/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2020 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Test procedural geometry with complex bouding box sets *//*--------------------------------------------------------------------*/ #include "vktRayQueryProceduralGeometryTests.hpp" #include "vkDefs.hpp" #include "vktTestCase.hpp" #include "vktTestGroupUtil.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkImageWithMemory.hpp" #include "vkTypeUtil.hpp" #include "vkImageUtil.hpp" #include "vkRayTracingUtil.hpp" #include "tcuVectorUtil.hpp" #include "tcuTexture.hpp" #include "tcuTestLog.hpp" #include "tcuImageCompare.hpp" #include "tcuFloat.hpp" namespace vkt { namespace RayQuery { namespace { using namespace vk; using namespace vkt; enum class TestType { OBJECT_BEHIND_BOUNDING_BOX = 0, TRIANGLE_IN_BETWEEN }; class RayQueryProceduralGeometryTestBase : public TestInstance { public: RayQueryProceduralGeometryTestBase (Context& context); ~RayQueryProceduralGeometryTestBase (void) = default; tcu::TestStatus iterate (void) override; protected: virtual void setupAccelerationStructures() = 0; private: VkWriteDescriptorSetAccelerationStructureKHR makeASWriteDescriptorSet (const VkAccelerationStructureKHR* pAccelerationStructure); void clearBuffer (de::SharedPtr buffer, VkDeviceSize bufferSize); protected: Move m_cmdPool; Move m_cmdBuffer; std::vector > m_blasVect; de::SharedPtr m_referenceTLAS; de::SharedPtr m_resultTLAS; }; RayQueryProceduralGeometryTestBase::RayQueryProceduralGeometryTestBase(Context& context) : vkt::TestInstance (context) , m_referenceTLAS (makeTopLevelAccelerationStructure().release()) , m_resultTLAS (makeTopLevelAccelerationStructure().release()) { } tcu::TestStatus RayQueryProceduralGeometryTestBase::iterate(void) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const VkQueue queue = m_context.getUniversalQueue(); Allocator& allocator = m_context.getDefaultAllocator(); const deUint32 imageSize = 64u; const Move descriptorPool = DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 2u) .addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2u) .build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 2u); Move descriptorSetLayout = DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_COMPUTE_BIT) // as with single/four aabb's .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT) // ssbo with result/reference values .build(vkd, device); const Move referenceDescriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const Move resultDescriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const VkDeviceSize resultBufferSize = imageSize * imageSize * sizeof(int); const VkBufferCreateInfo resultBufferCreateInfo = makeBufferCreateInfo(resultBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT); de::SharedPtr referenceBuffer = de::SharedPtr(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible)); de::SharedPtr resultBuffer = de::SharedPtr(new BufferWithMemory(vkd, device, allocator, resultBufferCreateInfo, MemoryRequirement::HostVisible)); Move shaderModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("comp"), 0u); const Move pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get()); const VkComputePipelineCreateInfo pipelineCreateInfo { VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType DE_NULL, // const void* pNext 0u, // VkPipelineCreateFlags flags { // VkPipelineShaderStageCreateInfo stage VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, DE_NULL, (VkPipelineShaderStageCreateFlags)0, VK_SHADER_STAGE_COMPUTE_BIT, *shaderModule, "main", DE_NULL }, *pipelineLayout, // VkPipelineLayout layout DE_NULL, // VkPipeline basePipelineHandle 0, // deInt32 basePipelineIndex }; Move pipeline = createComputePipeline(vkd, device, DE_NULL, &pipelineCreateInfo); m_cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex); m_cmdBuffer = allocateCommandBuffer(vkd, device, *m_cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); // clear result and reference buffers clearBuffer(resultBuffer, resultBufferSize); clearBuffer(referenceBuffer, resultBufferSize); beginCommandBuffer(vkd, *m_cmdBuffer, 