# Encryption and Decryption by Segment with an AES Symmetric Key (GCM Mode) (C/C++) For details about the algorithm specifications, see [AES](crypto-sym-encrypt-decrypt-spec.md#aes). ## Adding the Dynamic Library in the CMake Script ```txt target_link_libraries(entry PUBLIC libohcrypto.so) ``` ## How to Develop **Creating an Object** Call [OH_CryptoSymKeyGenerator_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_create) and [OH_CryptoSymKeyGenerator_Generate](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_generate) to generate a 128-bit AES symmetric key (**OH_CryptoSymKey**). In addition to the example in this topic, [AES](crypto-sym-key-generation-conversion-spec.md#aes) and [Randomly Generating a Symmetric Key](crypto-generate-sym-key-randomly-ndk.md) may help you better understand how to generate an AES symmetric key. Note that the input parameters in the reference documents may be different from those in the example below. **Encrypting a Message** 1. Call [OH_CryptoSymCipher_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_create) with the string parameter **'AES128|GCM|PKCS7'** to create a **Cipher** instance for encryption. The key type is **AES128**, block cipher mode is **GCM**, and the padding mode is **PKCS7**. 2. Call [OH_CryptoSymCipherParams_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_create) to create a symmetric cipher parameter instance, and call [OH_CryptoSymCipherParams_SetParam](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_setparam) to set cipher parameters. 3. Call [OH_CryptoSymCipher_Init](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_init) to initialize the **Cipher** instance. Specifically, set **mode** to **CRYPTO_ENCRYPT_MODE**, and specify the key for encryption (**OH_CryptoSymKey**) and the encryption parameter instance (**OH_CryptoSymCipherParams**) corresponding to the GCM mode. 4. Set the size of the data to be passed in each time to 20 bytes, and call [OH_CryptoSymCipher_Update](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_update) multiple times to pass in the data (plaintext) to be encrypted. - Currently, the amount of data to be passed in by a single **OH_CryptoSymCipher_Update()** is not limited. You can determine how to pass in data based on the data volume. - You are advised to check the result of each **OH_CryptoSymCipher_Update()**. If the result is not **null**, obtain the data and combine the data segments into complete ciphertext. The **OH_CryptoSymCipher_Update()** result may vary with the key specifications. If a block cipher mode (ECB or CBC) is used, data is encrypted and output based on the block size. That is, if the data of an **OH_CryptoSymCipher_Update()** operation matches the block size, the ciphertext is output. Otherwise, **null** is output, and the plaintext will be combined with the input data of the next **OH_CryptoSymCipher_Update()** to form a block. When **OH_CryptoSymCipher_Final()** is called, the unencrypted data is padded to the block size based on the specified padding mode, and then encrypted. The **OH_CryptoSymCipher_Update()** API works in the same way in decryption. If a stream cipher mode (CTR or OFB) is used, the ciphertext length is usually the same as the plaintext length. 6. Call [OH_CryptoSymCipher_Final](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_final) to generate the ciphertext. - If data has been passed in by **OH_CryptoSymCipher_Update()**, pass in **null** in the **data** parameter of **OH_CryptoSymCipher_Final**. - The output of **OH_CryptoSymCipher_Final** may be **null**. To avoid exceptions, always check whether the result is **null** before accessing specific data. > **NOTE**
> If GCM mode is used, **authTag** returned by **OH_CryptoSymCipher_Final()** will be used to initialize the authentication information during decryption and needs to be saved. > In GCM mode, **authTag** must be of 16 bytes. It is used as the authentication information during decryption. In the example, **authTag** is of 16 bytes. **Decrypting a Message** 1. Call [OH_CryptoSymCipher_Create](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_create) with the string parameter **'AES128|GCM|PKCS7'** to create a **Cipher** instance for decryption. The key type is **AES128**, block cipher mode is **GCM**, and the padding mode is **PKCS7**. 2. Call [OH_CryptoSymCipherParams_SetParam](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_setparam) to set **authTag** as the authentication information for decryption. In GCM mode, extract the last 16 bytes from the encrypted data as the authentication information for initializing the **Cipher** instance in decryption. In the example, **authTag** is of 16 bytes. 3. Call [OH_CryptoSymCipher_Init](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_init) to initialize the **Cipher** instance. Specifically, set **mode** to **CRYPTO_DECRYPT_MODE**, and specify the key for decryption (**OH_CryptoSymKey**) and the decryption parameter instance (**OH_CryptoSymCipherParams**) corresponding to the GCM mode. 4. Set the size of the data to be passed in each time to 20 bytes, and call [OH_CryptoSymCipher_Update](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_update) multiple times to pass in the data (ciphertext) to be decrypted. 