SPIRV_VERSION_1_0; std::string interfaceList = ""; if (m_operand.find("Nontemporal") != std::string::npos) { spirvVersion = SPIRV_VERSION_1_6; interfaceList = "%uniform_image_sparse %uniform_image_texels %uniform_image_residency"; } src << "OpCapability Shader\n" << "OpCapability ImageCubeArray\n" << "OpCapability SparseResidency\n" << "OpCapability StorageImageExtendedFormats\n"; if (formatIsR64(m_format)) { src << "OpCapability Int64\n" << "OpCapability Int64ImageEXT\n" << "OpExtension \"SPV_EXT_shader_image_int64\"\n"; } src << "%ext_import = OpExtInstImport \"GLSL.std.450\"\n" << "OpMemoryModel Logical GLSL450\n" << "OpEntryPoint GLCompute %func_main \"main\" %input_GlobalInvocationID " << interfaceList << "\n" << "OpExecutionMode %func_main LocalSize 1 1 1\n" << "OpSource GLSL 440\n" << "OpName %func_main \"main\"\n" << "OpName %input_GlobalInvocationID \"gl_GlobalInvocationID\"\n" << "OpName %input_WorkGroupSize \"gl_WorkGroupSize\"\n" << "OpName %uniform_image_sparse \"u_imageSparse\"\n" << "OpName %uniform_image_texels \"u_imageTexels\"\n" << "OpName %uniform_image_residency \"u_imageResidency\"\n" << "OpDecorate %input_GlobalInvocationID BuiltIn GlobalInvocationId\n" << "OpDecorate %input_WorkGroupSize BuiltIn WorkgroupSize\n" << "OpDecorate %constant_uint_grid_x SpecId 1\n" << "OpDecorate %constant_uint_grid_y SpecId 2\n" << "OpDecorate %constant_uint_grid_z SpecId 3\n" << "OpDecorate %constant_uint_work_group_size_x SpecId 4\n" << "OpDecorate %constant_uint_work_group_size_y SpecId 5\n" << "OpDecorate %constant_uint_work_group_size_z SpecId 6\n" << "OpDecorate %uniform_image_sparse DescriptorSet 0\n" << "OpDecorate %uniform_image_sparse Binding " << BINDING_IMAGE_SPARSE << "\n" << "OpDecorate %uniform_image_texels DescriptorSet 0\n" << "OpDecorate %uniform_image_texels Binding " << BINDING_IMAGE_TEXELS << "\n" << "OpDecorate %uniform_image_texels NonReadable\n" << "OpDecorate %uniform_image_residency DescriptorSet 0\n" << "OpDecorate %uniform_image_residency Binding " << BINDING_IMAGE_RESIDENCY << "\n" << "OpDecorate %uniform_image_residency NonReadable\n" // Declare data types << "%type_bool = OpTypeBool\n"; if (formatIsR64(m_format)) { src << "%type_int64 = OpTypeInt 64 1\n" << "%type_uint64 = OpTypeInt 64 0\n" << "%type_i64vec2 = OpTypeVector %type_int64 2\n" << "%type_i64vec3 = OpTypeVector %type_int64 3\n" << "%type_i64vec4 = OpTypeVector %type_int64 4\n" << "%type_u64vec3 = OpTypeVector %type_uint64 3\n" << "%type_u64vec4 = OpTypeVector %type_uint64 4\n"; } src << "%type_int = OpTypeInt 32 1\n" << "%type_uint = OpTypeInt 32 0\n" << "%type_float = OpTypeFloat 32\n" << "%type_ivec2 = OpTypeVector %type_int 2\n" << "%type_ivec3 = OpTypeVector %type_int 3\n" << "%type_ivec4 = OpTypeVector %type_int 4\n" << "%type_uvec3 = OpTypeVector %type_uint 3\n" << "%type_uvec4 = OpTypeVector %type_uint 4\n" << "%type_vec2 = OpTypeVector %type_float 2\n" << "%type_vec3 = OpTypeVector %type_float 3\n" << "%type_vec4 = OpTypeVector %type_float 4\n" << "%type_struct_int_img_comp_vec4 = OpTypeStruct %type_int " << typeImgCompVec4 << "\n" << "%type_input_uint = OpTypePointer Input %type_uint\n" << "%type_input_uvec3 = OpTypePointer Input %type_uvec3\n" << "%type_function_int = OpTypePointer Function %type_int\n" << "%type_function_img_comp_vec4 = OpTypePointer Function " << typeImgCompVec4 << "\n" << "%type_void = OpTypeVoid\n" << "%type_void_func = OpTypeFunction %type_void\n" // Sparse image without sampler type declaration << "%type_image_sparse = " << getOpTypeImageSparse(m_imageType, m_format, typeImgComp, false) << "\n" << "%type_uniformconst_image_sparse = OpTypePointer UniformConstant %type_image_sparse\n" // Sparse image with sampler type