Lines Matching +full:memory +full:- +full:region
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
43 * Memblock views the system memory as collections of contiguous
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
65 * The memblock_allow_resize() enables automatic resizing of the region
67 * with care so that memory allocated for the region array will not
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
74 * use it on NUMA systems as well and assign the region to a NUMA node
78 * Once memblock is setup the memory can be allocated using one of the
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
87 * memory ranges and the fallback methods. Consult the documentation
92 * function frees all the memory to the buddy page allocator.
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
140 * keep a pointer to &memblock.memory in the text section to use it in
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
177 return *size = min(*size, PHYS_ADDR_MAX - base); in memblock_cap_size()
197 for (i = 0; i < type->cnt; i++) in memblock_overlaps_region()
198 if (memblock_addrs_overlap(base, size, type->regions[i].base, in memblock_overlaps_region()
199 type->regions[i].size)) in memblock_overlaps_region()
201 return i < type->cnt; in memblock_overlaps_region()
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
212 * @flags: pick from blocks based on memory attributes
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
232 if (cand < this_end && this_end - cand >= size) in __memblock_find_range_bottom_up()
240 * __memblock_find_range_top_down - find free area utility, in top-down
247 * @flags: pick from blocks based on memory attributes
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
270 cand = round_down(this_end - size, align); in __memblock_find_range_top_down()
279 * memblock_find_in_range_node - find free area in given range and node
286 * @flags: pick from blocks based on memory attributes
316 * memblock_find_in_range - find free area in given range
340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", in memblock_find_in_range()
351 type->total_size -= type->regions[r].size; in memblock_remove_region()
352 memmove(&type->regions[r], &type->regions[r + 1], in memblock_remove_region()
353 (type->cnt - (r + 1)) * sizeof(type->regions[r])); in memblock_remove_region()
354 type->cnt--; in memblock_remove_region()
357 if (type->cnt == 0) { in memblock_remove_region()
358 WARN_ON(type->total_size != 0); in memblock_remove_region()
359 type->cnt = 1; in memblock_remove_region()
360 type->regions[0].base = 0; in memblock_remove_region()
361 type->regions[0].size = 0; in memblock_remove_region()
362 type->regions[0].flags = 0; in memblock_remove_region()
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); in memblock_remove_region()
369 * memblock_discard - discard memory and reserved arrays if they were allocated
385 if (memblock.memory.regions != memblock_memory_init_regions) { in memblock_discard()
386 addr = __pa(memblock.memory.regions); in memblock_discard()
388 memblock.memory.max); in memblock_discard()
390 kfree(memblock.memory.regions); in memblock_discard()
400 * memblock_double_array - double the size of the memblock regions array
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
412 * 0 on success, -1 on failure.
425 * of memory that aren't suitable for allocation in memblock_double_array()
428 return -1; in memblock_double_array()
431 old_size = type->max * sizeof(struct memblock_region); in memblock_double_array()
441 if (type == &memblock.memory) in memblock_double_array()
467 type->name, type->max, type->max * 2); in memblock_double_array()
468 return -1; in memblock_double_array()
471 new_end = addr + new_size - 1; in memblock_double_array()
472 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", in memblock_double_array()
473 type->name, type->max * 2, &addr, &new_end); in memblock_double_array()
477 * reserved region since it may be our reserved array itself that is in memblock_double_array()
480 memcpy(new_array, type->regions, old_size); in memblock_double_array()
481 memset(new_array + type->max, 0, old_size); in memblock_double_array()
482 old_array = type->regions; in memblock_double_array()
483 type->regions = new_array; in memblock_double_array()
484 type->max <<= 1; in memblock_double_array()
507 * memblock_merge_regions - merge neighboring compatible regions
509 * @start_rgn: start scanning from (@start_rgn - 1)
510 * @end_rgn: end scanning at (@end_rgn - 1)
511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
519 i = start_rgn - 1; in memblock_merge_regions()
520 end_rgn = min(end_rgn, type->cnt - 1); in memblock_merge_regions()
522 struct memblock_region *this = &type->regions[i]; in memblock_merge_regions()
523 struct memblock_region *next = &type->regions[i + 1]; in memblock_merge_regions()
525 if (this->base + this->size != next->base || in memblock_merge_regions()
528 this->flags != next->flags) { in memblock_merge_regions()
529 BUG_ON(this->base + this->size > next->base); in memblock_merge_regions()
534 this->size += next->size; in memblock_merge_regions()
536 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); in memblock_merge_regions()
537 type->cnt--; in memblock_merge_regions()
538 end_rgn--; in memblock_merge_regions()
543 * memblock_insert_region - insert new memblock region
546 * @base: base address of the new region
547 * @size: size of the new region
548 * @nid: node id of the new region
549 * @flags: flags of the new region
551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
552 * @type must already have extra room to accommodate the new region.
