/*------------------------------------------------------------------------ * Vulkan Conformance Tests * ------------------------ * * Copyright (c) 2021 The Khronos Group Inc. * Copyright (c) 2021 Valve Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Tests using non-uniform arguments with traceRayExt(). *//*--------------------------------------------------------------------*/ #include "vktRayQueryNonUniformArgsTests.hpp" #include "vktTestCase.hpp" #include "vkRayTracingUtil.hpp" #include "vkObjUtil.hpp" #include "vkCmdUtil.hpp" #include "vkBuilderUtil.hpp" #include "vkTypeUtil.hpp" #include "vkBarrierUtil.hpp" #include "tcuTestLog.hpp" #include #include namespace vkt { namespace RayQuery { namespace { using namespace vk; // Causes for hitting the miss shader due to argument values. enum class MissCause { NONE = 0, FLAGS, CULL_MASK, ORIGIN, TMIN, DIRECTION, TMAX, CAUSE_COUNT, }; struct NonUniformParams { MissCause missCause; }; class NonUniformArgsCase : public TestCase { public: NonUniformArgsCase (tcu::TestContext& testCtx, const std::string& name, const NonUniformParams& params); virtual ~NonUniformArgsCase (void) {} virtual void checkSupport (Context& context) const; virtual void initPrograms (vk::SourceCollections& programCollection) const; virtual TestInstance* createInstance (Context& context) const; protected: NonUniformParams m_params; }; class NonUniformArgsInstance : public TestInstance { public: NonUniformArgsInstance (Context& context, const NonUniformParams& params); virtual ~NonUniformArgsInstance (void) {} virtual tcu::TestStatus iterate (void); protected: NonUniformParams m_params; }; NonUniformArgsCase::NonUniformArgsCase (tcu::TestContext& testCtx, const std::string& name, const NonUniformParams& params) : TestCase (testCtx, name) , m_params (params) {} void NonUniformArgsCase::checkSupport (Context& context) const { context.requireDeviceFunctionality("VK_KHR_acceleration_structure"); context.requireDeviceFunctionality("VK_KHR_ray_query"); } struct ArgsBufferData { tcu::Vec4 origin; tcu::Vec4 direction; float Tmin; float Tmax; deUint32 rayFlags; deUint32 cullMask; }; void NonUniformArgsCase::initPrograms (vk::SourceCollections& programCollection) const { const ShaderBuildOptions buildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, 0u, true); std::ostringstream comp; comp << "#version 460 core\n" << "#extension GL_EXT_ray_query : require\n" << "\n" << "layout(local_size_x=1, local_size_y=1, local_size_z=1) in;\n" << "\n" << "layout(set=0, binding=0) uniform accelerationStructureEXT topLevelAS;\n" << "layout(set=0, binding=1, std430) buffer ArgumentsBlock {\n" // Must match ArgsBufferData. << " vec4 origin;\n" << " vec4 direction;\n" << " float Tmin;\n" << " float Tmax;\n" << " uint rayFlags;\n" << " uint cullMask;\n" << "} args;\n" << "layout(set=0, binding=2, std430) buffer ResultBlock {\n" << " uint candidateFound;\n" << "} result;\n" << "\n" << "void main()\n" << "{\n" << " uint candidateFoundVal = 0u;\n" << " rayQueryEXT rq;\n" << " rayQueryInitializeEXT(rq, topLevelAS, args.rayFlags, args.cullMask, args.origin.xyz, args.Tmin, args.direction.xyz, args.Tmax);\n" << " while (rayQueryProceedEXT(rq)) {\n" << " const uint candidateType = rayQueryGetIntersectionTypeEXT(rq, false);\n" << " if (candidateType == gl_RayQueryCandidateIntersectionTriangleEXT) {\n" << " candidateFoundVal = 1u;\n" << " }\n" << " else if (candidateType == gl_RayQueryCandidateIntersectionAABBEXT) {\n" << " candidateFoundVal = 2u;\n" << " break;\n" << " }\n" << " else {\n" << " candidateFoundVal = 3u;\n" << " break;\n" << " }\n" << " }\n" << " result.candidateFound = candidateFoundVal;\n" << "}\n"; programCollection.glslSources.add("comp") << glu::ComputeSource(comp.str()) << buildOptions; } TestInstance* NonUniformArgsCase::createInstance (Context& context) const { return new NonUniformArgsInstance(context, m_params); } NonUniformArgsInstance::NonUniformArgsInstance (Context& context, const NonUniformParams& params) : TestInstance (context) , m_params (params) {} tcu::TestStatus NonUniformArgsInstance::iterate (void) { const auto& vkd = m_context.getDeviceInterface(); const auto device = m_context.getDevice(); auto& alloc = m_context.getDefaultAllocator(); const auto