declaration << "%type_image_sparse_with_sampler = " << getOpTypeImageSparse(m_imageType, m_format, typeImgComp, true) << "\n" << "%type_uniformconst_image_sparse_with_sampler = OpTypePointer UniformConstant %type_image_sparse_with_sampler\n"; // Residency image type declaration if ( opTypeImageSparse != opTypeImageResidency ) src << "%type_image_residency = " << getOpTypeImageResidency(m_imageType) << "\n"; src << "%type_uniformconst_image_residency = OpTypePointer UniformConstant "<< typeImageResidencyName <<"\n" // Declare sparse image variable << "%uniform_image_sparse = OpVariable " << typeUniformConstImageSparse << " UniformConstant\n" // Declare output image variable for storing texels << "%uniform_image_texels = OpVariable %type_uniformconst_image_sparse UniformConstant\n" // Declare output image variable for storing residency information << "%uniform_image_residency = OpVariable %type_uniformconst_image_residency UniformConstant\n" // Declare input variables << "%input_GlobalInvocationID = OpVariable %type_input_uvec3 Input\n" << "%constant_uint_grid_x = OpSpecConstant %type_uint 1\n" << "%constant_uint_grid_y = OpSpecConstant %type_uint 1\n" << "%constant_uint_grid_z = OpSpecConstant %type_uint 1\n" << "%constant_uint_work_group_size_x = OpSpecConstant %type_uint 1\n" << "%constant_uint_work_group_size_y = OpSpecConstant %type_uint 1\n" << "%constant_uint_work_group_size_z = OpSpecConstant %type_uint 1\n" << "%input_WorkGroupSize = OpSpecConstantComposite %type_uvec3 %constant_uint_work_group_size_x %constant_uint_work_group_size_y %constant_uint_work_group_size_z\n" // Declare constants << "%constant_uint_0 = OpConstant %type_uint 0\n" << "%constant_uint_1 = OpConstant %type_uint 1\n" << "%constant_uint_2 = OpConstant %type_uint 2\n" << "%constant_int_0 = OpConstant %type_int 0\n" << "%constant_int_1 = OpConstant %type_int 1\n" << "%constant_int_2 = OpConstant %type_int 2\n" << "%constant_bool_true = OpConstantTrue %type_bool\n" << "%constant_uint_resident = OpConstant %type_uint " << MEMORY_BLOCK_BOUND_VALUE << "\n" << "%constant_uvec4_resident = OpConstantComposite %type_uvec4 %constant_uint_resident %constant_uint_resident %constant_uint_resident %constant_uint_resident\n" << "%constant_uint_not_resident = OpConstant %type_uint " << MEMORY_BLOCK_NOT_BOUND_VALUE << "\n" << "%constant_uvec4_not_resident = OpConstantComposite %type_uvec4 %constant_uint_not_resident %constant_uint_not_resident %constant_uint_not_resident %constant_uint_not_resident\n" // Call main function << "%func_main = OpFunction %type_void None %type_void_func\n" << "%label_func_main = OpLabel\n" // Load GlobalInvocationID.xyz into local variables << "%access_GlobalInvocationID_x = OpAccessChain %type_input_uint %input_GlobalInvocationID %constant_uint_0\n" << "%local_uint_GlobalInvocationID_x = OpLoad %type_uint %access_GlobalInvocationID_x\n" << "%local_int_GlobalInvocationID_x = OpBitcast %type_int %local_uint_GlobalInvocationID_x\n" << "%access_GlobalInvocationID_y = OpAccessChain %type_input_uint %input_GlobalInvocationID %constant_uint_1\n" << "%local_uint_GlobalInvocationID_y = OpLoad %type_uint %access_GlobalInvocationID_y\n" << "%local_int_GlobalInvocationID_y = OpBitcast %type_int %local_uint_GlobalInvocationID_y\n" << "%access_GlobalInvocationID_z = OpAccessChain %type_input_uint %input_GlobalInvocationID %constant_uint_2\n" << "%local_uint_GlobalInvocationID_z = OpLoad %type_uint %access_GlobalInvocationID_z\n" << "%local_int_GlobalInvocationID_z = OpBitcast %type_int %local_uint_GlobalInvocationID_z\n" << "%local_ivec2_GlobalInvocationID_xy = OpCompositeConstruct %type_ivec2 %local_int_GlobalInvocationID_x %local_int_GlobalInvocationID_y\n" << "%local_ivec3_GlobalInvocationID_xyz = OpCompositeConstruct %type_ivec3 %local_int_GlobalInvocationID_x %local_int_GlobalInvocationID_y %local_int_GlobalInvocationID_z\n" << "%comparison_range_x = OpULessThan %type_bool %local_uint_GlobalInvocationID_x %constant_uint_grid_x\n" << "OpSelectionMerge %label_out_range_x None\n" << "OpBranchConditional %comparison_range_x %label_in_range_x %label_out_range_x\n" << "%label_in_range_x = OpLabel\n" << "%comparison_range_y = OpULessThan %type_bool %local_uint_GlobalInvocationID_y %constant_uint_grid_y\n" << "OpSelectionMerge %label_out_range_y None\n" << "OpBranchConditional %comparison_range_y %label_in_range_y %label_out_range_y\n" << "%label_in_range_y = OpLabel\n" << "%comparison_range_z = OpULessThan %type_bool %local_uint_GlobalInvocationID_z %constant_uint_grid_z\n" << "OpSelectionMerge %label_out_range_z None\n" << "OpBranchConditional %comparison_range_z %label_in_range_z %label_out_range_z\n" << "%label_in_range_z = OpLabel\n" // Load sparse image << "%local_image_sparse = OpLoad " << typeImageSparse << " %uniform_image_sparse\n" // Call OpImageSparse* << sparseImageOpString("%local_sparse_op_result", "%type_struct_int_img_comp_vec4", "%local_image_sparse", coordString, "%constant_int_0") << "\n" // Load the texel from the sparse image to local variable for OpImageSparse* << "%local_img_comp_vec4 = OpCompositeExtract " << typeImgCompVec4 << " %local_sparse_op_result 1\n" // Load residency code for OpImageSparse* << "%local_residency_code = OpCompositeExtract %type_int %local_sparse_op_result 0\n" // End Call OpImageSparse* // Load texels image << "%local_image_texels = OpLoad %type_image_sparse %uniform_image_texels\n" // Write the texel to output image via OpImageWrite << "OpImageWrite %local_image_texels " << coordString << " %local_img_comp_vec4\n" // Load residency info image << "%local_image_residency = OpLoad " << typeImageResidencyName <<" %uniform_image_residency\n" // Check if loaded texel is placed in resident memory << "%local_texel_resident = OpImageSparseTexelsResident %type_bool %local_residency_code\n" << "OpSelectionMerge %branch_texel_resident None\n" << "OpBranchConditional %local_texel_resident %label_texel_resident %label_texel_not_resident\n" << "%label_texel_resident = OpLabel\n" // Loaded texel is in resident memory << "OpImageWrite %local_image_residency " << coordString << " %constant_uvec4_resident\n" << "OpBranch %branch_texel_resident\n" << "%label_texel_not_resident = OpLabel\n" // Loaded texel is not in resident memory << "OpImageWrite %local_image_residency " << coordString << " %constant_uvec4_not_resident\n" << "OpBranch %branch_texel_resident\n" << "%branch_texel_resident = OpLabel\n" << "OpBranch %label_out_range_z\n" << "%label_out_range_z = OpLabel\n" << "OpBranch %label_out_range_y\n" << "%label_out_range_y = OpLabel\n" << "OpBranch %label_out_range_x\n" << "%label_out_range_x = OpLabel\n" << "OpReturn\n" << "OpFunctionEnd\n"; programCollection.spirvAsmSources.add("compute") << src.str() << vk::SpirVAsmBuildOptions(programCollection.usedVulkanVersion, spirvVersion); } std::string SparseCaseOpImageSparseFetch::getSparseImageTypeName (void) const { return "%type_image_sparse_with_sampler"; } std::string SparseCaseOpImageSparseFetch::getUniformConstSparseImageTypeName (void) const { return "%type_uniformconst_image_sparse_with_sampler"; } std::string SparseCaseOpImageSparseFetch::sparseImageOpString (const std::string& resultVariable, const std::string& resultType, const std::string& image, const std::string& coord, const std::string& mipLevel) const { std::ostringstream src; std::string additionalOperand = (m_operand.empty() ? " " : (std::string("|") + m_operand + " ")); src << resultVariable << " = OpImageSparseFetch " << resultType << " " << image << " " << coord << " Lod" << additionalOperand << mipLevel << "\n"; return src.str(); } std::string SparseCaseOpImageSparseRead::getSparseImageTypeName (void) const { return "%type_image_sparse"; } std::string SparseCaseOpImageSparseRead::getUniformConstSparseImageTypeName (void) const { return "%type_uniformconst_image_sparse"; } std::string SparseCaseOpImageSparseRead::sparseImageOpString (const std::string& resultVariable, const std::string& resultType, const std::string& image, const std::string& coord, const std::string& mipLevel) const { DE_UNREF(mipLevel); std::ostringstream src; src << resultVariable << " = OpImageSparseRead " << resultType << " " << image << " " << coord << " " << m_operand << "\n"; return src.str(); } class SparseShaderIntrinsicsInstanceStorage : public SparseShaderIntrinsicsInstanceBase { public: SparseShaderIntrinsicsInstanceStorage (Context& context, const SpirVFunction function, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format) : SparseShaderIntrinsicsInstanceBase(context, function, imageType, imageSize, format) {} VkImageUsageFlags imageOutputUsageFlags (void) const; VkQueueFlags getQueueFlags (void) const; void recordCommands (const VkCommandBuffer commandBuffer, const VkImageCreateInfo& imageSparseInfo, const VkImage imageSparse, const VkImage imageTexels, const VkImage imageResidency); virtual void checkSupport (VkImageCreateInfo imageSparseInfo) const; virtual VkDescriptorType imageSparseDescType (void) const = 0; }; void SparseShaderIntrinsicsInstanceStorage::checkSupport (VkImageCreateInfo imageSparseInfo) const { const InstanceInterface& instance = m_context.getInstanceInterface(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); SparseShaderIntrinsicsInstanceBase::checkSupport(imageSparseInfo); // Check if device supports image format for storage image if (!checkImageFormatFeatureSupport(instance, physicalDevice, imageSparseInfo.format, VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) TCU_THROW(NotSupportedError, "Device does not support image format for storage image"); // Make sure device supports VK_FORMAT_R32_UINT format for storage image if (!checkImageFormatFeatureSupport(instance, physicalDevice, mapTextureFormat(m_residencyFormat), VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) TCU_THROW(TestError, "Device does not support VK_FORMAT_R32_UINT format for storage image"); } VkImageUsageFlags SparseShaderIntrinsicsInstanceStorage::imageOutputUsageFlags (void) const { return VK_IMAGE_USAGE_STORAGE_BIT; } VkQueueFlags SparseShaderIntrinsicsInstanceStorage::getQueueFlags (void) const { return VK_QUEUE_COMPUTE_BIT; } void SparseShaderIntrinsicsInstanceStorage::recordCommands (const VkCommandBuffer commandBuffer, const VkImageCreateInfo& imageSparseInfo, const VkImage imageSparse, const VkImage imageTexels, const VkImage imageResidency) { const DeviceInterface& deviceInterface = getDeviceInterface(); pipelines.resize(imageSparseInfo.mipLevels); descriptorSets.resize(imageSparseInfo.mipLevels); imageSparseViews.resize(imageSparseInfo.mipLevels); imageTexelsViews.resize(imageSparseInfo.mipLevels); imageResidencyViews.resize(imageSparseInfo.mipLevels); // Create descriptor set layout DescriptorSetLayoutBuilder descriptorLayerBuilder; descriptorLayerBuilder.addSingleBinding(imageSparseDescType(), VK_SHADER_STAGE_COMPUTE_BIT); descriptorLayerBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT); descriptorLayerBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT); const Unique descriptorSetLayout(descriptorLayerBuilder.build(deviceInterface, getDevice())); // Create pipeline layout pipelineLayout = makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout); // Create descriptor pool DescriptorPoolBuilder descriptorPoolBuilder; descriptorPoolBuilder.addType(imageSparseDescType(), imageSparseInfo.mipLevels); descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, imageSparseInfo.mipLevels); descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, imageSparseInfo.mipLevels); descriptorPool = descriptorPoolBuilder.