560 struct memblock_region *rgn = &type->regions[idx]; in memblock_insert_region()
562 BUG_ON(type->cnt >= type->max); in memblock_insert_region()
563 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); in memblock_insert_region()
564 rgn->base = base; in memblock_insert_region()
565 rgn->size = size; in memblock_insert_region()
566 rgn->flags = flags; in memblock_insert_region()
568 type->cnt++; in memblock_insert_region()
569 type->total_size += size; in memblock_insert_region()
573 * memblock_add_range - add new memblock region
574 * @type: memblock type to add new region into
575 * @base: base address of the new region
576 * @size: size of the new region
577 * @nid: nid of the new region
578 * @flags: flags of the new region
580 * Add new memblock region [@base, @base + @size) into @type. The new region
581 * is allowed to overlap with existing ones - overlaps don't affect already
586 * 0 on success, -errno on failure.
595 int idx, nr_new, start_rgn = -1, end_rgn; in memblock_add_range()
602 if (type->regions[0].size == 0) { in memblock_add_range()
603 WARN_ON(type->cnt != 1 || type->total_size); in memblock_add_range()
604 type->regions[0].base = base; in memblock_add_range()
605 type->regions[0].size = size; in memblock_add_range()
606 type->regions[0].flags = flags; in memblock_add_range()
607 memblock_set_region_node(&type->regions[0], nid); in memblock_add_range()
608 type->total_size = size; in memblock_add_range()
614 * then we'll need type->cnt + 1 empty regions in @type. So if in memblock_add_range()
615 * type->cnt * 2 + 1 is less than or equal to type->max, we know in memblock_add_range()
619 if (type->cnt * 2 + 1 <= type->max) in memblock_add_range()
632 phys_addr_t rbase = rgn->base; in memblock_add_range()
633 phys_addr_t rend = rbase + rgn->size; in memblock_add_range()
647 WARN_ON(flags != rgn->flags); in memblock_add_range()
650 if (start_rgn == -1) in memblock_add_range()
654 rbase - base, nid, in memblock_add_range()
666 if (start_rgn == -1) in memblock_add_range()
669 memblock_insert_region(type, idx, base, end - base, in memblock_add_range()
682 while (type->cnt + nr_new > type->max) in memblock_add_range()
684 return -ENOMEM; in memblock_add_range()
694 * memblock_add_node - add new memblock region within a NUMA node
695 * @base: base address of the new region
696 * @size: size of the new region
697 * @nid: nid of the new region
698 * @flags: flags of the new region
700 * Add new memblock region [@base, @base + @size) to the "memory"
704 * 0 on success, -errno on failure.
709 phys_addr_t end = base + size - 1; in memblock_add_node()
711 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, in memblock_add_node()
714 return memblock_add_range(&memblock.memory, base, size, nid, flags); in memblock_add_node()
718 * memblock_add - add new memblock region
719 * @base: base address of the new region
720 * @size: size of the new region
722 * Add new memblock region [@base, @base + @size) to the "memory"
726 * 0 on success, -errno on failure.
730 phys_addr_t end = base + size - 1; in memblock_add()
732 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_add()
735 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); in memblock_add()
739 * memblock_validate_numa_coverage - check if amount of memory with
741 * @threshold_bytes: maximal memory size that can have unassigned node
744 * A buggy firmware may report memory that does not belong to any node.
745 * Check if amount of such memory is below @threshold_bytes.
758 nr_pages += end_pfn - start_pfn; in memblock_validate_numa_coverage()
773 * memblock_isolate_range - isolate given range into disjoint memblocks
777 * @start_rgn: out parameter for the start of isolated region
778 * @end_rgn: out parameter for the end of isolated region
783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
786 * 0 on success, -errno on failure.
