# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import pytest import numpy as np import mindspore as ms from mindspore.nn import Cell from mindspore.common.parameter import Parameter from mindspore.common import ParameterTuple from mindspore import Tensor, context @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_1_1(mode): """ Feature: Check the names of parameters and the names of inputs of construct. Description: If the name of the input of construct is same as the parameters, add suffix to the name of the input. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32), name="name_a") self.param_b = Parameter(Tensor([2], ms.float32), name="name_b") def construct(self, name_a): return self.param_a + self.param_b - name_a context.set_context(mode=mode) net = ParamNet() res = net(Tensor([3], ms.float32)) assert res == 0 assert net.param_a.name == "name_a" assert net.param_b.name == "name_b" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_1_2(mode): """ Feature: Check the names of parameters and the names of inputs of construct. Description: If the name of the input of construct is same as the parameters, add suffix to the name of the input. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32), name="name_a") self.param_b = ParameterTuple((Parameter(Tensor([2], ms.float32), name="name_b"), self.param_a)) def construct(self, name_b): return self.param_a + self.param_b[0] - name_b context.set_context(mode=mode) net = ParamNet() res = net(Tensor([3], ms.float32)) assert res == 0 assert net.param_a.name == "name_a" assert net.param_b[0].name == "name_b" assert net.param_b[1].name == "name_a" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_3(mode): """ Feature: Check the names of parameters. Description: Check the name of parameter in init. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32)) self.param_b = Parameter(Tensor([2], ms.float32)) def construct(self): return self.param_a + self.param_b context.set_context(mode=mode) net = ParamNet() res = net() assert res == 3 assert net.param_a.name == "param_a" assert net.param_b.name == "param_b" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_5_2(mode): """ Feature: Check the names of parameters. Description: Check the name of parameter in init. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32), name="name_a") self.res1 = ParameterTuple((Parameter(Tensor([2], ms.float32)), self.param_a)) self.param_a = Parameter(Tensor([3], ms.float32), name="name_b") self.res2 = self.res1[0] + self.param_a def construct(self): return self.param_a + self.res1[0] + self.res2 context.set_context(mode=mode) net = ParamNet() res = net() assert res == 10 assert net.param_a.name == "name_b" assert net.res1[0].name == "Parameter$1" assert net.res1[1].name == "name_a" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_list_tuple_no_name(mode): """ Feature: Check the names of parameters. Description: Check the name of parameter in init. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_tuple = (Parameter(Tensor([5], ms.float32)), Parameter(Tensor([6], ms.float32))) self.param_list = [Parameter(Tensor([7], ms.float32)), Parameter(Tensor([8], ms.float32))] def construct(self): return self.param_tuple[0] + self.param_tuple[1] + self.param_list[0] + self.param_list[1] context.set_context(mode=mode) net = ParamNet() res = net() assert res == 26 assert net.param_tuple[0].name == "Parameter$1" assert net.param_tuple[1].name == "Parameter$2" assert net.param_list[0].name == "Parameter$3" assert net.param_list[1].name == "Parameter$4" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_in_tuple(mode): """ Feature: Check the names of parameters. Description: Check the name of parameter in init. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32), name="name_a") self.param_b = Parameter(Tensor([2], ms.float32), name="name_b") self.param_tuple = ParameterTuple((self.param_a, self.param_b)) def construct(self): return self.param_a + self.param_b + self.param_tuple[0] + self.param_tuple[1] context.set_context(mode=mode) net = ParamNet() res = net() assert res == 6 assert net.param_a.name == "name_a" assert net.param_b.name == "name_b" assert net.param_tuple[0].name == "name_a" assert net.param_tuple[1].name == "name_b" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_parameter_tuple_2(mode): """ Feature: Check the names of parameters. Description: Check the name of parameter in init. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32), name="name_a") self.param_tuple = ParameterTuple((self.param_a, self.param_a, self.param_a)) def construct(self): return self.param_a + self.param_tuple[0] + self.param_tuple[1] + self.param_tuple[2] context.set_context(mode=mode) net = ParamNet() res = net() assert res == 4 assert net.param_a.name == "name_a" assert net.param_tuple[0].name == "name_a" assert net.param_tuple[1].name == "name_a" assert net.param_tuple[2].name == "name_a" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter(mode): """ Feature: Check the names of parameters. Description: If parameter in list or tuple is not given a name, will give it a unique name. Expectation: No exception. """ class ParamNet(Cell): def __init__(self): super(ParamNet, self).__init__() self.param_a = Parameter(Tensor([1], ms.float32), name="name_a") self.param_b = Parameter(Tensor([2], ms.float32), name="name_b") self.param_c = Parameter(Tensor([3], ms.float32)) self.param_d = Parameter(Tensor([4], ms.float32)) self.param_tuple = (Parameter(Tensor([5], ms.float32)), Parameter(Tensor([6], ms.float32))) self.param_list = [Parameter(Tensor([5], ms.float32)), Parameter(Tensor([6], ms.float32))] def construct(self, x): res1 = self.param_a + self.param_b + self.param_c + self.param_d res1 = res1 - self.param_list[0] + self.param_list[1] + x res2 = self.param_list[0] + self.param_list[1] return res1, res2 context.set_context(mode=mode) net = ParamNet() x = Tensor([10], ms.float32) output1, output2 = net(x) output1_expect = Tensor(21, ms.float32) output2_expect = Tensor(11, ms.float32) assert output1 == output1_expect assert output2 == output2_expect assert net.param_a.name == "name_a" assert net.param_b.name == "name_b" assert net.param_c.name == "param_c" assert net.param_d.name == "param_d" assert net.param_tuple[0].name == "Parameter$1" assert net.param_tuple[1].name == "Parameter$2" assert net.param_list[0].name == "Parameter$3" assert net.param_list[1].name == "Parameter$4" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_argument_and_fv(mode): """ Feature: Parameter argmument in top func graph. Description: Use Parameter as input argmument. Expectation: Parameter used as argument should equal to used as FV. """ y = Parameter(Tensor([1])) class Demo(Cell): def construct(self, x): ms.ops.Assign()(x, Tensor([0])) ms.ops.Assign()(y, Tensor([0])) return True context.set_context(mode=mode) x = Parameter(Tensor([1])) net = Demo() net(x) print(Tensor(x)) print(Tensor(y)) assert x == y @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_parameter_argument_grad(mode): """ Feature: Parameter argmument in top func graph. Description: Use Parameter as input argmument, and pass it to varargs. Expectation: Parameter used as argument should equal to used as FV. """ class ParameterArgumentCell(Cell): def __init__(self): super(ParameterArgumentCell, self).__init__() self.z = Parameter(Tensor(np.array([[1.0, 4.0], [-1, 8.0]]), ms.float32), name='z') def construct(self, param, x, y): ms.ops.Assign()(param, x * self.z) ms.ops.Assign()(x, x + y) ms.ops.Assign()(y, param) return param context.set_context(mode=mode) param = Parameter(Tensor(np.array([[0, 0], [0, 0]]), ms.float32), name='param') x = Parameter(Tensor(np.array([[4.0, -8.0], [-2.0, -5.0]]), ms.float32), name='x') y = Parameter(Tensor(np.array([[1, 0], [1, 1]]), ms.float32), name='y') net = ParameterArgumentCell() net(param, x, y) bparam = Parameter(Tensor(np.array([[0, 0], [0, 0]]), ms.float32), name='bparam') bx = Parameter(Tensor(np.array([[4.0, -8.0], [-2.0, -5.0]]), ms.float32), name='bx') by = Parameter(Tensor(np.array([[1, 0], [1, 1]]), ms.float32), name='by') grad_by_list = ms.ops.GradOperation(get_by_list=True) grad_by_list(net, ParameterTuple(net.trainable_params()))(bparam, bx, by) assert np.array_equal(param.asnumpy(), bparam.asnumpy()) assert np.array_equal(x.asnumpy(), bx.asnumpy()) assert np.array_equal(y.asnumpy(), by.asnumpy())