# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """smoke tests for RowTensor operations""" import pytest import numpy as np from mindspore import Tensor, nn, context from mindspore.common.sparse_tensor import RowTensorInner from mindspore.common import dtype as mstype def compare_row(row1, row2): assert isinstance(row1, RowTensorInner) assert isinstance(row2, RowTensorInner) assert (row1.indices.asnumpy() == row1.indices.asnumpy()).all() assert (row2.values.asnumpy() == row2.values.asnumpy()).all() assert row1.dense_shape == row2.dense_shape @pytest.mark.level2 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_make_row(): """ Feature: Test RowTensor Constructor in Graph and PyNative. Description: Test RowTensorInner(indices, values, shape) and RowTensorInner(RowTensor) Expectation: Success. """ indices = Tensor([0, 1], dtype=mstype.int32) values = Tensor([[1, 2], [3, 4]], dtype=mstype.float32) dense_shape = (3, 2) def test_pynative(): return RowTensorInner(indices, values, dense_shape) row1 = test_pynative() compare_row(row1, row1) row2 = RowTensorInner(row_tensor=row1) compare_row(row1, row2) @pytest.mark.level2 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_row_tensor_with_control_if(): """ Feature: Test RowTensor in if. Description: Test RowTensor computation in while loop. Expectation: Success. """ class RowTensorValuesDouble(nn.Cell): def construct(self, x): indices = x.indices values = x.values * 2 shape = x.dense_shape return RowTensorInner(indices, values, shape) class RowTensorValuesAdd2(nn.Cell): def construct(self, x): indices = x.indices values = x.values + 2 shape = x.dense_shape return RowTensorInner(indices, values, shape) class RowTensorWithControlIf(nn.Cell): def __init__(self, shape): super(RowTensorWithControlIf, self).__init__() self.op1 = RowTensorValuesDouble() self.op2 = RowTensorValuesAdd2() self.shape = shape def construct(self, a, b, indices, values): x = RowTensorInner(indices, values, self.shape) if a > b: x = self.op1(x) else: x = self.op2(x) return x.indices, x.values, x.dense_shape context.set_context(mode=context.PYNATIVE_MODE) a = Tensor(0, mstype.int32) b = Tensor(2, mstype.int32) indices = Tensor([0, 1], dtype=mstype.int32) values = Tensor([[1, 2], [3, 4]], dtype=mstype.float32) shape = (3, 2) net = RowTensorWithControlIf(shape) out = net(a, b, indices, values) assert np.allclose(out[0].asnumpy(), indices.asnumpy(), .0, .0) assert np.allclose(out[1].asnumpy(), values.asnumpy() + 2, .0, .0) assert out[2] == shape