802 while (type->cnt + 2 > type->max) in memblock_isolate_range()
804 return -ENOMEM; in memblock_isolate_range()
807 phys_addr_t rbase = rgn->base; in memblock_isolate_range()
808 phys_addr_t rend = rbase + rgn->size; in memblock_isolate_range()
818 * to process the next region - the new top half. in memblock_isolate_range()
820 rgn->base = base; in memblock_isolate_range()
821 rgn->size -= base - rbase; in memblock_isolate_range()
822 type->total_size -= base - rbase; in memblock_isolate_range()
823 memblock_insert_region(type, idx, rbase, base - rbase, in memblock_isolate_range()
825 rgn->flags); in memblock_isolate_range()
829 * current region - the new bottom half. in memblock_isolate_range()
831 rgn->base = end; in memblock_isolate_range()
832 rgn->size -= end - rbase; in memblock_isolate_range()
833 type->total_size -= end - rbase; in memblock_isolate_range()
834 memblock_insert_region(type, idx--, rbase, end - rbase, in memblock_isolate_range()
836 rgn->flags); in memblock_isolate_range()
858 for (i = end_rgn - 1; i >= start_rgn; i--) in memblock_remove_range()
865 phys_addr_t end = base + size - 1; in memblock_remove()
867 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_remove()
870 return memblock_remove_range(&memblock.memory, base, size); in memblock_remove()
874 * memblock_free - free boot memory allocation
875 * @ptr: starting address of the boot memory allocation
876 * @size: size of the boot memory block in bytes
878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
879 * The freeing memory will not be released to the buddy allocator.
888 * memblock_phys_free - free boot memory block
889 * @base: phys starting address of the boot memory block
890 * @size: size of the boot memory block in bytes
892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893 * The freeing memory will not be released to the buddy allocator.
897 phys_addr_t end = base + size - 1; in memblock_phys_free()
899 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_phys_free()
908 phys_addr_t end = base + size - 1; in memblock_reserve()
910 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_reserve()
919 phys_addr_t end = base + size - 1; in memblock_physmem_add()
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_physmem_add()
929 * memblock_setclr_flag - set or clear flag for a memory region
930 * @base: base address of the region
931 * @size: size of the region
935 * This function isolates region [@base, @base + @size), and sets/clears flag
937 * Return: 0 on success, -errno on failure.
942 struct memblock_type *type = &memblock.memory; in memblock_setclr_flag()
950 struct memblock_region *r = &type->regions[i]; in memblock_setclr_flag()
953 r->flags |= flag; in memblock_setclr_flag()
955 r->flags &= ~flag; in memblock_setclr_flag()
963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964 * @base: the base phys addr of the region
965 * @size: the size of the region
967 * Return: 0 on success, -errno on failure.
975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976 * @base: the base phys addr of the region
977 * @size: the size of the region
979 * Return: 0 on success, -errno on failure.
987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988 * @base: the base phys addr of the region
989 * @size: the size of the region
991 * Return: 0 on success, -errno on failure.
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1016 * Return: 0 on success, -errno on failure.
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
1028 * Return: 0 on success, -errno on failure.
1045 /* only memory regions are associated with nodes, check it */ in should_skip_region()
1049 /* skip hotpluggable memory regions if needed */ in should_skip_region()
1054 /* if we want mirror memory skip non-mirror memory regions */ in should_skip_region()
1058 /* skip nomap memory unless we were asked for it explicitly */ in should_skip_region()
1062 /* skip driver-managed memory unless we were asked for it explicitly */ in should_skip_region()
1070 * __next_mem_range - next function for for_each_free_mem_range() etc.