qIndex = m_context.getUniversalQueueFamilyIndex(); const auto queue = m_context.getUniversalQueue(); const auto stages = VK_SHADER_STAGE_COMPUTE_BIT; // Geometry data constants. const std::vector kOffscreenTriangle = { // Triangle around (x=0, y=2) z=-5 tcu::Vec3( 0.0f, 2.5f, -5.0f), tcu::Vec3(-0.5f, 1.5f, -5.0f), tcu::Vec3( 0.5f, 1.5f, -5.0f), }; const std::vector kOnscreenTriangle = { // Triangle around (x=0, y=2) z=5 tcu::Vec3( 0.0f, 2.5f, 5.0f), tcu::Vec3(-0.5f, 1.5f, 5.0f), tcu::Vec3( 0.5f, 1.5f, 5.0f), }; const tcu::Vec4 kGoodOrigin (0.0f, 2.0f, 0.0f, 0.0f); // Around (x=0, y=2) z=0. const tcu::Vec4 kBadOrigin (0.0f, 8.0f, 0.0f, 0.0f); // Too high, around (x=0, y=8) depth 0. const tcu::Vec4 kGoodDirection (0.0f, 0.0f, 1.0f, 0.0f); // Towards +z. const tcu::Vec4 kBadDirection (1.0f, 0.0f, 0.0f, 0.0f); // Towards +x. const float kGoodTmin = 4.0f; // Good to travel from z=0 to z=5. const float kGoodTmax = 6.0f; // Ditto. const float kBadTmin = 5.5f; // Tmin after triangle. const float kBadTmax = 4.5f; // Tmax before triangle. const deUint32 kGoodFlags = 0u; // MaskNone const deUint32 kBadFlags = 256u; // SkipTrianglesKHR const deUint32 kGoodCullMask = 0x0Fu; // Matches instance. const deUint32 kBadCullMask = 0xF0u; // Does not match instance. // Command pool and buffer. const auto cmdPool = makeCommandPool(vkd, device, qIndex); const auto cmdBufferPtr = allocateCommandBuffer(vkd, device, cmdPool.get(), VK_COMMAND_BUFFER_LEVEL_PRIMARY); const auto cmdBuffer = cmdBufferPtr.get(); beginCommandBuffer(vkd, cmdBuffer); // Build acceleration structures. auto topLevelAS = makeTopLevelAccelerationStructure(); auto bottomLevelAS = makeBottomLevelAccelerationStructure(); // Putting the offscreen triangle first makes sure hits have a geometryIndex=1, meaning sbtRecordStride matters. std::vector*> geometries; geometries.push_back(&kOffscreenTriangle); geometries.push_back(&kOnscreenTriangle); for (const auto& geometryPtr : geometries) bottomLevelAS->addGeometry(*geometryPtr, true /* is triangles */); bottomLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc); de::SharedPtr blasSharedPtr (bottomLevelAS.release()); topLevelAS->setInstanceCount(1); topLevelAS->addInstance(blasSharedPtr, identityMatrix3x4, 0u, kGoodCullMask, 0u, VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR); topLevelAS->createAndBuild(vkd, device, cmdBuffer, alloc); // Input storage buffer. const auto inputBufferSize = static_cast(sizeof(ArgsBufferData)); const auto inputBufferInfo = makeBufferCreateInfo(inputBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT); BufferWithMemory inputBuffer (vkd, device, alloc, inputBufferInfo, MemoryRequirement::HostVisible); auto& inputBufferAlloc = inputBuffer.getAllocation(); // Output storage buffer. const auto outputBufferSize = static_cast(sizeof(deUint32)); const auto outputBufferInfo = makeBufferCreateInfo(outputBufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT); BufferWithMemory outputBuffer (vkd, device, alloc, outputBufferInfo, MemoryRequirement::HostVisible); auto& outputBufferAlloc = outputBuffer.getAllocation(); // Fill output buffer with an initial invalid value. deMemset(outputBufferAlloc.getHostPtr(), 42, static_cast(outputBufferSize)); flushAlloc(vkd, device, outputBufferAlloc); // Descriptor set layout and pipeline layout. DescriptorSetLayoutBuilder setLayoutBuilder; setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, stages); setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, stages); setLayoutBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, stages); const auto setLayout = setLayoutBuilder.build(vkd, device); const auto pipelineLayout = makePipelineLayout(vkd, device, setLayout.get()); // Descriptor pool and set. DescriptorPoolBuilder poolBuilder; poolBuilder.addType(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR); poolBuilder.