# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """dataset base and LeNet.""" import os from mindspore import dataset as ds from mindspore.common import dtype as mstype import mindspore.dataset.transforms as C from mindspore.dataset.vision import Inter import mindspore.dataset.vision as CV from mindspore import nn, Tensor from mindspore.common.initializer import Normal from mindspore.ops import operations as P def create_mnist_dataset(mode='train', num_samples=2, batch_size=2): """create dataset for train or test""" mnist_path = '/home/workspace/mindspore_dataset/mnist' num_parallel_workers = 1 # define dataset mnist_ds = ds.MnistDataset(os.path.join(mnist_path, mode), num_samples=num_samples, shuffle=False) resize_height, resize_width = 32, 32 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081) rescale_op = CV.Rescale(1.0 / 255.0, shift=0.0) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps mnist_ds = mnist_ds.batch(batch_size=batch_size, drop_remainder=True) return mnist_ds class LeNet5(nn.Cell): """ Lenet network Args: num_class (int): Number of classes. Default: 10. num_channel (int): Number of channels. Default: 1. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10, num_channel=1, include_top=True): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.include_top = include_top if self.include_top: self.flatten = nn.Flatten() self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) self.scalar_summary = P.ScalarSummary() self.image_summary = P.ImageSummary() self.histogram_summary = P.HistogramSummary() self.tensor_summary = P.TensorSummary() self.channel = Tensor(num_channel) def construct(self, x): """construct.""" self.image_summary('image', x) x = self.conv1(x) self.histogram_summary('histogram', x) x = self.relu(x) self.tensor_summary('tensor', x) x = self.relu(x) x = self.max_pool2d(x) self.scalar_summary('scalar', self.channel) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) if not self.include_top: return x x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x