/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2016 The Khronos Group Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file vktSparseResourcesMipmapSparseResidency.cpp * \brief Sparse partially resident images with mipmaps tests *//*--------------------------------------------------------------------*/ #include "vktSparseResourcesMipmapSparseResidency.hpp" #include "vktSparseResourcesTestsUtil.hpp" #include "vktSparseResourcesBase.hpp" #include "vktTestCaseUtil.hpp" #include "vkDefs.hpp" #include "vkRef.hpp" #include "vkRefUtil.hpp" #include "vkPlatform.hpp" #include "vkPrograms.hpp" #include "vkMemUtil.hpp" #include "vkBarrierUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkImageUtil.hpp" #include "vkQueryUtil.hpp" #include "vkTypeUtil.hpp" #include "vkCmdUtil.hpp" #include "deUniquePtr.hpp" #include "deStringUtil.hpp" #include "tcuTextureUtil.hpp" #include #include using namespace vk; namespace vkt { namespace sparse { namespace { class MipmapSparseResidencyCase : public TestCase { public: MipmapSparseResidencyCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups); TestInstance* createInstance (Context& context) const; virtual void checkSupport (Context& context) const; private: const bool m_useDeviceGroups; const ImageType m_imageType; const tcu::UVec3 m_imageSize; const VkFormat m_format; }; MipmapSparseResidencyCase::MipmapSparseResidencyCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups) : TestCase (testCtx, name, description) , m_useDeviceGroups (useDeviceGroups) , m_imageType (imageType) , m_imageSize (imageSize) , m_format (format) { } void MipmapSparseResidencyCase::checkSupport (Context& context) const { const InstanceInterface& instance = context.getInstanceInterface(); const VkPhysicalDevice physicalDevice = context.getPhysicalDevice(); // Check if image size does not exceed device limits if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize)) TCU_THROW(NotSupportedError, "Image size not supported for device"); // Check if device supports sparse operations for image type if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType)) TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported"); if (formatIsR64(m_format)) { context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64"); if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE) { TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device"); } } } class MipmapSparseResidencyInstance : public SparseResourcesBaseInstance { public: MipmapSparseResidencyInstance (Context& context, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups); tcu::TestStatus iterate (void); private: const bool m_useDeviceGroups; const ImageType m_imageType; const tcu::UVec3 m_imageSize; const VkFormat m_format; }; MipmapSparseResidencyInstance::MipmapSparseResidencyInstance (Context& context, const ImageType imageType, const tcu::UVec3& imageSize, const VkFormat format, const bool useDeviceGroups) : SparseResourcesBaseInstance (context, useDeviceGroups) , m_useDeviceGroups (useDeviceGroups) , m_imageType (imageType) , m_imageSize (imageSize) , m_format (format) { } tcu::TestStatus MipmapSparseResidencyInstance::iterate (void) { const InstanceInterface& instance = m_context.getInstanceInterface(); { // Create logical device supporting both sparse and compute operations QueueRequirementsVec queueRequirements; queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u)); queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u)); createDeviceSupportingQueues(queueRequirements); } const VkPhysicalDevice physicalDevice = getPhysicalDevice(); VkImageCreateInfo imageSparseInfo; std::vector deviceMemUniquePtrVec; const DeviceInterface& deviceInterface = getDeviceInterface(); const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0); const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0); const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format); // Go through all physical devices for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++) { const deUint32 firstDeviceID = physDevID; const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices; imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; imageSparseInfo.pNext = DE_NULL; imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT; imageSparseInfo.imageType = mapImageType(m_imageType); imageSparseInfo.format = m_format; imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize); imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageSparseInfo.queueFamilyIndexCount = 0u; imageSparseInfo.pQueueFamilyIndices = DE_NULL; if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY) { imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; } // Check if device supports sparse operations for image format if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo)) TCU_THROW(NotSupportedError, "The image format does not support sparse operations"); { VkImageFormatProperties imageFormatProperties; if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice, imageSparseInfo.format, imageSparseInfo.imageType, imageSparseInfo.tiling, imageSparseInfo.usage, imageSparseInfo.flags, &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED) { TCU_THROW(NotSupportedError, "Image format does not support sparse operations"); } imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent); } // Create sparse image const Unique imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo)); // Create sparse image memory bind semaphore const Unique imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice())); std::vector sparseMemoryRequirements; { // Get sparse image general memory requirements const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse); // Check if required image memory size does not exceed device limits if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize) TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits"); DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0); const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any); if (memoryType == NO_MATCH_FOUND) return tcu::TestStatus::fail("No matching memory type found"); if (firstDeviceID != secondDeviceID) { VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0; const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType); deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags); if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) || ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0)) { TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST"); } } // Get sparse image sparse memory requirements sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse); DE_ASSERT(sparseMemoryRequirements.size() != 0); const deUint32 metadataAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_METADATA_BIT); std::vector imageResidencyMemoryBinds; std::vector imageMipTailMemoryBinds; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; const deUint32 aspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect); if (aspectIndex == NO_MATCH_FOUND) TCU_THROW(NotSupportedError, "Not supported image aspect"); VkSparseImageMemoryRequirements aspectRequirements = sparseMemoryRequirements[aspectIndex]; DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0); VkExtent3D imageGranularity = aspectRequirements.formatProperties.imageGranularity; // Bind memory for each layer for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx) { for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx) { const VkExtent3D mipExtent = getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx); const tcu::UVec3 sparseBlocks = alignedDivide(mipExtent, imageGranularity); const deUint32 numSparseBlocks = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z(); const VkImageSubresource subresource = { aspect, mipLevelNdx, layerNdx }; const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(), imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent); deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move(check(imageMemoryBind.memory), Deleter(deviceInterface, getDevice(), DE_NULL)))); imageResidencyMemoryBinds.push_back(imageMemoryBind); } if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels) { const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride); deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move(check(imageMipTailMemoryBind.memory), Deleter(deviceInterface, getDevice(), DE_NULL)))); imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind); } // Metadata if (metadataAspectIndex != NO_MATCH_FOUND) { const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex]; if (!(metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)) { const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), metadataAspectRequirements.imageMipTailSize, memoryType, metadataAspectRequirements.imageMipTailOffset + layerNdx * metadataAspectRequirements.imageMipTailStride, VK_SPARSE_MEMORY_BIND_METADATA_BIT); deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move(check(imageMipTailMemoryBind.memory), Deleter(deviceInterface, getDevice(), DE_NULL)))); imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind); } } } if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels) { const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset); deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move(check(imageMipTailMemoryBind.memory), Deleter(deviceInterface, getDevice(), DE_NULL)))); imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind); } } // Metadata if (metadataAspectIndex != NO_MATCH_FOUND) { const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex]; if (metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) { const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), metadataAspectRequirements.imageMipTailSize, memoryType, metadataAspectRequirements.imageMipTailOffset, VK_SPARSE_MEMORY_BIND_METADATA_BIT); deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move(check(imageMipTailMemoryBind.memory), Deleter(deviceInterface, getDevice(), DE_NULL)))); imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind); } } const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = { VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO, //VkStructureType sType; DE_NULL, //const void* pNext; firstDeviceID, //deUint32 resourceDeviceIndex; secondDeviceID, //deUint32 memoryDeviceIndex; }; VkBindSparseInfo bindSparseInfo = { VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType; m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext; 0u, //deUint32 waitSemaphoreCount; DE_NULL, //const VkSemaphore* pWaitSemaphores; 0u, //deUint32 bufferBindCount; DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds; 0u, //deUint32 imageOpaqueBindCount; DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; 0u, //deUint32 imageBindCount; DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds; 1u, //deUint32 signalSemaphoreCount; &imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores; }; VkSparseImageMemoryBindInfo imageResidencyBindInfo; VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo; if (imageResidencyMemoryBinds.size() > 0) { imageResidencyBindInfo.image = *imageSparse; imageResidencyBindInfo.bindCount = static_cast(imageResidencyMemoryBinds.size()); imageResidencyBindInfo.pBinds = imageResidencyMemoryBinds.data(); bindSparseInfo.imageBindCount = 1u; bindSparseInfo.pImageBinds = &imageResidencyBindInfo; } if (imageMipTailMemoryBinds.size() > 0) { imageMipTailBindInfo.image = *imageSparse; imageMipTailBindInfo.bindCount = static_cast(imageMipTailMemoryBinds.size()); imageMipTailBindInfo.pBinds = imageMipTailMemoryBinds.data(); bindSparseInfo.imageOpaqueBindCount = 1u; bindSparseInfo.pImageOpaqueBinds = &imageMipTailBindInfo; } // Submit sparse bind commands for execution VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL)); } deUint32 imageSizeInBytes = 0; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); std::vector bufferImageCopy(formatDescription.numPlanes*imageSparseInfo.mipLevels); { deUint32 bufferOffset = 0; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) { bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] = { bufferOffset, // VkDeviceSize bufferOffset; 0u, // deUint32 bufferRowLength; 0u, // deUint32 bufferImageHeight; makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource; makeOffset3D(0, 0, 0), // VkOffset3D