/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2019 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Ray Tracing Build tests *//*--------------------------------------------------------------------*/ #include "vktRayTracingBuildTests.hpp" #include "vkDefs.hpp" #include "vktTestCase.hpp" #include "vkCmdUtil.hpp" #include "vkObjUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBufferWithMemory.hpp" #include "vkImageWithMemory.hpp" #include "vkImageUtil.hpp" #include "vkTypeUtil.hpp" #include "tcuTextureUtil.hpp" #include "vkRayTracingUtil.hpp" #include "deClock.h" #include #include #include namespace vkt { namespace RayTracing { namespace { using namespace vk; using namespace std; static const VkFlags ALL_RAY_TRACING_STAGES = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR; enum TestType { TEST_TYPE_TRIANGLES, TEST_TYPE_AABBS, TEST_TYPE_MIXED, }; struct CaseDef { TestType testType; deUint32 width; deUint32 height; deUint32 squaresGroupCount; deUint32 geometriesGroupCount; deUint32 instancesGroupCount; bool deferredOperation; deUint32 workerThreadsCount; bool deviceBuild; }; deUint32 getShaderGroupSize (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupHandleSize(); } deUint32 getShaderGroupBaseAlignment (const InstanceInterface& vki, const VkPhysicalDevice physicalDevice) { de::MovePtr rayTracingPropertiesKHR; rayTracingPropertiesKHR = makeRayTracingProperties(vki, physicalDevice); return rayTracingPropertiesKHR->getShaderGroupBaseAlignment(); } VkImageCreateInfo makeImageCreateInfo (deUint32 width, deUint32 height, VkFormat format) { const VkImageUsageFlags usage = VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // VkStructureType sType; DE_NULL, // const void* pNext; (VkImageCreateFlags)0u, // VkImageCreateFlags flags; VK_IMAGE_TYPE_2D, // VkImageType imageType; format, // VkFormat format; makeExtent3D(width, height, 1u), // VkExtent3D extent; 1u, // deUint32 mipLevels; 1u, // deUint32 arrayLayers; VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples; VK_IMAGE_TILING_OPTIMAL, // VkImageTiling tiling; usage, // VkImageUsageFlags usage; VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode; 0u, // deUint32 queueFamilyIndexCount; DE_NULL, // const deUint32* pQueueFamilyIndices; VK_IMAGE_LAYOUT_UNDEFINED // VkImageLayout initialLayout; }; return imageCreateInfo; } class RayTracingBuildTestInstance : public TestInstance { public: typedef de::SharedPtr BlasPtr; typedef de::SharedPtr TlasPtr; typedef BottomLevelAccelerationStructurePool BlasPool; RayTracingBuildTestInstance (Context& context, const CaseDef& data); ~RayTracingBuildTestInstance (void); tcu::TestStatus iterate (void); protected: bool verifyAllocationCount () const; void checkSupportInInstance (void) const; deUint32 validateBuffer (de::MovePtr buffer); de::MovePtr runTest (bool useGpuBuild, deUint32 workerThreadsCount); TlasPtr initTopAccelerationStructure (bool useGpuBuild, deUint32 workerThreadsCount, const BlasPool& pool); void createTopAccelerationStructure (VkCommandBuffer cmdBuffer, TopLevelAccelerationStructure* tlas); void initBottomAccelerationStructures (BlasPool& pool, bool useGpuBuild, deUint32 workerThreadsCount) const; void initBottomAccelerationStructure (BlasPtr blas, bool useGpuBuild, deUint32 workerThreadsCount, tcu::UVec2& startPos, bool triangles) const; private: CaseDef m_data; const VkFormat m_format; }; RayTracingBuildTestInstance::RayTracingBuildTestInstance (Context& context, const CaseDef& data) : vkt::TestInstance (context) , m_data (data) , m_format (VK_FORMAT_R32_UINT) { } RayTracingBuildTestInstance::~RayTracingBuildTestInstance (void) { } class RayTracingTestCase : public TestCase { public: RayTracingTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data); ~RayTracingTestCase (void); virtual void initPrograms (SourceCollections& programCollection) const; virtual TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; private: CaseDef m_data; }; RayTracingTestCase::RayTracingTestCase (tcu::TestContext& context, const char* name, const char* desc, const CaseDef data) : vkt::TestCase (context, name, desc) , m_data (data) { DE_ASSERT((m_data.width * m_data.height) == (m_data.squaresGroupCount * m_data.geometriesGroupCount * m_data.instancesGroupCount)); } RayTracingTestCase::~RayTracingTestCase (void) { } void RayTracingTestCase::checkSupport (Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_tracing_pipeline"); const VkPhysicalDeviceRayTracingPipelineFeaturesKHR& rayTracingPipelineFeaturesKHR = context.getRayTracingPipelineFeatures(); if (rayTracingPipelineFeaturesKHR.rayTracingPipeline == DE_FALSE ) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceRayTracingPipelineFeaturesKHR.rayTracingPipeline"); const VkPhysicalDeviceAccelerationStructureFeaturesKHR& accelerationStructureFeaturesKHR = context.getAccelerationStructureFeatures(); if (accelerationStructureFeaturesKHR.accelerationStructure == DE_FALSE) TCU_THROW(TestError, "VK_KHR_ray_tracing_pipeline requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructure"); if (!m_data.deviceBuild) { context.requireDeviceFunctionality("VK_KHR_deferred_host_operations"); if (accelerationStructureFeaturesKHR.accelerationStructureHostCommands == DE_FALSE) TCU_THROW(NotSupportedError, "Requires VkPhysicalDeviceAccelerationStructureFeaturesKHR.accelerationStructureHostCommands"); } } void RayTracingTestCase::initPrograms (SourceCollections& programCollection) const { const vk::ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT vec3 hitValue;\n" "hitAttributeEXT vec3 attribs;\n" "layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n" "void main()\n" "{\n" " uvec4 color = uvec4(1,0,0,1);\n" " imageStore(result, ivec2(gl_LaunchIDEXT.xy), color);\n" "}\n"; programCollection.glslSources.add("ahit") << glu::AnyHitSource(updateRayTracingGLSL(css.str())) << buildOptions; } { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "layout(location = 0) rayPayloadInEXT dummyPayload { vec4 dummy; };\n" "layout(r32ui, set = 0, binding = 0) uniform uimage2D result;\n" "void main()\n" "{\n" " uvec4 color = uvec4(2,0,0,1);\n" " imageStore(result, ivec2(gl_LaunchIDEXT.xy), color);\n" "}\n"; programCollection.glslSources.add("miss") << glu::MissSource(updateRayTracingGLSL(css.str())) << buildOptions; } { std::stringstream css; css << "#version 460 core\n" "#extension GL_EXT_ray_tracing : require\n" "hitAttributeEXT vec3 hitAttribute;\n" "void main()\n" "{\n" " reportIntersectionEXT(1.0f, 0);\n" "}\n"; programCollection.glslSources.add("sect") << glu::IntersectionSource(updateRayTracingGLSL(css.str())) << buildOptions; } programCollection.glslSources.add("rgen") << glu::RaygenSource(updateRayTracingGLSL(getCommonRayGenerationShader())) << buildOptions; } TestInstance* RayTracingTestCase::createInstance (Context& context) const { return new RayTracingBuildTestInstance(context, m_data); } auto RayTracingBuildTestInstance::initTopAccelerationStructure (bool useGpuBuild, deUint32 workerThreadsCount, const BlasPool& pool) -> TlasPtr { de::MovePtr result = makeTopLevelAccelerationStructure(); const std::vector& blases = pool.structures(); result->setInstanceCount(blases.size()); result->setBuildType(useGpuBuild ? VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR : VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR); result->setDeferredOperation(m_data.deferredOperation, workerThreadsCount); for (size_t instanceNdx = 0; instanceNdx < blases.size(); ++instanceNdx) { const bool triangles = (m_data.testType == TEST_TYPE_TRIANGLES) || (m_data.testType == TEST_TYPE_MIXED && (instanceNdx & 1) == 0); deUint32 instanceShaderBindingTableRecordOffset = triangles ? 