# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import nn, Tensor from .optimizer_utils import build_network, default_fc1_weight_adamax, default_fc1_bias_adamax, \ no_default_fc1_weight_adamax, no_default_fc1_bias_adamax, default_group_fc1_weight_adamax, \ default_group_fc1_bias_adamax w1 = np.array([[0.03909272, 0.08893055, -0.259909, -0.459185, -0.0195536, 0.12977135, -0.62942827, -0.53132117], [0.1542052, 0.6513571, -0.06453168, 0.44788414, -0.3775454, 0.6520292, 0.444174, -0.59306043], [0.2712369, 0.20890862, 0.6859066, 0.6629662, 0.4724893, -0.34384444, -0.16007674, 0.21797538], [-0.3865972, 0.26727962, 0.23178828, -0.24629539, -0.68038213, -0.31262863, 0.10493469, -0.28973007]]).astype("float32") b1 = np.array([0., 0., 0., 0.]).astype("float32") w2 = np.array([[-0.6079024, -1.005364, 0.59004724, 0.7289244]]).astype("float32") b2 = np.array([0.]).astype("float32") class Net(nn.Cell): """ build a 2-layers net to test adamax optimizer """ def __init__(self): super(Net, self).__init__() self.fc1 = nn.Dense(8, 4, weight_init=Tensor(w1), bias_init=Tensor(b1)) self.fc2 = nn.Dense(4, 1, weight_init=Tensor(w2), bias_init=Tensor(b2)) self.relu = nn.ReLU() def construct(self, x): x = self.relu(self.fc1(x)) return self.fc2(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_default_adamax(mode): """ Feature: Test adamax optimizer Description: Test adamax with default parameter Expectation: Loss values and parameters conform to preset values. """ context.set_context(mode=mode) config = {'name': 'adamax', 'lr': 0.001, "beta1": 0.9, "beta2": 0.999, "eps": 1e-07, 'weight_decay': 0.0} _, cells = build_network(config, net=Net(), loss_fn=nn.L1Loss(reduction='mean')) assert np.allclose(cells.moment1[0].asnumpy(), default_fc1_weight_adamax, atol=1.e-3) assert np.allclose(cells.moment1[1].asnumpy(), default_fc1_bias_adamax, atol=1.e-3) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_no_default_adamax(mode): """ Feature: Test adamax optimizer Description: Test adamax with another set of parameter Expectation: Loss values and parameters conform to preset values. """ context.set_context(mode=mode) config = {'name': 'adamax', 'lr': 0.01, "beta1": 0.9, "beta2": 0.98, "eps": 1e-06, 'weight_decay': 0.0} _, cells = build_network(config, net=Net(), loss_fn=nn.L1Loss(reduction='mean')) assert np.allclose(cells.moment1[0].asnumpy(), no_default_fc1_weight_adamax, atol=1.e-3) assert np.allclose(cells.moment1[1].asnumpy(), no_default_fc1_bias_adamax, atol=1.e-3) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_default_adamax_group(mode): """ Feature: Test adamax optimizer Description: Test adamax with parameter grouping Expectation: Loss values and parameters conform to preset values. """ context.set_context(mode=mode) config = {'name': 'adamax', 'lr': 0.002, "beta1": 0.9, "beta2": 0.999, "eps": 1e-08, 'weight_decay': 0.0} _, cells = build_network(config, is_group=True, net=Net(), loss_fn=nn.L1Loss(reduction='mean')) assert np.allclose(cells.moment1[0].asnumpy(), default_group_fc1_weight_adamax, atol=1.e-3) assert np.allclose(cells.moment1[1].asnumpy(), default_group_fc1_bias_adamax, atol=1.e-3)