0u); { setupAccelerationStructures(); // update descriptor sets { typedef DescriptorSetUpdateBuilder::Location DSL; const VkWriteDescriptorSetAccelerationStructureKHR referenceAS = makeASWriteDescriptorSet(m_referenceTLAS->getPtr()); const VkDescriptorBufferInfo referenceSSBO = makeDescriptorBufferInfo(**referenceBuffer, 0u, VK_WHOLE_SIZE); DescriptorSetUpdateBuilder() .writeSingle(*referenceDescriptorSet, DSL::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &referenceAS) .writeSingle(*referenceDescriptorSet, DSL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &referenceSSBO) .update(vkd, device); const VkWriteDescriptorSetAccelerationStructureKHR resultAS = makeASWriteDescriptorSet(m_resultTLAS->getPtr()); const VkDescriptorBufferInfo resultSSBO = makeDescriptorBufferInfo(**resultBuffer, 0u, VK_WHOLE_SIZE); DescriptorSetUpdateBuilder() .writeSingle(*resultDescriptorSet, DSL::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &resultAS) .writeSingle(*resultDescriptorSet, DSL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &resultSSBO) .update(vkd, device); } // wait for data transfers const VkMemoryBarrier bufferUploadBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT); cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, &bufferUploadBarrier, 1u); // wait for as build const VkMemoryBarrier asBuildBarrier = makeMemoryBarrier(VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, VK_ACCESS_SHADER_READ_BIT); cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, &asBuildBarrier, 1u); vkd.cmdBindPipeline(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline); // generate reference vkd.cmdBindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0, 1, &referenceDescriptorSet.get(), 0, DE_NULL); vkd.cmdDispatch(*m_cmdBuffer, imageSize, imageSize, 1); // generate result vkd.cmdBindDescriptorSets(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0, 1, &resultDescriptorSet.get(), 0, DE_NULL); vkd.cmdDispatch(*m_cmdBuffer, imageSize, imageSize, 1); const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); cmdPipelineMemoryBarrier(vkd, *m_cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier); } endCommandBuffer(vkd, *m_cmdBuffer); submitCommandsAndWait(vkd, device, queue, m_cmdBuffer.get()); // verify result buffer auto referenceAllocation = referenceBuffer->getAllocation(); invalidateMappedMemoryRange(vkd, device, referenceAllocation.getMemory(), referenceAllocation.getOffset(), resultBufferSize); auto resultAllocation = resultBuffer->getAllocation(); invalidateMappedMemoryRange(vkd, device, resultAllocation.getMemory(), resultAllocation.getOffset(), resultBufferSize); tcu::TextureFormat imageFormat (vk::mapVkFormat(VK_FORMAT_R8G8B8A8_UNORM)); tcu::PixelBufferAccess referenceAccess (imageFormat, imageSize, imageSize, 1, referenceAllocation.getHostPtr()); tcu::PixelBufferAccess resultAccess (imageFormat, imageSize, imageSize, 1, resultAllocation.getHostPtr()); if (tcu::intThresholdCompare(m_context.getTestContext().getLog(), "Result comparison", "", referenceAccess, resultAccess, tcu::UVec4(0), tcu::COMPARE_LOG_EVERYTHING)) return tcu::TestStatus::pass("Pass"); return tcu::TestStatus::fail("Fail"); } VkWriteDescriptorSetAccelerationStructureKHR RayQueryProceduralGeometryTestBase::makeASWriteDescriptorSet(const VkAccelerationStructureKHR* pAccelerationStructure) { return { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType DE_NULL, // const void* pNext 1u, // deUint32 accelerationStructureCount pAccelerationStructure // const VkAccelerationStructureKHR* pAccelerationStructures }; } void RayQueryProceduralGeometryTestBase::clearBuffer(de::SharedPtr buffer, VkDeviceSize bufferSize) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); auto& bufferAlloc = buffer->getAllocation(); void* bufferPtr = bufferAlloc.getHostPtr(); deMemset(bufferPtr, 1, static_cast(bufferSize)); vk::flushAlloc(vkd, device, bufferAlloc); } class ObjectBehindBoundingBoxInstance : public RayQueryProceduralGeometryTestBase { public: ObjectBehindBoundingBoxInstance(Context& context); void