1073 * @flags: pick from blocks based on memory attributes
1075 * @type_b: pointer to memblock_type which excludes memory from being taken
1083 * areas before each region in type_b. For example, if type_b regions
1086 * 0:[0-16), 1:[32-48), 2:[128-130)
1090 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1092 * As both region arrays are sorted, the function advances the two indices
1103 for (; idx_a < type_a->cnt; idx_a++) { in __next_mem_range()
1104 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range()
1106 phys_addr_t m_start = m->base; in __next_mem_range()
1107 phys_addr_t m_end = m->base + m->size; in __next_mem_range()
1126 for (; idx_b < type_b->cnt + 1; idx_b++) { in __next_mem_range()
1131 r = &type_b->regions[idx_b]; in __next_mem_range()
1132 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range()
1133 r_end = idx_b < type_b->cnt ? in __next_mem_range()
1134 r->base : PHYS_ADDR_MAX; in __next_mem_range()
1152 * The region which ends first is in __next_mem_range()
1170 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1174 * @flags: pick from blocks based on memory attributes
1176 * @type_b: pointer to memblock_type which excludes memory from being taken
1197 idx_a = type_a->cnt - 1; in __next_mem_range_rev()
1199 idx_b = type_b->cnt; in __next_mem_range_rev()
1204 for (; idx_a >= 0; idx_a--) { in __next_mem_range_rev()
1205 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range_rev()
1207 phys_addr_t m_start = m->base; in __next_mem_range_rev()
1208 phys_addr_t m_end = m->base + m->size; in __next_mem_range_rev()
1221 idx_a--; in __next_mem_range_rev()
1227 for (; idx_b >= 0; idx_b--) { in __next_mem_range_rev()
1232 r = &type_b->regions[idx_b]; in __next_mem_range_rev()
1233 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range_rev()
1234 r_end = idx_b < type_b->cnt ? in __next_mem_range_rev()
1235 r->base : PHYS_ADDR_MAX; in __next_mem_range_rev()
1252 idx_a--; in __next_mem_range_rev()
1254 idx_b--; in __next_mem_range_rev()
1271 struct memblock_type *type = &memblock.memory; in __next_mem_pfn_range()
1275 while (++*idx < type->cnt) { in __next_mem_pfn_range()
1276 r = &type->regions[*idx]; in __next_mem_pfn_range()
1279 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) in __next_mem_pfn_range()
1284 if (*idx >= type->cnt) { in __next_mem_pfn_range()
1285 *idx = -1; in __next_mem_pfn_range()
1290 *out_start_pfn = PFN_UP(r->base); in __next_mem_pfn_range()
1292 *out_end_pfn = PFN_DOWN(r->base + r->size); in __next_mem_pfn_range()
1298 * memblock_set_node - set node ID on memblock regions
1308 * 0 on success, -errno on failure.
1322 memblock_set_region_node(&type->regions[i], nid); in memblock_set_node()
1331 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1334 * @zone: zone in which all of the memory blocks reside
1340 * deferred memory init routines and as such we were duplicating much of
1353 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1364 if (zone->zone_start_pfn < epfn && spfn < epfn) { in __next_mem_pfn_range_in_zone()
1372 *out_spfn = max(zone->zone_start_pfn, spfn); in __next_mem_pfn_range_in_zone()
1380 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1394 * memblock_alloc_range_nid - allocate boot memory block
1395 * @size: size of memory block to be allocated in bytes
1396 * @align: alignment of the region and block's size
1397 * @start: the lower bound of the memory region to allocate (phys address)
1398 * @end: the upper bound of the memory region to allocate (phys address)
1402 * The allocation is performed from memory region limited by
1405 * If the specified node can not hold the requested memory and @exact_nid
1408 * For systems with memory mirroring, the allocation is attempted first
1410 * memory region.
1413 * memory block, it is never reported as leaks.
1416 * Physical address of allocated memory block on success, %0 on failure.
1448 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", in memblock_alloc_range_nid()
1470 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, in memblock_alloc_range_nid()
1471 * require memory to be accepted before it can be used by the in memblock_alloc_range_nid()
1474 * Accept the memory of the allocated buffer. in memblock_alloc_range_nid()
1482 * memblock_phys_alloc_range - allocate a memory block inside specified range
1483 * @size: size of memory block to be allocated in bytes
1484 * @align: alignment of the region and block's size
1485 * @start: the lower bound of the memory region to allocate (physical address)
1486 * @end: the upper bound of the memory region to allocate (physical address)
1490 * Return: physical address of the allocated memory block on success,
1506 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1507 * @size: size of memory block to be allocated in bytes
1508 * @align: alignment of the region and block's size
1511 * Allocates memory block from the specified NUMA node. If the node
1512 * has no available memory, attempts to allocated from any node in the
1515 * Return: physical address of the allocated memory block on success,
1525 * memblock_alloc_internal - allocate boot memory block
1526 * @size: size of memory block to be allocated in bytes
1527 * @align: alignment of the region and block's size
1528 * @min_addr: the lower bound of the memory region to allocate (phys address)
1529 * @max_addr: the upper bound of the memory region to allocate (phys address)
1533 * Allocates memory block using memblock_alloc_range_nid() and
1537 * will fall back to memory below @min_addr. Other constraints, such
1538 * as node and mirrored memory will be handled again in
1542 * Virtual address of allocated memory block on success, NULL on failure.
