# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetParallelConcat(nn.Cell): def __init__(self): super(NetParallelConcat, self).__init__() self.parallelconcat = P.ParallelConcat() def construct(self, x): return self.parallelconcat(x) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_parallelconcat_1d(): """ Feature: ParallelConcat TEST. Description: 1d test case for ParallelConcat Expectation: the result match to numpy """ context.set_context(mode=context.GRAPH_MODE) x_np = (np.array([[3]])).astype(np.int8) y_np = (np.array([[5]])).astype(np.int8) z_np = np.concatenate([x_np, y_np], axis=0) x_ms = Tensor(x_np) y_ms = Tensor(y_np) net = NetParallelConcat() z_ms = net([x_ms, y_ms]) assert np.allclose(z_np, z_ms.asnumpy()) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_parallelconcat_2d(): """ Feature: ParallelConcat TEST. Description: 2d test case for ParallelConcat Expectation: the result match to numpy """ context.set_context(mode=context.PYNATIVE_MODE) x_np = (np.array([[-1, -5, -3, -14, 64]])).astype(np.int8) y_np = (np.array([[5, 0, 7, 11, 66]])).astype(np.int8) z_np = np.concatenate([x_np, y_np], axis=0) x_ms = Tensor(x_np) y_ms = Tensor(y_np) net = NetParallelConcat() z_ms = net([x_ms, y_ms]) assert np.allclose(z_np, z_ms.asnumpy())