# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """common utils for sparse tests""" import platform from mindspore import Tensor, CSRTensor, COOTensor, context, ops import mindspore.common.dtype as mstype def get_platform(): return platform.system().lower() def compare_res(tensor_tup, numpy_tup): assert len(tensor_tup) == len(numpy_tup) for item in zip(tensor_tup, numpy_tup): assert (item[0].asnumpy() == item[1]).all() def compare_csr(csr1, csr2): assert isinstance(csr1, CSRTensor) assert isinstance(csr2, CSRTensor) assert (csr1.indptr.asnumpy() == csr2.indptr.asnumpy()).all() assert (csr1.indices.asnumpy() == csr2.indices.asnumpy()).all() assert (csr1.values.asnumpy() == csr2.values.asnumpy()).all() assert csr1.shape == csr2.shape def compare_coo(coo1, coo2): assert isinstance(coo1, COOTensor) assert isinstance(coo2, COOTensor) assert (coo1.indices.asnumpy() == coo2.indices.asnumpy()).all() assert (coo1.values.asnumpy() == coo2.values.asnumpy()).all() assert coo1.shape == coo2.shape def get_csr_tensor(): indptr = Tensor([0, 1, 2], dtype=mstype.int32) indices = Tensor([0, 1], dtype=mstype.int32) values = Tensor([1, 2], dtype=mstype.float32) shape = (2, 4) return CSRTensor(indptr, indices, values, shape) def get_csr_components(): csr = get_csr_tensor() res = (csr.indptr, csr.indices, csr.values, csr.shape) return res def get_csr_from_scalar(x): indptr = Tensor([0, 1, 1], dtype=mstype.int32) indices = Tensor([2], dtype=mstype.int32) shape = (2, 3) return CSRTensor(indptr, indices, x.reshape(1), shape) def csr_add(csr_tensor, x): return CSRTensor(csr_tensor.indptr, csr_tensor.indices, csr_tensor.values + x, csr_tensor.shape) def forward_grad_net(net, *inputs, mode=context.GRAPH_MODE): context.set_context(mode=mode) forward = net(*inputs) grad = ops.GradOperation(get_all=True)(net)(*inputs) return forward, grad