/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2021 Google LLC. * * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Tests that compute shaders have a subgroup size that is uniform in * command scope. *//*--------------------------------------------------------------------*/ #include "deUniquePtr.hpp" #include "vkRef.hpp" #include "vkRefUtil.hpp" #include "vkPrograms.hpp" #include "vkMemUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkTypeUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkBarrierUtil.hpp" #include "vktTestCaseUtil.hpp" #include "tcuTestLog.hpp" #include using namespace vk; namespace vkt { namespace subgroups { namespace { class MultipleDispatchesUniformSubgroupSizeInstance : public TestInstance { public: MultipleDispatchesUniformSubgroupSizeInstance (Context& context); tcu::TestStatus iterate (void); }; MultipleDispatchesUniformSubgroupSizeInstance::MultipleDispatchesUniformSubgroupSizeInstance (Context& context) :TestInstance (context) { } tcu::TestStatus MultipleDispatchesUniformSubgroupSizeInstance::iterate (void) { const DeviceInterface& vk = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); const VkQueue queue = m_context.getUniversalQueue(); const uint32_t queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const Move cmdPool = createCommandPool(vk, device, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, queueFamilyIndex); const Move cmdBuffer = allocateCommandBuffer(vk, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); Move computeShader = createShaderModule (vk, device, m_context.getBinaryCollection().get("comp"), 0u); // The maximum number of invocations in a workgroup. const uint32_t maxLocalSize = m_context.getDeviceProperties().limits.maxComputeWorkGroupSize[0]; #ifndef CTS_USES_VULKANSC const uint32_t minSubgroupSize = m_context.getSubgroupSizeControlProperties().minSubgroupSize; #else const uint32_t minSubgroupSize = m_context.getSubgroupSizeControlPropertiesEXT().minSubgroupSize; #endif // CTS_USES_VULKANSC // Create a storage buffer to hold the sizes of subgroups. const VkDeviceSize bufferSize = (maxLocalSize / minSubgroupSize + 1u) * sizeof(uint32_t); const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(bufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT); BufferWithMemory resultBuffer (vk, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible); auto& resultBufferAlloc = resultBuffer.getAllocation(); // Build descriptors for the storage buffer const Unique descriptorPool (DescriptorPoolBuilder().addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) .build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u)); const auto descriptorSetLayout1 (DescriptorSetLayoutBuilder().addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT) .build(vk, device)); const VkDescriptorBufferInfo resultInfo = makeDescriptorBufferInfo(*resultBuffer, 0u, bufferSize); const VkDescriptorSetAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, // sType DE_NULL, // pNext *descriptorPool, // descriptorPool 1u, // descriptorSetCount &(*descriptorSetLayout1) // pSetLayouts }; Move descriptorSet = allocateDescriptorSet(vk, device, &allocInfo); DescriptorSetUpdateBuilder builder; builder.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &resultInfo); builder.update(vk, device); // Compute pipeline const Move computePipelineLayout = makePipelineLayout (vk, device, *descriptorSetLayout1); for (uint32_t localSize = 1u; localSize <= maxLocalSize; localSize *= 2u) { // On each iteration, change the number of invocations which might affect // the subgroup size. const VkSpecializationMapEntry entries = { 0u, // uint32_t constantID; 0u, // uint32_t offset; sizeof(localSize) // size_t size; }; const VkSpecializationInfo specInfo = { 1, // mapEntryCount &entries, // pMapEntries sizeof(localSize), // dataSize &localSize // pData }; const VkPipelineShaderStageCreateInfo shaderStageCreateInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // sType DE_NULL, // pNext VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT, // flags VK_SHADER_STAGE_COMPUTE_BIT, // stage *computeShader, // module "main", // pName &specInfo, // pSpecializationInfo }; const VkComputePipelineCreateInfo pipelineCreateInfo = { VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // sType DE_NULL, // pNext 0u, // flags shaderStageCreateInfo, // stage *computePipelineLayout, // layout (VkPipeline) 0, // basePipelineHandle 0u, // basePipelineIndex }; Move computePipeline = createComputePipeline(vk, device, (VkPipelineCache) 0u, &pipelineCreateInfo); beginCommandBuffer(vk, *cmdBuffer); // Clears the values in the buffer. vk.cmdFillBuffer(*cmdBuffer, *resultBuffer, 0u, VK_WHOLE_SIZE, 0); const auto fillBarrier = makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_WRITE_BIT, *resultBuffer, 0ull, bufferSize); cmdPipelineBufferMemoryBarrier(vk, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, &fillBarrier); // Runs pipeline. vk.