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, imageSparseInfo.mipLevels); const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers); { VkImageMemoryBarrier imageShaderAccessBarriers[3]; imageShaderAccessBarriers[0] = makeImageMemoryBarrier ( VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, imageSparse, fullImageSubresourceRange ); imageShaderAccessBarriers[1] = makeImageMemoryBarrier ( 0u, VK_ACCESS_SHADER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, imageTexels, fullImageSubresourceRange ); imageShaderAccessBarriers[2] = makeImageMemoryBarrier ( 0u, VK_ACCESS_SHADER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, imageResidency, fullImageSubresourceRange ); deviceInterface.cmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 3u, imageShaderAccessBarriers); } const VkSpecializationMapEntry specializationMapEntries[6] = { { 1u, 0u * (deUint32)sizeof(deUint32), sizeof(deUint32) }, // GridSize.x { 2u, 1u * (deUint32)sizeof(deUint32), sizeof(deUint32) }, // GridSize.y { 3u, 2u * (deUint32)sizeof(deUint32), sizeof(deUint32) }, // GridSize.z { 4u, 3u * (deUint32)sizeof(deUint32), sizeof(deUint32) }, // WorkGroupSize.x { 5u, 4u * (deUint32)sizeof(deUint32), sizeof(deUint32) }, // WorkGroupSize.y { 6u, 5u * (deUint32)sizeof(deUint32), sizeof(deUint32) }, // WorkGroupSize.z }; Unique shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("compute"), 0u)); for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx) { const tcu::UVec3 gridSize = getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx); const tcu::UVec3 workGroupSize = computeWorkGroupSize(gridSize); const tcu::UVec3 specializationData[2] = { gridSize, workGroupSize }; const VkSpecializationInfo specializationInfo = { (deUint32)DE_LENGTH_OF_ARRAY(specializationMapEntries), // mapEntryCount specializationMapEntries, // pMapEntries sizeof(specializationData), // dataSize specializationData, // pData }; // Create and bind compute pipeline pipelines[mipLevelNdx] = makeVkSharedPtr(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, (VkPipelineCreateFlags) 0u, nullptr, *shaderModule, (VkPipelineShaderStageCreateFlags) 0u, &specializationInfo)); const VkPipeline computePipeline = **pipelines[mipLevelNdx]; deviceInterface.cmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline); // Create descriptor set descriptorSets[mipLevelNdx] = makeVkSharedPtr(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout)); const VkDescriptorSet descriptorSet = **descriptorSets[mipLevelNdx]; // Bind resources const VkImageSubresourceRange mipLevelRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, mipLevelNdx, 1u, 0u, imageSparseInfo.arrayLayers); imageSparseViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageSparse, mapImageViewType(m_imageType), imageSparseInfo.format, mipLevelRange)); const VkDescriptorImageInfo imageSparseDescInfo = makeDescriptorImageInfo(DE_NULL, **imageSparseViews[mipLevelNdx], VK_IMAGE_LAYOUT_GENERAL); imageTexelsViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageTexels, mapImageViewType(m_imageType), imageSparseInfo.format, mipLevelRange)); const VkDescriptorImageInfo imageTexelsDescInfo = makeDescriptorImageInfo(DE_NULL, **imageTexelsViews[mipLevelNdx], VK_IMAGE_LAYOUT_GENERAL); imageResidencyViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageResidency, mapImageViewType(m_imageType), mapTextureFormat(m_residencyFormat), mipLevelRange)); const VkDescriptorImageInfo imageResidencyDescInfo = makeDescriptorImageInfo(DE_NULL, **imageResidencyViews[mipLevelNdx], VK_IMAGE_LAYOUT_GENERAL); DescriptorSetUpdateBuilder descriptorUpdateBuilder; descriptorUpdateBuilder.