1577 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1578 * without zeroing memory
1579 * @size: size of memory block to be allocated in bytes
1580 * @align: alignment of the region and block's size
1581 * @min_addr: the lower bound of the memory region from where the allocation
1583 * @max_addr: the upper bound of the memory region from where the allocation
1585 * allocate only from memory limited by memblock.current_limit value
1589 * info), if enabled. Does not zero allocated memory.
1592 * Virtual address of allocated memory block on success, NULL on failure.
1608 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1609 * memory and without panicking
1610 * @size: size of memory block to be allocated in bytes
1611 * @align: alignment of the region and block's size
1612 * @min_addr: the lower bound of the memory region from where the allocation
1614 * @max_addr: the upper bound of the memory region from where the allocation
1616 * allocate only from memory limited by memblock.current_limit value
1620 * info), if enabled. Does not zero allocated memory, does not panic if request
1624 * Virtual address of allocated memory block on success, NULL on failure.
1640 * memblock_alloc_try_nid - allocate boot memory block
1641 * @size: size of memory block to be allocated in bytes
1642 * @align: alignment of the region and block's size
1643 * @min_addr: the lower bound of the memory region from where the allocation
1645 * @max_addr: the upper bound of the memory region from where the allocation
1647 * allocate only from memory limited by memblock.current_limit value
1651 * info), if enabled. This function zeroes the allocated memory.
1654 * Virtual address of allocated memory block on success, NULL on failure.
1675 * memblock_free_late - free pages directly to buddy allocator
1676 * @base: phys starting address of the boot memory block
1677 * @size: size of the boot memory block in bytes
1687 end = base + size - 1; in memblock_free_late()
1688 memblock_dbg("%s: [%pa-%pa] %pS\n", in memblock_free_late()
1706 return memblock.memory.total_size; in memblock_phys_mem_size()
1717 return memblock.memory.regions[0].base; in memblock_start_of_DRAM()
1722 int idx = memblock.memory.cnt - 1; in memblock_end_of_DRAM()
1724 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); in memblock_end_of_DRAM()
1733 * translate the memory @limit size into the max address within one of in __find_max_addr()
1734 * the memory memblock regions, if the @limit exceeds the total size in __find_max_addr()
1738 if (limit <= r->size) { in __find_max_addr()
1739 max_addr = r->base + limit; in __find_max_addr()
1742 limit -= r->size; in __find_max_addr()
1757 /* @limit exceeds the total size of the memory, do nothing */ in memblock_enforce_memory_limit()
1761 /* truncate both memory and reserved regions */ in memblock_enforce_memory_limit()
1762 memblock_remove_range(&memblock.memory, max_addr, in memblock_enforce_memory_limit()
1776 if (!memblock_memory->total_size) { in memblock_cap_memory_range()
1777 pr_warn("%s: No memory registered yet\n", __func__); in memblock_cap_memory_range()
1781 ret = memblock_isolate_range(&memblock.memory, base, size, in memblock_cap_memory_range()
1787 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) in memblock_cap_memory_range()
1788 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1789 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1791 for (i = start_rgn - 1; i >= 0; i--) in memblock_cap_memory_range()
1792 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1793 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1810 /* @limit exceeds the total size of the memory, do nothing */ in memblock_mem_limit_remove_map()
1819 unsigned int left = 0, right = type->cnt; in memblock_search()
1824 if (addr < type->regions[mid].base) in memblock_search()
1826 else if (addr >= (type->regions[mid].base + in memblock_search()
1827 type->regions[mid].size)) in memblock_search()
1832 return -1; in memblock_search()
1837 return memblock_search(&memblock.reserved, addr) != -1; in memblock_is_reserved()
1842 return memblock_search(&memblock.memory, addr) != -1; in memblock_is_memory()
1847 int i = memblock_search(&memblock.memory, addr); in memblock_is_map_memory()
1849 if (i == -1) in memblock_is_map_memory()
1851 return !memblock_is_nomap(&memblock.memory.regions[i]); in memblock_is_map_memory()
1857 struct memblock_type *type = &memblock.memory; in memblock_search_pfn_nid()
1860 if (mid == -1) in memblock_search_pfn_nid()
1861 return -1; in memblock_search_pfn_nid()
1863 *start_pfn = PFN_DOWN(type->regions[mid].base); in memblock_search_pfn_nid()
1864 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); in memblock_search_pfn_nid()
1866 return memblock_get_region_node(&type->regions[mid]); in memblock_search_pfn_nid()
1870 * memblock_is_region_memory - check if a region is a subset of memory
1871 * @base: base of region to check
1872 * @size: size of region to check
1874 * Check if the region [@base, @base + @size) is a subset of a memory block.
