Lines Matching +full:t +full:- +full:calibration +full:- +full:data
1 // SPDX-License-Identifier: GPL-2.0-only
28 #include <asm/intel-family.h>
56 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ member
69 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) in cyc2ns_read_begin() argument
79 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); in cyc2ns_read_begin()
80 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); in cyc2ns_read_begin()
81 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); in cyc2ns_read_begin()
106 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
107 * (64-bit result) can be used.
112 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
117 struct cyc2ns_data data; in cycles_2_ns() local
120 cyc2ns_read_begin(&data); in cycles_2_ns()
122 ns = data.cyc2ns_offset; in cycles_2_ns()
123 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); in cycles_2_ns()
133 struct cyc2ns_data data; in __set_cyc2ns_scale() local
143 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, in __set_cyc2ns_scale()
149 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit in __set_cyc2ns_scale()
150 * value) - refer perf_event_mmap_page documentation in perf_event.h. in __set_cyc2ns_scale()
152 if (data.cyc2ns_shift == 32) { in __set_cyc2ns_scale()
153 data.cyc2ns_shift = 31; in __set_cyc2ns_scale()
154 data.cyc2ns_mul >>= 1; in __set_cyc2ns_scale()
157 data.cyc2ns_offset = ns_now - in __set_cyc2ns_scale()
158 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); in __set_cyc2ns_scale()
162 raw_write_seqcount_latch(&c2n->seq); in __set_cyc2ns_scale()
163 c2n->data[0] = data; in __set_cyc2ns_scale()
164 raw_write_seqcount_latch(&c2n->seq); in __set_cyc2ns_scale()
165 c2n->data[1] = data; in __set_cyc2ns_scale()
189 seqcount_latch_init(&c2n->seq); in cyc2ns_init_boot_cpu()
202 struct cyc2ns_data *data = c2n->data; in cyc2ns_init_secondary_cpus() local
206 seqcount_latch_init(&c2n->seq); in cyc2ns_init_secondary_cpus()
208 c2n->data[0] = data[0]; in cyc2ns_init_secondary_cpus()
209 c2n->data[1] = data[1]; in cyc2ns_init_secondary_cpus()
215 * Scheduler clock - returns current time in nanosec units.
236 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); in native_sched_clock()
329 if ((t2 - t1) < thresh) in tsc_read_refs()
344 hpet2 -= hpet1; in calc_hpet_ref()
364 pm2 -= pm1; in calc_pmtimer_ref()
427 delta = t2 - tsc; in pit_calibrate_tsc()
449 delta = t2 - t1; in pit_calibrate_tsc()
457 * non-virtualized hardware.
461 * - the PIT is running at roughly 1.19MHz
463 * - each IO is going to take about 1us on real hardware,
466 * update - anything else implies a unacceptably slow CPU
467 * or PIT for the fast calibration to work.
469 * - with 256 PIT ticks to read the value, we have 214us to
473 * - We're doing 2 reads per loop (LSB, MSB), and we expect
478 * - if the PIT is stuck, and we see *many* more reads, we
480 * then consider it a failure when they don't see the
485 * high accuracy, and we didn't miss any events. We can thus
507 *deltap = get_cycles() - prev_tsc; in pit_expect_msb()
539 * Counter 2, mode 0 (one-shot), binary count in quick_pit_calibrate()
543 * final output frequency as a decrement-by-one), in quick_pit_calibrate()
556 * to do that is to just read back the 16-bit counter in quick_pit_calibrate()
563 if (!pit_expect_msb(0xff-i, &delta, &d2)) in quick_pit_calibrate()
566 delta -= tsc; in quick_pit_calibrate()
589 if (!pit_verify_msb(0xfe - i)) in quick_pit_calibrate()
594 pr_info("Fast TSC calibration failed\n"); in quick_pit_calibrate()
607 * kHz = ticks / time-in-seconds / 1000; in quick_pit_calibrate()
608 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 in quick_pit_calibrate()
609 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) in quick_pit_calibrate()
613 pr_info("Fast TSC calibration using PIT\n"); in quick_pit_calibrate()
643 * Denverton SoCs don't report crystal clock, and also don't support in native_calibrate_tsc()
660 * Some Intel SoCs like Skylake and Kabylake don't report the crystal in native_calibrate_tsc()
724 * Run 5 calibration loops to get the lowest frequency value in pit_hpet_ptimer_calibrate_cpu()
725 * (the best estimate). We use two different calibration modes in pit_hpet_ptimer_calibrate_cpu()
744 * calibration delay loop as we have to wait for a certain in pit_hpet_ptimer_calibrate_cpu()
759 * calibration, which will take at least 50ms, and in pit_hpet_ptimer_calibrate_cpu()
768 /* Pick the lowest PIT TSC calibration so far */ in pit_hpet_ptimer_calibrate_cpu()
779 tsc2 = (tsc2 - tsc1) * 1000000LL; in pit_hpet_ptimer_calibrate_cpu()
792 * If both calibration results are inside a 10% window in pit_hpet_ptimer_calibrate_cpu()
793 * then we can be sure, that the calibration in pit_hpet_ptimer_calibrate_cpu()