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipelineLayout, 0u, 1u, &descriptorSet.get(), 0u, nullptr); vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipeline); vk.cmdDispatch(*cmdBuffer, 1, 1, 1); const auto computeToHostBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); cmdPipelineMemoryBarrier(vk, *cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &computeToHostBarrier); endCommandBuffer(vk, *cmdBuffer); submitCommandsAndWait(vk, device, queue, *cmdBuffer); invalidateAlloc(vk, device, resultBufferAlloc); // Validate results: all non-zero subgroup sizes must be the same. const uint32_t *res = static_cast(resultBufferAlloc.getHostPtr()); const uint32_t maxIters = static_cast(bufferSize / sizeof(uint32_t)); uint32_t size = 0u; uint32_t subgroupCount = 0u; auto& log = m_context.getTestContext().getLog(); for (uint32_t sizeIdx = 0u; sizeIdx < maxIters; ++sizeIdx) { if (res[sizeIdx] != 0u) { if (size == 0u) { size = res[sizeIdx]; } else if (res[sizeIdx] != size) { std::ostringstream msg; msg << "Subgroup size not uniform in command scope: " << res[sizeIdx] << " != " << size << " at position " << sizeIdx; TCU_FAIL(msg.str()); } ++subgroupCount; } } // Subgroup size is guaranteed to be at least 1. if (size == 0u) TCU_FAIL("Subgroup size must be at least 1"); // The number of reported sizes must match. const auto expectedSubgroupCount = (localSize / size + ((localSize % size != 0u) ? 1u : 0u)); if (subgroupCount != expectedSubgroupCount) { std::ostringstream msg; msg << "Local size " << localSize << " with subgroup size " << size << " resulted in subgroup count " << subgroupCount << " != " << expectedSubgroupCount; TCU_FAIL(msg.str()); } { std::ostringstream msg; msg << "Subgroup size " << size << " with local size " << localSize; log << tcu::TestLog::Message << msg.str() << tcu::TestLog::EndMessage; } } return tcu::TestStatus::pass("Pass"); } class MultipleDispatchesUniformSubgroupSize : public TestCase { public: MultipleDispatchesUniformSubgroupSize (tcu::TestContext& testCtx, const std::string& name); void initPrograms (SourceCollections& programCollection) const; TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; }; MultipleDispatchesUniformSubgroupSize::MultipleDispatchesUniformSubgroupSize (tcu::TestContext& testCtx, const std::string& name) : TestCase (testCtx, name) { } void MultipleDispatchesUniformSubgroupSize::checkSupport (Context& context) const { #ifndef CTS_USES_VULKANSC const VkPhysicalDeviceSubgroupSizeControlFeatures& subgroupSizeControlFeatures = context.getSubgroupSizeControlFeatures(); #else const VkPhysicalDeviceSubgroupSizeControlFeaturesEXT& subgroupSizeControlFeatures = context.getSubgroupSizeControlFeaturesEXT(); #endif // CTS_USES_VULKANSC if (subgroupSizeControlFeatures.subgroupSizeControl == DE_FALSE) TCU_THROW(NotSupportedError, "Device does not support varying subgroup sizes"); } void MultipleDispatchesUniformSubgroupSize::initPrograms (SourceCollections& programCollection) const { std::ostringstream computeSrc; computeSrc << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n" << "#extension GL_KHR_shader_subgroup_basic : enable\n" << "#extension GL_KHR_shader_subgroup_vote : enable\n" << "#extension GL_KHR_shader_subgroup_ballot : enable\n" << "layout(std430, binding = 0) buffer Outputs { uint sizes[]; };\n" << "layout(local_size_x_id = 0) in;\n" << "void main()\n" << "{\n" << " if (subgroupElect())\n" << " {\n" << " sizes[gl_WorkGroupID.x * gl_NumSubgroups + gl_SubgroupID] = gl_SubgroupSize;\n" << " }\n" << "}\n"; programCollection.glslSources.add("comp") << glu::ComputeSource(computeSrc.str()) << ShaderBuildOptions(programCollection.usedVulkanVersion, SPIRV_VERSION_1_3, 0u); } TestInstance* MultipleDispatchesUniformSubgroupSize::createInstance (Context& context) const { return new MultipleDispatchesUniformSubgroupSizeInstance(context); } } // anonymous ns tcu::TestCaseGroup* createMultipleDispatchesUniformSubgroupSizeTests (tcu::TestContext& testCtx) { // Multiple dispatches uniform subgroup size tests de::MovePtr testGroup(new tcu::TestCaseGroup(testCtx, "multiple_dispatches")); testGroup->addChild(new MultipleDispatchesUniformSubgroupSize(testCtx, "uniform_subgroup_size")); return testGroup.release(); } } // compute } // vkt