setupAccelerationStructures() override; }; ObjectBehindBoundingBoxInstance::ObjectBehindBoundingBoxInstance(Context& context) : RayQueryProceduralGeometryTestBase(context) { } void ObjectBehindBoundingBoxInstance::setupAccelerationStructures() { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); // build reference acceleration structure - single aabb big enough to fit whole procedural geometry de::SharedPtr referenceBLAS(makeBottomLevelAccelerationStructure().release()); referenceBLAS->setGeometryData( { { 0.0, 0.0, -64.0 }, { 64.0, 64.0, -16.0 }, }, false, 0 ); referenceBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); m_blasVect.push_back(referenceBLAS); m_referenceTLAS->setInstanceCount(1); m_referenceTLAS->addInstance(m_blasVect.back()); m_referenceTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); // build result acceleration structure - wall of 4 aabb's and generated object is actualy behind it (as it is just 1.0 unit thick) de::SharedPtr resultBLAS(makeBottomLevelAccelerationStructure().release()); resultBLAS->setGeometryData( { { 0.0, 0.0, 0.0 }, // | | { 32.0, 32.0, 1.0 }, // |* | { 32.0, 0.0, 0.0 }, // | | { 64.0, 32.0, 1.0 }, // | *| { 0.0, 32.0, 0.0 }, // |* | { 32.0, 64.0, 1.0 }, // | | { 32.0, 32.0, 0.0 }, // | *| { 64.0, 64.0, 1.0 }, // | | }, false, 0 ); resultBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); m_blasVect.push_back(resultBLAS); m_resultTLAS->setInstanceCount(1); m_resultTLAS->addInstance(m_blasVect.back()); m_resultTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); } class TriangleInBeteenInstance : public RayQueryProceduralGeometryTestBase { public: TriangleInBeteenInstance(Context& context); void setupAccelerationStructures() override; }; TriangleInBeteenInstance::TriangleInBeteenInstance(Context& context) : RayQueryProceduralGeometryTestBase(context) { } void TriangleInBeteenInstance::setupAccelerationStructures() { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); de::SharedPtr triangleBLAS(makeBottomLevelAccelerationStructure().release()); triangleBLAS->setGeometryData( { { 16.0, 16.0, -8.0 }, { 56.0, 32.0, -8.0 }, { 32.0, 48.0, -8.0 }, }, true, VK_GEOMETRY_OPAQUE_BIT_KHR ); triangleBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); m_blasVect.push_back(triangleBLAS); de::SharedPtr fullElipsoidBLAS(makeBottomLevelAccelerationStructure().release()); fullElipsoidBLAS->setGeometryData( { { 0.0, 0.0, -64.0 }, { 64.0, 64.0, -16.0 }, }, false, 0 ); fullElipsoidBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); m_blasVect.push_back(fullElipsoidBLAS); // build reference acceleration structure - triangle and a single aabb big enough to fit whole procedural geometry m_referenceTLAS->setInstanceCount(2); m_referenceTLAS->addInstance(fullElipsoidBLAS); m_referenceTLAS->addInstance(triangleBLAS); m_referenceTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); de::SharedPtr elipsoidWallBLAS(makeBottomLevelAccelerationStructure().release()); elipsoidWallBLAS->setGeometryData( { { 0.0, 0.0, 0.0 }, // |* | { 20.0, 64.0, 1.0 }, { 20.0, 0.0, 0.0 }, // | * | { 44.0, 64.0, 1.0 }, { 44.0, 0.0, 0.0 }, // | *| { 64.0, 64.0, 1.0 }, }, false, 0 ); elipsoidWallBLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); m_blasVect.push_back(elipsoidWallBLAS); // build result acceleration structure - triangle and a three aabb's (they are in front of triangle but generate intersections behind it) m_resultTLAS->setInstanceCount(2); m_resultTLAS->addInstance(elipsoidWallBLAS); m_resultTLAS->addInstance(triangleBLAS); m_resultTLAS->createAndBuild(vkd, device, *m_cmdBuffer, allocator); } class RayQueryProceduralGeometryTestCase : public TestCase { public: RayQueryProceduralGeometryTestCase (tcu::TestContext& context, const char* name, TestType testType); ~RayQueryProceduralGeometryTestCase (void) = default; void checkSupport (Context& context) const override; void initPrograms (SourceCollections& programCollection) const override; TestInstance* createInstance (Context& context) const override; protected: TestType