5. Call [OH_CryptoSymCipher_Final](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_final) to generate the plaintext. **Destroying Objects** Call [OH_CryptoSymKeyGenerator_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_key_api.md#oh_cryptosymkeygenerator_destroy), [OH_CryptoSymCipher_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipher_destroy), and [OH_CryptoSymCipherParams_Destroy](../../reference/apis-crypto-architecture-kit/_crypto_sym_cipher_api.md#oh_cryptosymcipherparams_destroy) to destroy the instances created. **Example** ```c++ #include #include "CryptoArchitectureKit/crypto_common.h" #include "CryptoArchitectureKit/crypto_sym_cipher.h" #define OH_CRYPTO_GCM_TAG_LEN 16 #define OH_CRYPTO_MAX_TEST_DATA_LEN 128 static OH_Crypto_ErrCode doTestAesGcmSeg() { OH_CryptoSymKeyGenerator *genCtx = nullptr; OH_CryptoSymCipher *encCtx = nullptr; OH_CryptoSymCipher *decCtx = nullptr; OH_CryptoSymKey *keyCtx = nullptr; OH_CryptoSymCipherParams *params = nullptr; char *plainText = const_cast("aaaaa.....bbbbb.....ccccc.....ddddd.....eee"); Crypto_DataBlob msgBlob = {.data = (uint8_t *)(plainText), .len = strlen(plainText)}; uint8_t aad[8] = {1, 2, 3, 4, 5, 6, 7, 8}; uint8_t tagArr[16] = {0}; uint8_t iv[12] = {1, 2, 4, 12, 3, 4, 2, 3, 3, 2, 0, 4}; // iv is generated from an array of secure random numbers. Crypto_DataBlob tag = {.data = nullptr, .len = 0}; Crypto_DataBlob ivBlob = {.data = iv, .len = sizeof(iv)}; Crypto_DataBlob aadBlob = {.data = aad, .len = sizeof(aad)}; Crypto_DataBlob encData = {.data = nullptr, .len = 0}; Crypto_DataBlob decData = {.data = nullptr, .len = 0}; Crypto_DataBlob tagInit = {.data = tagArr, .len = sizeof(tagArr)}; int32_t cipherLen = 0; int blockSize = 20; int32_t randomLen = strlen(plainText); Crypto_DataBlob cipherBlob; // Define the encryption variables. int cnt = randomLen / blockSize; int rem = randomLen % blockSize; uint8_t cipherText[OH_CRYPTO_MAX_TEST_DATA_LEN] = {0}; // Define the decryption variables. int decCnt = cipherLen / blockSize; int decRem = cipherLen % blockSize; int32_t plantLen = 0; uint8_t plantText[OH_CRYPTO_MAX_TEST_DATA_LEN] = {0}; // Generate a key. OH_Crypto_ErrCode ret; ret = OH_CryptoSymKeyGenerator_Create("AES128", &genCtx); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymKeyGenerator_Generate(genCtx, &keyCtx); if (ret != CRYPTO_SUCCESS) { goto end; } // Set parameters. ret = OH_CryptoSymCipherParams_Create(¶ms); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_IV_DATABLOB, &ivBlob); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_AAD_DATABLOB, &aadBlob); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_TAG_DATABLOB, &tagInit); if (ret != CRYPTO_SUCCESS) { goto end; } // Encrypt data. ret = OH_CryptoSymCipher_Create("AES128|GCM|PKCS7", &encCtx); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymCipher_Init(encCtx, CRYPTO_ENCRYPT_MODE, keyCtx, params); if (ret != CRYPTO_SUCCESS) { goto end; } for (int i = 0; i < cnt; i++) { msgBlob.len = blockSize; ret = OH_CryptoSymCipher_Update(encCtx, &msgBlob, &encData); if (ret != CRYPTO_SUCCESS) { goto end; } msgBlob.data += blockSize; memcpy(&cipherText[cipherLen], encData.data, encData.len); cipherLen += encData.len; } if (rem > 0) { msgBlob.len = rem; ret = OH_CryptoSymCipher_Update(encCtx, (Crypto_DataBlob *)&msgBlob, &encData); if (ret != CRYPTO_SUCCESS) { goto end; } memcpy(&cipherText[cipherLen], encData.data, encData.len); cipherLen += encData.len; } ret = OH_CryptoSymCipher_Final(encCtx, nullptr, &tag); if (ret != CRYPTO_SUCCESS) { goto end; } // Decrypt data. cipherBlob = {.data = reinterpret_cast(cipherText), .len = (size_t)cipherLen}; ret = OH_CryptoSymCipher_Create("AES128|GCM|PKCS7", &decCtx); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymCipherParams_SetParam(params, CRYPTO_TAG_DATABLOB, &tag); if (ret != CRYPTO_SUCCESS) { goto end; } ret = OH_CryptoSymCipher_Init(decCtx, CRYPTO_DECRYPT_MODE, keyCtx, params); if (ret != CRYPTO_SUCCESS) { goto end; } for (int i = 0; i < decCnt; i++) { cipherBlob.len = blockSize; ret = OH_CryptoSymCipher_Update(decCtx, &cipherBlob, &decData); if (ret != CRYPTO_SUCCESS) { goto end; } cipherBlob.data += blockSize; memcpy(&plantText[plantLen], decData.data, decData.len); plantLen += decData.len; } if (decRem > 0) { cipherBlob.len = decRem; ret = OH_CryptoSymCipher_Update(decCtx, &cipherBlob, &decData); if (ret != CRYPTO_SUCCESS) { goto end; } memcpy(&plantText[plantLen], decData.data, decData.len); plantLen += decData.len; } ret = OH_CryptoSymCipher_Final(decCtx, nullptr, &decData); if (ret != CRYPTO_SUCCESS) { goto end; } end: OH_CryptoSymCipherParams_Destroy(params); OH_CryptoSymCipher_Destroy(encCtx); OH_CryptoSymCipher_Destroy(decCtx); OH_CryptoSymKeyGenerator_Destroy(genCtx); OH_CryptoSymKey_Destroy(keyCtx); OH_Crypto_FreeDataBlob(&encData); OH_Crypto_FreeDataBlob(&tag); OH_Crypto_FreeDataBlob(&decData); return ret; } ```