# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.parameter import Parameter from tests.mindspore_test_framework.utils.check_gradient import ( check_jacobian, Tensor, OperationGradChecker, check_gradient, NNGradChecker) @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_operation_grad_checker(): """ Feature: Auto diff. Description: Check the result for GradOperation. Expectation: The result is expected. """ class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.matmul = P.MatMul() self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return out check_gradient(Net(), Tensor(np.array([[0.65, 0.8, 0.8]], np.float32)), Tensor(np.array([[0.1], [0.2], [-.1]], np.float32)), grad_checker_class=OperationGradChecker, input_selector=[1], sampling_times=2) @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_grad_checker_primitive(): """ Feature: Auto diff. Description: Check the result for GradOperation. Expectation: The result is expected. """ matmul = P.MatMul() def prim_f(x, y): return matmul(x, y) check_gradient(prim_f, Tensor(np.array([[0.65, 0.8, 0.8]], np.float32)), Tensor(np.array([[0.1], [0.2], [-.1]], np.float32)), grad_checker_class=OperationGradChecker, sampling_times=2) @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_nn_jacobian_checker(): """ Feature: Auto diff. Description: Check the result for GradOperation. Expectation: The result is expected. """ class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.dense = nn.Dense(10, 10) def construct(self, x): out = self.dense(x) return out, x check_jacobian(Net(), Tensor(np.random.rand(1, 10).astype(np.float32)), delta=1e-3, max_error=1e-7, grad_checker_class=NNGradChecker, input_selector=[1], output_selector=[0]) @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_nn_grad_checker(): """ Feature: Auto diff. Description: Check the result for GradOperation. Expectation: The result is expected. """ class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.dense = nn.Dense(10, 10) def construct(self, x): out = self.dense(x) return out check_gradient(Net(), Tensor(np.random.rand(1, 10).astype(np.float32)), delta=1e-3, max_error=1e-3, grad_checker_class=NNGradChecker, sampling_times=3) @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_operation_jacobian_checker(): """ Feature: Auto diff. Description: Check the result for GradOperation. Expectation: The result is expected. """ class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.matmul = P.MatMul() self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') def construct(self, x, y): x = x * self.z out = self.matmul(x, y) return x, out check_jacobian(Net(), Tensor(np.array([[0.65, 0.8, 0.8], [0.1, 0.2, 0.3]], np.float32)), Tensor(np.array([[0.1, 0.3], [0.2, 0.2], [-.1, 0.4]], np.float32)), grad_checker_class=OperationGradChecker, input_selector=[0], output_selector=[0])