1877 * 0 if false, non-zero if true
1881 int idx = memblock_search(&memblock.memory, base); in memblock_is_region_memory()
1884 if (idx == -1) in memblock_is_region_memory()
1886 return (memblock.memory.regions[idx].base + in memblock_is_region_memory()
1887 memblock.memory.regions[idx].size) >= end; in memblock_is_region_memory()
1891 * memblock_is_region_reserved - check if a region intersects reserved memory
1892 * @base: base of region to check
1893 * @size: size of region to check
1895 * Check if the region [@base, @base + @size) intersects a reserved
1896 * memory block.
1912 orig_start = r->base; in memblock_trim_memory()
1913 orig_end = r->base + r->size; in memblock_trim_memory()
1921 r->base = start; in memblock_trim_memory()
1922 r->size = end - start; in memblock_trim_memory()
1924 memblock_remove_region(&memblock.memory, in memblock_trim_memory()
1925 r - memblock.memory.regions); in memblock_trim_memory()
1926 r--; in memblock_trim_memory()
1948 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); in memblock_dump()
1953 base = rgn->base; in memblock_dump()
1954 size = rgn->size; in memblock_dump()
1955 end = base + size - 1; in memblock_dump()
1956 flags = rgn->flags; in memblock_dump()
1962 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", in memblock_dump()
1963 type->name, idx, &base, &end, &size, nid_buf, flags); in memblock_dump()
1970 pr_info(" memory size = %pa reserved size = %pa\n", in __memblock_dump_all()
1971 &memblock.memory.total_size, in __memblock_dump_all()
1974 memblock_dump(&memblock.memory); in __memblock_dump_all()
2008 start_pg = pfn_to_page(start_pfn - 1) + 1; in free_memmap()
2009 end_pg = pfn_to_page(end_pfn - 1) + 1; in free_memmap()
2023 memblock_phys_free(pg, pgend - pg); in free_memmap()
2027 * The mem_map array can get very big. Free the unused area of the memory map.
2052 * presume that there are no holes in the memory map inside in free_unused_memmap()
2066 * presume that there are no holes in the memory map inside in free_unused_memmap()
2089 * MAX_ORDER-aligned, set order to MAX_ORDER for the case. in __free_pages_memory()
2097 order--; in __free_pages_memory()
2117 return end_pfn - start_pfn; in __free_memory_core()
2122 struct memblock_region *region; in memmap_init_reserved_pages() local
2130 for_each_mem_region(region) { in memmap_init_reserved_pages()
2131 nid = memblock_get_region_node(region); in memmap_init_reserved_pages()
2132 start = region->base; in memmap_init_reserved_pages()
2133 end = start + region->size; in memmap_init_reserved_pages()
2135 if (memblock_is_nomap(region)) in memmap_init_reserved_pages()
2142 for_each_reserved_mem_region(region) { in memmap_init_reserved_pages()
2143 nid = memblock_get_region_node(region); in memmap_init_reserved_pages()
2144 start = region->base; in memmap_init_reserved_pages()
2145 end = start + region->size; in memmap_init_reserved_pages()
2160 memblock_clear_hotplug(0, -1); in free_low_memory_core_early()
2165 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id in free_low_memory_core_early()
2182 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) in reset_node_managed_pages()
2183 atomic_long_set(&z->managed_pages, 0); in reset_node_managed_pages()
2200 * memblock_free_all - release free pages to the buddy allocator
2223 struct memblock_type *type = m->private; in memblock_debug_show()
2229 for (i = 0; i < type->cnt; i++) { in memblock_debug_show()
2230 reg = &type->regions[i]; in memblock_debug_show()
2231 end = reg->base + reg->size - 1; in memblock_debug_show()
2235 seq_printf(m, "%pa..%pa ", ®->base, &end); in memblock_debug_show()
2240 if (reg->flags) { in memblock_debug_show()
2242 if (reg->flags & (1U << j)) { in memblock_debug_show()
2261 debugfs_create_file("memory", 0444, root, in memblock_init_debugfs()
2262 &memblock.memory, &memblock_debug_fops); in memblock_init_debugfs()