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2u); const auto descriptorPool = poolBuilder.build(vkd, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u); const auto descriptorSet = makeDescriptorSet(vkd, device, descriptorPool.get(), setLayout.get()); // Update descriptor set. { const VkWriteDescriptorSetAccelerationStructureKHR accelDescInfo = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, nullptr, 1u, topLevelAS.get()->getPtr(), }; const auto inputBufferDescInfo = makeDescriptorBufferInfo(inputBuffer.get(), 0ull, VK_WHOLE_SIZE); const auto outputBufferDescInfo = makeDescriptorBufferInfo(outputBuffer.get(), 0ull, VK_WHOLE_SIZE); DescriptorSetUpdateBuilder updateBuilder; updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, &accelDescInfo); updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &inputBufferDescInfo); updateBuilder.writeSingle(descriptorSet.get(), DescriptorSetUpdateBuilder::Location::binding(2u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &outputBufferDescInfo); updateBuilder.update(vkd, device); } // Shader modules. const auto compModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("comp"), 0u); // Generate ids for the closest hit and miss shaders according to the test parameters. DE_ASSERT(geometries.size() > 0u); const VkPipelineShaderStageCreateInfo stageCreateInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // VkStructureType sType; nullptr, // const void* pNext; 0u, // VkPipelineShaderStageCreateFlags flags; VK_SHADER_STAGE_COMPUTE_BIT, // VkShaderStageFlagBits stage; compModule.get(), // VkShaderModule module; "main", // const char* pName; nullptr, // const VkSpecializationInfo* pSpecializationInfo; }; const VkComputePipelineCreateInfo pipelineCreateInfo = { VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, // VkStructureType sType; nullptr, // const void* pNext; 0u, // VkPipelineCreateFlags flags; stageCreateInfo, // VkPipelineShaderStageCreateInfo stage; pipelineLayout.get(), // VkPipelineLayout layout; DE_NULL, // VkPipeline basePipelineHandle; 0, // deInt32 basePipelineIndex; }; const auto pipeline = createComputePipeline(vkd, device, DE_NULL, &pipelineCreateInfo); // Fill input buffer values. { const ArgsBufferData argsBufferData = { ((m_params.missCause == MissCause::ORIGIN) ? kBadOrigin : kGoodOrigin), ((m_params.missCause == MissCause::DIRECTION) ? kBadDirection : kGoodDirection), ((m_params.missCause == MissCause::TMIN) ? kBadTmin : kGoodTmin), ((m_params.missCause == MissCause::TMAX) ? kBadTmax : kGoodTmax), ((m_params.missCause == MissCause::FLAGS) ? kBadFlags : kGoodFlags), ((m_params.missCause == MissCause::CULL_MASK) ? kBadCullMask : kGoodCullMask), }; deMemcpy(inputBufferAlloc.getHostPtr(), &argsBufferData, sizeof(argsBufferData)); flushAlloc(vkd, device, inputBufferAlloc); } // Trace rays. vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline.get()); vkd.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout.get(), 0u, 1u, &descriptorSet.get(), 0u, nullptr); vkd.cmdDispatch(cmdBuffer, 1u, 1u, 1u); // Barrier for the output buffer. const auto bufferBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT); vkd.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_HOST_BIT, 0u, 1u, &bufferBarrier, 0u, nullptr, 0u, nullptr); endCommandBuffer(vkd, cmdBuffer); submitCommandsAndWait(vkd, device, queue, cmdBuffer); // Check output value. invalidateAlloc(vkd, device, outputBufferAlloc); deUint32 outputVal = std::numeric_limits::max(); deMemcpy(&outputVal, outputBufferAlloc.getHostPtr(), sizeof(outputVal)); const auto expectedVal = ((m_params.missCause == MissCause::NONE) ? 1u : 0u); std::ostringstream msg; msg << "Output value: " << outputVal << " (expected " << expectedVal << ")"; if (outputVal != expectedVal) return tcu::TestStatus::fail(msg.str()); auto& log = m_context.getTestContext().getLog(); log << tcu::TestLog::Message << msg.str() << tcu::TestLog::EndMessage; return tcu::TestStatus::pass("Pass"); } } // anonymous tcu::TestCaseGroup* createNonUniformArgsTests (tcu::TestContext& testCtx) { // Test non-uniform arguments in traceRayExt() de::MovePtr nonUniformGroup(new tcu::TestCaseGroup(testCtx, "non_uniform_args")); NonUniformParams params; for (int causeIdx = static_cast(MissCause::NONE); causeIdx < static_cast(MissCause::CAUSE_COUNT); ++causeIdx) { params.missCause = static_cast(causeIdx); const std::string testName = ((params.missCause == MissCause::NONE) ? std::string("no_miss") : "miss_cause_" + de::toString(causeIdx)); nonUniformGroup->addChild(new NonUniformArgsCase(testCtx, testName, params)); } return nonUniformGroup.release(); } } // RayQuery } // vkt