m_testType; }; RayQueryProceduralGeometryTestCase::RayQueryProceduralGeometryTestCase(tcu::TestContext& context, const char* name, TestType testType) : TestCase (context, name, "") , m_testType (testType) { } void RayQueryProceduralGeometryTestCase::checkSupport(Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_query"); if (!context.getRayQueryFeatures().rayQuery) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayQueryFeaturesKHR.rayQuery"); if (!context.getAccelerationStructureFeatures().accelerationStructure) TCU_THROW(TestError, "Requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure"); } void RayQueryProceduralGeometryTestCase::initPrograms(SourceCollections& programCollection) const { const vk::ShaderBuildOptions glslBuildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); std::string compSource = "#version 460 core\n" "#extension GL_EXT_ray_query : require\n" "layout(set = 0, binding = 0) uniform accelerationStructureEXT tlas;\n" "layout(set = 0, binding = 1, std430) writeonly buffer Result {\n" " int value[];\n" "} result;\n" "void main()\n" "{\n" " float tmin = 0.0;\n" " float tmax = 50.0;\n" " vec3 rayOrigin = vec3(float(gl_GlobalInvocationID.x) + 0.5f, float(gl_GlobalInvocationID.y) + 0.5f, 2.0);\n" " vec3 rayDir = vec3(0.0,0.0,-1.0);\n" " uint resultIndex = gl_GlobalInvocationID.x + gl_GlobalInvocationID.y * gl_NumWorkGroups.x;\n" " int payload = 30;\n" // elipsoid center and radii " vec3 elipsoidOrigin = vec3(32.0, 32.0, -30.0);\n" " vec3 elipsoidRadii = vec3(30.0, 15.0, 5.0);\n" " rayQueryEXT rq;\n" " rayQueryInitializeEXT(rq, tlas, gl_RayFlagsCullBackFacingTrianglesEXT, 0xFF, rayOrigin, tmin, rayDir, tmax);\n" " while (rayQueryProceedEXT(rq))\n" " {\n" " uint intersectionType = rayQueryGetIntersectionTypeEXT(rq, false);\n" " if (intersectionType == gl_RayQueryCandidateIntersectionAABBEXT)\n" " {\n" // simplify to ray sphere intersection " vec3 eliDir = rayOrigin - elipsoidOrigin;\n" " vec3 eliS = eliDir / elipsoidRadii;\n" " vec3 rayS = rayDir / elipsoidRadii;\n" " float a = dot(rayS, rayS);\n" " float b = dot(eliS, rayS);\n" " float c = dot(eliS, eliS);\n" " float h = b * b - a * (c - 1.0);\n" " if (h >= 0.0)\n" " rayQueryGenerateIntersectionEXT(rq, (-b - sqrt(h)) / a);\n" " }\n" " else if (intersectionType == gl_RayQueryCandidateIntersectionTriangleEXT)\n" " {\n" " payload = 250;\n" " rayQueryConfirmIntersectionEXT(rq);\n" " }\n" " }\n" " if (rayQueryGetIntersectionTypeEXT(rq, true) != gl_RayQueryCommittedIntersectionNoneEXT)\n" " {\n" " int instanceId = rayQueryGetIntersectionInstanceIdEXT(rq, true);\n" " if (instanceId > -1)\n" " {\n" " float hitT = rayQueryGetIntersectionTEXT(rq, true);\n" " vec3 lightDir = normalize(vec3(0.0, 0.0, 1.0));\n" " vec3 hitPos = rayOrigin + hitT * rayDir;\n" " vec3 hitNormal = normalize((hitPos - elipsoidOrigin) / elipsoidRadii);\n" " payload = 50 + int(200.0 * clamp(dot(hitNormal, lightDir), 0.0, 1.0));\n" " }\n" " }\n" // to be able to display result in cherry this is interpreated as r8g8b8a8 during verification // we are using only red but we need to add alpha (note: r and a may be swapped depending on endianness) " result.value[resultIndex] = payload + 0xFF000000;\n" "};\n"; programCollection.glslSources.add("comp") << glu::ComputeSource(compSource) << glslBuildOptions; } TestInstance* RayQueryProceduralGeometryTestCase::createInstance(Context& context) const { if (m_testType == TestType::TRIANGLE_IN_BETWEEN) return new TriangleInBeteenInstance(context); // TestType::OBJECT_BEHIND_BOUNDING_BOX return new ObjectBehindBoundingBoxInstance(context); } } // anonymous tcu::TestCaseGroup* createProceduralGeometryTests(tcu::TestContext& testCtx) { de::MovePtr group(new tcu::TestCaseGroup(testCtx, "procedural_geometry", "Test procedural geometry with complex bouding box sets")); group->addChild(new RayQueryProceduralGeometryTestCase(testCtx, "object_behind_bounding_boxes", TestType::OBJECT_BEHIND_BOUNDING_BOX)); group->addChild(new RayQueryProceduralGeometryTestCase(testCtx, "triangle_in_between", TestType::TRIANGLE_IN_BETWEEN)); return group.release(); } } // RayQuery } // vkt