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(BINDING_IMAGE_SPARSE), imageSparseDescType(), &imageSparseDescInfo); descriptorUpdateBuilder.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(BINDING_IMAGE_TEXELS), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &imageTexelsDescInfo); descriptorUpdateBuilder.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(BINDING_IMAGE_RESIDENCY), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &imageResidencyDescInfo); descriptorUpdateBuilder.update(deviceInterface, getDevice()); deviceInterface.cmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL); const deUint32 xWorkGroupCount = gridSize.x() / workGroupSize.x() + (gridSize.x() % workGroupSize.x() ? 1u : 0u); const deUint32 yWorkGroupCount = gridSize.y() / workGroupSize.y() + (gridSize.y() % workGroupSize.y() ? 1u : 0u); const deUint32 zWorkGroupCount = gridSize.z() / workGroupSize.z() + (gridSize.z() % workGroupSize.z() ? 1u : 0u); const tcu::UVec3 maxWorkGroupCount = tcu::UVec3(65535u, 65535u, 65535u); if (maxWorkGroupCount.x() < xWorkGroupCount || maxWorkGroupCount.y() < yWorkGroupCount || maxWorkGroupCount.z() < zWorkGroupCount) { TCU_THROW(NotSupportedError, "Image size exceeds compute invocations limit"); } deviceInterface.cmdDispatch(commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount); } { VkImageMemoryBarrier imageOutputTransferSrcBarriers[2]; imageOutputTransferSrcBarriers[0] = makeImageMemoryBarrier ( VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, imageTexels, fullImageSubresourceRange ); imageOutputTransferSrcBarriers[1] = makeImageMemoryBarrier ( VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, imageResidency, fullImageSubresourceRange ); deviceInterface.cmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 2u, imageOutputTransferSrcBarriers); } } class SparseShaderIntrinsicsInstanceFetch : public SparseShaderIntrinsicsInstanceStorage { public: SparseShaderIntrinsicsInstanceFetch (Context& context, const SpirVFunction function, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format) : SparseShaderIntrinsicsInstanceStorage(context, function, imageType, imageSize, format) {} VkImageUsageFlags imageSparseUsageFlags (void) const { return VK_IMAGE_USAGE_SAMPLED_BIT; } VkDescriptorType imageSparseDescType (void) const { return VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; } }; TestInstance* SparseCaseOpImageSparseFetch::createInstance (Context& context) const { return new SparseShaderIntrinsicsInstanceFetch(context, m_function, m_imageType, m_imageSize, m_format); } class SparseShaderIntrinsicsInstanceRead : public SparseShaderIntrinsicsInstanceStorage { public: SparseShaderIntrinsicsInstanceRead (Context& context, const SpirVFunction function, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format) : SparseShaderIntrinsicsInstanceStorage(context, function, imageType, imageSize, format) {} VkImageUsageFlags imageSparseUsageFlags (void) const { return VK_IMAGE_USAGE_STORAGE_BIT; } VkDescriptorType imageSparseDescType (void) const { return VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; } }; TestInstance* SparseCaseOpImageSparseRead::createInstance (Context& context) const { return new SparseShaderIntrinsicsInstanceRead(context, m_function, m_imageType, m_imageSize, m_format); } } // sparse } // vkt