0 : 1; result->addInstance(blases[instanceNdx], vk::identityMatrix3x4, 0, 0xFF, instanceShaderBindingTableRecordOffset); } return TlasPtr(result.release()); } void RayTracingBuildTestInstance::createTopAccelerationStructure (VkCommandBuffer cmdBuffer, TopLevelAccelerationStructure* tlas) { const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); tlas->createAndBuild(vkd, device, cmdBuffer, allocator); } void RayTracingBuildTestInstance::initBottomAccelerationStructure (BlasPtr blas, bool useGpuBuild, deUint32 workerThreadsCount, tcu::UVec2& startPos, bool triangles) const { blas->setBuildType(useGpuBuild ? VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR : VK_ACCELERATION_STRUCTURE_BUILD_TYPE_HOST_KHR); blas->setDeferredOperation(m_data.deferredOperation, workerThreadsCount); blas->setGeometryCount(m_data.geometriesGroupCount); for (size_t geometryNdx = 0; geometryNdx < m_data.geometriesGroupCount; ++geometryNdx) { std::vector geometryData; geometryData.reserve(m_data.squaresGroupCount * (triangles ? 3u : 2u)); for (size_t squareNdx = 0; squareNdx < m_data.squaresGroupCount; ++squareNdx) { const deUint32 n = m_data.width * startPos.y() + startPos.x(); const float x0 = float(startPos.x() + 0) / float(m_data.width); const float y0 = float(startPos.y() + 0) / float(m_data.height); const float x1 = float(startPos.x() + 1) / float(m_data.width); const float y1 = float(startPos.y() + 1) / float(m_data.height); const float z = (n % 7 == 0) ? +1.0f : -1.0f; const deUint32 m = (n + 13) % (m_data.width * m_data.height); if (triangles) { const float xm = (x0 + x1) / 2.0f; const float ym = (y0 + y1) / 2.0f; geometryData.push_back(tcu::Vec3(x0, y0, z)); geometryData.push_back(tcu::Vec3(x1, ym, z)); geometryData.push_back(tcu::Vec3(xm, y1, z)); } else { geometryData.push_back(tcu::Vec3(x0, y0, z)); geometryData.push_back(tcu::Vec3(x1, y1, z)); } startPos.y() = m / m_data.width; startPos.x() = m % m_data.width; } blas->addGeometry(geometryData, triangles); } } void RayTracingBuildTestInstance::initBottomAccelerationStructures (BlasPool& pool, bool useGpuBuild, deUint32 workerThreadsCount) const { tcu::UVec2 startPos {}; const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); Allocator& allocator = m_context.getDefaultAllocator(); const VkDeviceSize maxBuffSize = 3 * (VkDeviceSize(1) << 30); // 3GB for (size_t instanceNdx = 0; instanceNdx < m_data.instancesGroupCount; ++instanceNdx) pool.add(); const std::vector& blases = pool.structures(); for (size_t instanceNdx = 0; instanceNdx < m_data.instancesGroupCount; ++instanceNdx) { const bool triangles = (m_data.testType == TEST_TYPE_TRIANGLES) || (m_data.testType == TEST_TYPE_MIXED && (instanceNdx & 1) == 0); initBottomAccelerationStructure(blases[instanceNdx], useGpuBuild, workerThreadsCount, startPos, triangles); } pool.batchCreateAdjust(vkd, device, allocator, maxBuffSize); } bool RayTracingBuildTestInstance::verifyAllocationCount () const { BlasPool pool {}; tcu::UVec2 startPos {}; const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); auto& log = m_context.getTestContext().getLog(); const size_t avvailableAllocCount = m_context.getDeviceProperties().limits.maxMemoryAllocationCount; const VkDeviceSize maxBufferSize = 3 * (VkDeviceSize(1) << 30); // 3GB for (size_t instanceNdx = 0; instanceNdx < m_data.instancesGroupCount; ++instanceNdx) pool.add(); const std::vector& blases = pool.structures(); for (size_t instanceNdx = 0; instanceNdx < m_data.instancesGroupCount; ++instanceNdx) { const bool triangles = (m_data.testType == TEST_TYPE_TRIANGLES) || (m_data.testType == TEST_TYPE_MIXED && (instanceNdx & 1) == 0); initBottomAccelerationStructure(blases[instanceNdx], true, 0, startPos, triangles); } const size_t poolAllocationCount = pool.getAllocationCount(vkd, device, maxBufferSize); const size_t requiredAllocationCount = poolAllocationCount + 120; log << tcu::TestLog::Message << "The test consumes " << poolAllocationCount << " allocations out of " << avvailableAllocCount << " available" << tcu::TestLog::EndMessage; return (requiredAllocationCount < avvailableAllocCount); } de::MovePtr RayTracingBuildTestInstance::runTest (bool useGpuBuild, deUint32 workerThreadsCount) { const InstanceInterface& vki = m_context.getInstanceInterface(); const DeviceInterface& vkd = m_context.getDeviceInterface(); const VkDevice device = m_context.getDevice(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex(); const VkQueue queue = m_context.getUniversalQueue(); Allocator& allocator = m_context.getDefaultAllocator(); const deUint32 pixelCount = m_data.width * m_data.height; const deUint32 shaderGroupHandleSize = getShaderGroupSize(vki, physicalDevice); const deUint32 shaderGroupBaseAlignment = getShaderGroupBaseAlignment(vki, physicalDevice); const Move descriptorSetLayout = DescriptorSetLayoutBuilder() .addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, ALL_RAY_TRACING_STAGES) .addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, ALL_RAY_TRACING_STAGES) .build(vkd, device); const Move descriptorPool = DescriptorPoolBuilder() .addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) .addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) .build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const Move descriptorSet = makeDescriptorSet(vkd, device, *descriptorPool, *descriptorSetLayout); const Move pipelineLayout = makePipelineLayout(vkd, device, descriptorSetLayout.get()); const Move cmdPool = createCommandPool(vkd, device, 0, queueFamilyIndex); const Move cmdBuffer = allocateCommandBuffer(vkd, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY); de::MovePtr rayTracingPipeline = de::newMovePtr(); Move raygenShader = createShaderModule(vkd, device, m_context.getBinaryCollection().get("rgen"), 0); Move hitShader = createShaderModule(vkd, device, m_context.getBinaryCollection().get("ahit"), 0); Move missShader = createShaderModule(vkd, device, m_context.getBinaryCollection().get("miss"), 0); Move intersectionShader = createShaderModule(vkd, device, m_context.getBinaryCollection().get("sect"), 0); rayTracingPipeline->addShader(VK_SHADER_STAGE_RAYGEN_BIT_KHR, *raygenShader, 0u); rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR, *hitShader, 1u); rayTracingPipeline->addShader(VK_SHADER_STAGE_ANY_HIT_BIT_KHR, *hitShader, 2u); rayTracingPipeline->addShader(VK_SHADER_STAGE_INTERSECTION_BIT_KHR, *intersectionShader, 2u); rayTracingPipeline->addShader(VK_SHADER_STAGE_MISS_BIT_KHR, *missShader, 3u); Move pipeline = rayTracingPipeline->createPipeline(vkd, device, *pipelineLayout); const de::MovePtr raygenShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 0u, 1u); const de::MovePtr hitShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 1u, 2u); const de::MovePtr missShaderBindingTable = rayTracingPipeline->createShaderBindingTable(vkd, device, *pipeline, allocator, shaderGroupHandleSize, shaderGroupBaseAlignment, 3u, 1u); const VkStridedDeviceAddressRegionKHR raygenShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, raygenShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); const VkStridedDeviceAddressRegionKHR hitShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, hitShaderBindingTable->get(), 0), shaderGroupHandleSize, 2u * shaderGroupHandleSize); const VkStridedDeviceAddressRegionKHR missShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(getBufferDeviceAddress(vkd, device, missShaderBindingTable->get(), 0), shaderGroupHandleSize, shaderGroupHandleSize); const VkStridedDeviceAddressRegionKHR callableShaderBindingTableRegion = makeStridedDeviceAddressRegionKHR(DE_NULL, 0, 0); const VkImageCreateInfo imageCreateInfo = makeImageCreateInfo(m_data.width, m_data.height, m_format); const VkImageSubresourceRange imageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0, 1u); const de::MovePtr image = de::MovePtr(new ImageWithMemory(vkd, device, allocator, imageCreateInfo, MemoryRequirement::Any)); const Move imageView = makeImageView(vkd, device, **image, VK_IMAGE_VIEW_TYPE_2D, m_format, imageSubresourceRange); const VkBufferCreateInfo bufferCreateInfo = makeBufferCreateInfo(pixelCount*sizeof(deUint32), VK_BUFFER_USAGE_TRANSFER_DST_BIT); const VkImageSubresourceLayers bufferImageSubresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u); const VkBufferImageCopy bufferImageRegion = makeBufferImageCopy(makeExtent3D(m_data.width, m_data.height, 1u), bufferImageSubresourceLayers); de::MovePtr buffer = de::MovePtr(new BufferWithMemory(vkd, device, allocator, bufferCreateInfo, MemoryRequirement::HostVisible)); const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, *imageView, VK_IMAGE_LAYOUT_GENERAL); const VkImageMemoryBarrier preImageBarrier = makeImageMemoryBarrier(0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, **image, imageSubresourceRange); const VkImageMemoryBarrier postImageBarrier = makeImageMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, **image, imageSubresourceRange); const VkMemoryBarrier postTraceMemoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); const VkMemoryBarrier postCopyMemoryBarrier = makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); const VkClearValue clearValue = makeClearValueColorU32(5u, 5u, 5u, 255u); TlasPtr topLevelAccelerationStructure; BottomLevelAccelerationStructurePool blasPool; initBottomAccelerationStructures(blasPool, useGpuBuild, workerThreadsCount); blasPool.batchBuild(vkd, device, *cmdPool, queue); beginCommandBuffer(vkd, *cmdBuffer, 0u); { cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, &preImageBarrier); vkd.cmdClearColorImage(*cmdBuffer, **image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &imageSubresourceRange); cmdPipelineImageMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, &postImageBarrier); topLevelAccelerationStructure = initTopAccelerationStructure(useGpuBuild, workerThreadsCount, blasPool); createTopAccelerationStructure(*cmdBuffer, topLevelAccelerationStructure.get()); VkWriteDescriptorSetAccelerationStructureKHR accelerationStructureWriteDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, // VkStructureType sType; DE_NULL, // const void* pNext; 1u, // deUint32 accelerationStructureCount; topLevelAccelerationStructure->getPtr(), // const VkAccelerationStructureKHR* pAccelerationStructures; }; DescriptorSetUpdateBuilder() .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo) .writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelerationStructureWriteDescriptorSet) .update(vkd, device); vkd.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipelineLayout, 0, 1, &descriptorSet.get(), 0, DE_NULL); vkd.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *pipeline); cmdTraceRays(vkd, *cmdBuffer, &raygenShaderBindingTableRegion, &missShaderBindingTableRegion, &hitShaderBindingTableRegion, &callableShaderBindingTableRegion, m_data.width, m_data.height, 1); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, &postTraceMemoryBarrier); vkd.cmdCopyImageToBuffer(*cmdBuffer, **image, VK_IMAGE_LAYOUT_GENERAL, **buffer, 1u, &bufferImageRegion); cmdPipelineMemoryBarrier(vkd, *cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, &postCopyMemoryBarrier); } endCommandBuffer(vkd, *cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer.get()); invalidateMappedMemoryRange(vkd, device, buffer->getAllocation().getMemory(), buffer->getAllocation().getOffset(), pixelCount * sizeof(deUint32)); return buffer; } void RayTracingBuildTestInstance::checkSupportInInstance (void) const { const InstanceInterface& vki = m_context.getInstanceInterface(); const VkPhysicalDevice physicalDevice = m_context.getPhysicalDevice(); de::MovePtr rayTracingProperties = makeRayTracingProperties(vki, physicalDevice); if (rayTracingProperties->getMaxPrimitiveCount() < m_data.squaresGroupCount) TCU_THROW(NotSupportedError, "Triangles required more than supported"); if (rayTracingProperties->getMaxGeometryCount() < m_data.geometriesGroupCount) TCU_THROW(NotSupportedError, "Geometries required more than supported"); if (rayTracingProperties->getMaxInstanceCount() < m_data.instancesGroupCount) TCU_THROW(NotSupportedError, "Instances required more than supported"); if (!verifyAllocationCount()) TCU_THROW(NotSupportedError, "Memory allocations required more than supported"); } deUint32 RayTracingBuildTestInstance::validateBuffer (de::MovePtr buffer) { const deUint32* bufferPtr = (deUint32*)buffer->getAllocation().getHostPtr(); deUint32 failures = 0; deUint32 pos = 0; for (deUint32 y = 0; y < m_data.height; ++y) for (deUint32 x = 0; x < m_data.width; ++x) { const deUint32 anyHitValue = 1; const deUint32 missValue = 2; const deUint32 n = m_data.width * y + x; const deUint32 expectedValue = (n % 7 == 0) ? missValue : anyHitValue; if (bufferPtr[pos] != expectedValue) { if (m_data.testType == TEST_TYPE_AABBS || m_data.testType == TEST_TYPE_MIXED) { // In the case of AABB geometries, implementations may increase their size in // an acceleration structure in order to mitigate precision issues. This may // result in false positives being reported to the application." if (bufferPtr[pos] != anyHitValue) { failures++; } } else { failures++; } } ++pos; } return failures; } tcu::TestStatus RayTracingBuildTestInstance::iterate (void) { checkSupportInInstance(); const deUint32 failures = validateBuffer(runTest(m_data.deviceBuild, m_data.workerThreadsCount)); return (failures == 0) ? tcu::TestStatus::pass("Pass") : tcu::TestStatus::fail("failures=" + de::toString(failures)); } } // anonymous static void buildTest (tcu::TestCaseGroup* testParentGroup, deUint32 threadsCount, bool deviceBuild) { const char* tests[] = { "level_primitives", "level_geometries", "level_instances" }; const deUint32 sizes[] = { 4, 16, 64, 256, 1024 }; const deUint32 factors[] = { 1, 4 }; const bool deferredOperation = threadsCount != 0; tcu::TestContext& testCtx = testParentGroup->getTestContext(); for (size_t testsNdx = 0; testsNdx < DE_LENGTH_OF_ARRAY(tests); ++testsNdx) { de::MovePtr group(new tcu::TestCaseGroup(testCtx, tests[testsNdx], "")); for (size_t factorNdx = 0; factorNdx < DE_LENGTH_OF_ARRAY(factors); ++factorNdx) for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 factor = factors[factorNdx]; const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx] / factor / factor; const deUint32 squaresGroupCount = testsNdx == 0 ? largestGroup : factor; const deUint32 geometriesGroupCount = testsNdx == 1 ? largestGroup : factor; const deUint32 instancesGroupCount = testsNdx == 2 ? largestGroup : factor; const CaseDef caseDef = { TEST_TYPE_TRIANGLES, // TestType testType; sizes[sizesNdx], // deUint32 width; sizes[sizesNdx], // deUint32 height; squaresGroupCount, // deUint32 squaresGroupCount; geometriesGroupCount, // deUint32 geometriesGroupCount; instancesGroupCount, // deUint32 instancesGroupCount; deferredOperation, // bool deferredOperation; threadsCount, // deUint32 workerThreadsCount; deviceBuild // bool deviceBuild; }; const std::string suffix = de::toString(caseDef.instancesGroupCount) + '_' + de::toString(caseDef.geometriesGroupCount) + '_' + de::toString(caseDef.squaresGroupCount); const std::string testName = "triangles_" + suffix; if (squaresGroupCount == 0 || geometriesGroupCount == 0 || instancesGroupCount == 0) continue; group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef)); } for (size_t factorNdx = 