798 pr_info("PIT calibration matches %s. %d loops\n", in pit_hpet_ptimer_calibrate_cpu()
823 /* We don't have an alternative source, disable TSC */ in pit_hpet_ptimer_calibrate_cpu()
831 pr_warn("HPET/PMTIMER calibration failed\n"); in pit_hpet_ptimer_calibrate_cpu()
836 pr_info("using %s reference calibration\n", in pit_hpet_ptimer_calibrate_cpu()
842 /* We don't have an alternative source, use the PIT calibration value */ in pit_hpet_ptimer_calibrate_cpu()
844 pr_info("Using PIT calibration value\n"); in pit_hpet_ptimer_calibrate_cpu()
848 /* The alternative source failed, use the PIT calibration value */ in pit_hpet_ptimer_calibrate_cpu()
850 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); in pit_hpet_ptimer_calibrate_cpu()
855 * The calibration values differ too much. In doubt, we use in pit_hpet_ptimer_calibrate_cpu()
859 pr_warn("PIT calibration deviates from %s: %lu %lu\n", in pit_hpet_ptimer_calibrate_cpu()
861 pr_info("Using PIT calibration value\n"); in pit_hpet_ptimer_calibrate_cpu()
866 * native_calibrate_cpu_early - can calibrate the cpu early in boot
884 * native_calibrate_cpu - calibrate the cpu
908 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) in recalibrate_cpu_khz()
948 * We're coming out of suspend, there's no concurrency yet; don't in tsc_restore_sched_clock_state()
950 * data fields. in tsc_restore_sched_clock_state()
953 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); in tsc_restore_sched_clock_state()
954 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); in tsc_restore_sched_clock_state()
956 offset = cyc2ns_suspend - sched_clock(); in tsc_restore_sched_clock_state()
959 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; in tsc_restore_sched_clock_state()
960 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; in tsc_restore_sched_clock_state()
983 void *data) in time_cpufreq_notifier() argument
985 struct cpufreq_freqs *freq = data; in time_cpufreq_notifier()
993 ref_freq = freq->old; in time_cpufreq_notifier()
998 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || in time_cpufreq_notifier()
999 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { in time_cpufreq_notifier()
1001 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); in time_cpufreq_notifier()
1003 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); in time_cpufreq_notifier()
1004 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) in time_cpufreq_notifier()
1007 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); in time_cpufreq_notifier()
1047 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, in detect_art()
1078 * structure to avoid a nasty time-warp. This can be observed in a
1089 * checking the result of read_tsc() - cycle_last for being negative.
1128 .name = "tsc-early",
1197 /* Geode_LX - the OLPC CPU has a very reliable TSC */ in check_system_tsc_reliable()
1207 * - TSC running at constant frequency in check_system_tsc_reliable()
1208 * - TSC which does not stop in C-States in check_system_tsc_reliable()
1209 * - the TSC_ADJUST register which allows to detect even minimal in check_system_tsc_reliable()
1211 * - not more than two sockets. As the number of sockets cannot be in check_system_tsc_reliable()
1276 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1280 * software requests a cross-timestamp, this function converts system timestamp
1288 * struct system_counterval_t - system counter value with the pointer to the
1317 * tsc_refine_calibration_work - Further refine tsc freq calibration
1318 * @work - ignored.
1322 * timer based, instead of loop based, we don't block the boot
1323 * process while this longer calibration is done.
1325 * If there are any calibration anomalies (too many SMIs, etc),
1326 * or the refined calibration is off by 1% of the fast early
1327 * calibration, we throw out the new calibration and use the
1328 * early calibration.
1338 /* Don't bother refining TSC on unstable systems */ in tsc_refine_calibration_work()
1369 delta = tsc_stop - tsc_start; in tsc_refine_calibration_work()
1377 if (abs(tsc_khz - freq) > tsc_khz/100) in tsc_refine_calibration_work()
1381 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", in tsc_refine_calibration_work()
1417 * the refined calibration and directly register it as a clocksource. in init_tsc_clocksource()
1449 /* We should not be here with non-native cpu calibration */ in determine_cpu_tsc_frequencies()
1455 * Trust non-zero tsc_khz as authoritative, in determine_cpu_tsc_frequencies()
1461 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) in determine_cpu_tsc_frequencies()
1499 /* Don't change UV TSC multi-chassis synchronization */ in tsc_early_init()
1558 * we can skip clock calibration if another cpu in the same socket has already
1560 * cpus in the socket - this should be a safe assumption.