imageOffset; vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent; }; bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY); } } } // Create command buffer for compute and transfer operations const Unique commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex)); const Unique commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY)); // Start recording commands beginCommandBuffer(deviceInterface, *commandBuffer); const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT); const Unique inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo)); const de::UniquePtr inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible)); std::vector referenceData(imageSizeInBytes); const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse); for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx) { referenceData[valueNdx] = static_cast((valueNdx % imageMemoryRequirements.alignment) + 1u); } { deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes); flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc); const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier ( VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *inputBuffer, 0u, imageSizeInBytes ); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL); } { std::vector imageSparseTransferDstBarriers; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; imageSparseTransferDstBarriers.emplace_back ( makeImageMemoryBarrier ( 0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, *imageSparse, makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers), sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED, sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED )); } deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data()); } deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(bufferImageCopy.size()), &bufferImageCopy[0]); { std::vector imageSparseTransferSrcBarriers; for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT; imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier ( VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *imageSparse, makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers) )); } deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data()); } const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT); const Unique outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo)); const de::UniquePtr outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible)); deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast(bufferImageCopy.size()), bufferImageCopy.data()); { const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier ( VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *outputBuffer, 0u, imageSizeInBytes ); deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL); } // End recording commands endCommandBuffer(deviceInterface, *commandBuffer); const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT }; // Submit commands for execution and wait for completion submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID); // Retrieve data from buffer to host memory invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc); const deUint8* outputData = static_cast(outputBufferAlloc->getHostPtr()); // Wait for sparse queue to become idle deviceInterface.queueWaitIdle(sparseQueue.queueHandle); for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx) { for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx) { const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx); const deUint32 bufferOffset = static_cast(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset); if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0) return tcu::TestStatus::fail("Failed"); } } } return tcu::TestStatus::pass("Passed"); } TestInstance* MipmapSparseResidencyCase::createInstance (Context& context) const { return new MipmapSparseResidencyInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups); } } // anonymous ns tcu::TestCaseGroup* createMipmapSparseResidencyTestsCommon (tcu::TestContext& testCtx, de::MovePtr testGroup, const bool useDeviceGroup = false) { const std::vector imageParameters { { IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_2D) }, { IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_2D_ARRAY) }, { IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_CUBE) }, { IMAGE_TYPE_CUBE_ARRAY, { tcu::UVec3(256u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_CUBE_ARRAY) }, { IMAGE_TYPE_3D, { tcu::UVec3(256u, 256u, 16u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_3D) } }; for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx) { const ImageType imageType = imageParameters[imageTypeNdx].imageType; de::MovePtr imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), "")); for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx) { VkFormat format = imageParameters[imageTypeNdx].formats[formatNdx].format; tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format); de::MovePtr formatGroup (new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str(), "")); for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx) { const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx]; // skip test for images with odd sizes for some YCbCr formats if ((imageSize.x() % imageSizeAlignment.x()) != 0) continue; if ((imageSize.y() % imageSizeAlignment.y()) != 0) continue; std::ostringstream stream; stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z(); formatGroup->addChild(new MipmapSparseResidencyCase(testCtx, stream.str(), "", imageType, imageSize, format, useDeviceGroup)); } imageTypeGroup->addChild(formatGroup.release()); } testGroup->addChild(imageTypeGroup.release()); } return testGroup.release(); } tcu::TestCaseGroup* createMipmapSparseResidencyTests (tcu::TestContext& testCtx) { de::MovePtr testGroup(new tcu::TestCaseGroup(testCtx, "mipmap_sparse_residency", "Mipmap Sparse Residency")); return createMipmapSparseResidencyTestsCommon(testCtx, testGroup); } tcu::TestCaseGroup* createDeviceGroupMipmapSparseResidencyTests (tcu::TestContext& testCtx) { de::MovePtr testGroup(new tcu::TestCaseGroup(testCtx, "device_group_mipmap_sparse_residency", "Mipmap Sparse Residency")); return createMipmapSparseResidencyTestsCommon(testCtx, testGroup, true); } } // sparse } // vkt