0; factorNdx < DE_LENGTH_OF_ARRAY(factors); ++factorNdx) for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 factor = factors[factorNdx]; const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx] / factor / factor; const deUint32 squaresGroupCount = testsNdx == 0 ? largestGroup : factor; const deUint32 geometriesGroupCount = testsNdx == 1 ? largestGroup : factor; const deUint32 instancesGroupCount = testsNdx == 2 ? largestGroup : factor; const CaseDef caseDef = { TEST_TYPE_AABBS, // TestType testType; sizes[sizesNdx], // deUint32 width; sizes[sizesNdx], // deUint32 height; squaresGroupCount, // deUint32 squaresGroupCount; geometriesGroupCount, // deUint32 geometriesGroupCount; instancesGroupCount, // deUint32 instancesGroupCount; deferredOperation, // bool deferredOperation; threadsCount, // deUint32 workerThreadsCount; deviceBuild // bool deviceBuild; }; const std::string suffix = de::toString(caseDef.instancesGroupCount) + '_' + de::toString(caseDef.geometriesGroupCount) + '_' + de::toString(caseDef.squaresGroupCount); const std::string testName = "aabbs_" + suffix; if (squaresGroupCount == 0 || geometriesGroupCount == 0 || instancesGroupCount == 0) continue; group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef)); } for (size_t factorNdx = 0; factorNdx < DE_LENGTH_OF_ARRAY(factors); ++factorNdx) for (size_t sizesNdx = 0; sizesNdx < DE_LENGTH_OF_ARRAY(sizes); ++sizesNdx) { const deUint32 factor = factors[factorNdx]; const deUint32 largestGroup = sizes[sizesNdx] * sizes[sizesNdx] / factor / factor; const deUint32 squaresGroupCount = testsNdx == 0 ? largestGroup : factor; const deUint32 geometriesGroupCount = testsNdx == 1 ? largestGroup : factor; const deUint32 instancesGroupCount = testsNdx == 2 ? largestGroup : factor; const CaseDef caseDef = { TEST_TYPE_MIXED, // TestType testType; sizes[sizesNdx], // deUint32 width; sizes[sizesNdx], // deUint32 height; squaresGroupCount, // deUint32 squaresGroupCount; geometriesGroupCount, // deUint32 geometriesGroupCount; instancesGroupCount, // deUint32 instancesGroupCount; deferredOperation, // bool deferredOperation; threadsCount, // deUint32 workerThreadsCount; deviceBuild // bool deviceBuild; }; const std::string suffix = de::toString(caseDef.instancesGroupCount) + '_' + de::toString(caseDef.geometriesGroupCount) + '_' + de::toString(caseDef.squaresGroupCount); const std::string testName = "mixed_" + suffix; if (squaresGroupCount < 2 || geometriesGroupCount < 2 || instancesGroupCount < 2) continue; group->addChild(new RayTracingTestCase(testCtx, testName.c_str(), "", caseDef)); } testParentGroup->addChild(group.release()); } } tcu::TestCaseGroup* createBuildTests (tcu::TestContext& testCtx) { de::MovePtr buildGroup(new tcu::TestCaseGroup(testCtx, "build", "Ray tracing build tests")); const deUint32 threads[] = { 0, 1, 2, 3, 4, 8, std::numeric_limits::max() }; for (const auto threadCount : threads) { auto buildTargeGroup = [&](bool deviceBuild) -> void { DE_ASSERT(!(threadCount != 0 && deviceBuild)); string groupName, groupDesc; if (deviceBuild) { groupName = "gpu"; groupDesc = "Compare results of run with acceleration structures build on GPU"; } else { groupName = "cpu"; groupDesc = "Compare results of run with acceleration structures build on CPU"; } if (threadCount != 0) { groupName += threadCount == std::numeric_limits::max() ? "ht_max" : "ht_" + de::toString(threadCount); groupDesc = "Compare results of run with acceleration structures build on CPU and using host threading"; } de::MovePtr groupGpuCpuHt(new tcu::TestCaseGroup(testCtx, groupName.c_str(), groupDesc.c_str())); buildTest(groupGpuCpuHt.get(), threadCount, deviceBuild); buildGroup->addChild(groupGpuCpuHt.release()); }; if (threadCount == 0) { buildTargeGroup(true); } buildTargeGroup(false); } return buildGroup.release(); } } // RayTracing } // vkt