1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "color_picker.h"
17 #include "hilog/log.h"
18 #include "effect_errors.h"
19 #include "effect_utils.h"
20 #include "color.h"
21 #include "pixel_map.h"
22 #include "include/core/SkBitmap.h"
23 #include "include/core/SkRect.h"
24 #include "include/core/SkImageFilter.h"
25 #include "include/effects/SkImageFilters.h"
26 #include "include/core/SkCanvas.h"
27 #include "include/core/SkColor.h"
28 #include "include/core/SkColorFilter.h"
29 #include "include/core/SkColorSpace.h"
30 #include "include/core/SkImageInfo.h"
31 #include "include/core/SkPaint.h"
32 #include "include/core/SkPixmap.h"
33 #include "include/core/SkFont.h"
34 #include "include/core/SkTypeface.h"
35 #include <algorithm>
36 #include <cmath>
37 #include <utility>
38
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42
43 namespace OHOS {
44 namespace Rosen {
45 using OHOS::HiviewDFX::HiLog;
46
CreateScaledPixelMap(const std::shared_ptr<Media::PixelMap> & pixmap)47 std::shared_ptr<Media::PixelMap> ColorPicker::CreateScaledPixelMap(const std::shared_ptr<Media::PixelMap>& pixmap)
48 {
49 // Create scaled pixelmap
50 if (pixmap == nullptr) {
51 EFFECT_LOG_E("[ColorPicker]failed to create ScaledPixelMap with null pixmap.");
52 return nullptr;
53 }
54 OHOS::Media::InitializationOptions options;
55 options.alphaType = pixmap->GetAlphaType();
56 options.pixelFormat = pixmap->GetPixelFormat();
57 options.scaleMode = OHOS::Media::ScaleMode::FIT_TARGET_SIZE;
58 options.size.width = 100; // 100 represents scaled pixelMap's width
59 options.size.height = 100; // 100 represents scaled pixelMap's height
60 options.editable = true;
61 std::unique_ptr<Media::PixelMap> newPixelMap = Media::PixelMap::Create(*pixmap.get(), options);
62 return std::move(newPixelMap);
63 }
64
CreateColorPicker(const std::shared_ptr<Media::PixelMap> & pixmap,uint32_t & errorCode)65 std::shared_ptr<ColorPicker> ColorPicker::CreateColorPicker(const std::shared_ptr<Media::PixelMap>& pixmap,
66 uint32_t &errorCode)
67 {
68 if (pixmap == nullptr) {
69 EFFECT_LOG_E("[ColorPicker]failed to create ColorPicker with null pixmap.");
70 errorCode = ERR_EFFECT_INVALID_VALUE;
71 return nullptr;
72 }
73
74 std::shared_ptr<Media::PixelMap> scaledPixelMap = CreateScaledPixelMap(pixmap);
75 if (scaledPixelMap == nullptr) {
76 EFFECT_LOG_E("[ColorPicker]failed to scale pixelmap, scaledPixelMap is nullptr.");
77 errorCode = ERR_EFFECT_INVALID_VALUE;
78 return nullptr;
79 }
80 std::shared_ptr<ColorPicker> colorPicker = std::make_shared<ColorPicker>(scaledPixelMap);
81 errorCode = SUCCESS;
82 return colorPicker;
83 }
84
CreateColorPicker(const std::shared_ptr<Media::PixelMap> & pixmap,double * coordinates,uint32_t & errorCode)85 std::shared_ptr<ColorPicker> ColorPicker::CreateColorPicker(const std::shared_ptr<Media::PixelMap>& pixmap,
86 double* coordinates, uint32_t &errorCode)
87 {
88 if (pixmap == nullptr) {
89 EFFECT_LOG_E("[ColorPicker]failed to create ColorPicker with null pixmap.");
90 errorCode = ERR_EFFECT_INVALID_VALUE;
91 return nullptr;
92 }
93
94 std::shared_ptr<Media::PixelMap> scaledPixelMap = CreateScaledPixelMap(pixmap);
95 std::shared_ptr<ColorPicker> colorPicker = std::make_shared<ColorPicker>(scaledPixelMap, coordinates);
96 errorCode = SUCCESS;
97 return colorPicker;
98 }
99
GetScaledPixelMap()100 std::shared_ptr<Media::PixelMap> ColorPicker::GetScaledPixelMap()
101 {
102 // Create scaled pixelmap
103 OHOS::Media::InitializationOptions options;
104 options.alphaType = pixelmap_->GetAlphaType();
105 options.pixelFormat = pixelmap_->GetPixelFormat();
106 options.scaleMode = OHOS::Media::ScaleMode::FIT_TARGET_SIZE;
107 options.size.width = 1;
108 options.size.height = 1;
109 options.editable = true;
110 std::unique_ptr<Media::PixelMap> newPixelMap = Media::PixelMap::Create(*pixelmap_.get(), options);
111 return std::move(newPixelMap);
112 }
113
GetMainColor(ColorManager::Color & color)114 uint32_t ColorPicker::GetMainColor(ColorManager::Color &color)
115 {
116 if (pixelmap_ == nullptr) {
117 return ERR_EFFECT_INVALID_VALUE;
118 }
119
120 // get color
121 uint32_t colorVal = 0;
122 int x = 0;
123 int y = 0;
124 std::shared_ptr<Media::PixelMap> pixelMap = GetScaledPixelMap();
125 if (pixelMap == nullptr) {
126 EFFECT_LOG_E("ColorPicker::GetMainColor pixelMap is nullptr");
127 return ERR_EFFECT_INVALID_VALUE;
128 }
129
130 bool bSucc = pixelMap->GetARGB32Color(x, y, colorVal);
131 EFFECT_LOG_I("[newpix].argb.ret=%{public}d, %{public}x", bSucc, colorVal);
132 color = ColorManager::Color(colorVal);
133 return SUCCESS;
134 }
135
ColorPicker(std::shared_ptr<Media::PixelMap> pixmap)136 ColorPicker::ColorPicker(std::shared_ptr<Media::PixelMap> pixmap):ColorExtract(pixmap) {}
ColorPicker(std::shared_ptr<Media::PixelMap> pixmap,double * coordinates)137 ColorPicker::ColorPicker(
138 std::shared_ptr<Media::PixelMap> pixmap, double* coordinates):ColorExtract(pixmap, coordinates) {}
139
GetLargestProportionColor(ColorManager::Color & color) const140 uint32_t ColorPicker::GetLargestProportionColor(ColorManager::Color &color) const
141 {
142 if (featureColors_.empty()) {
143 return ERR_EFFECT_INVALID_VALUE;
144 }
145 color = ColorManager::Color(featureColors_[0].first | 0xFF000000); // alpha = oxFF
146 return SUCCESS;
147 }
148
GetHighestSaturationColor(ColorManager::Color & color) const149 uint32_t ColorPicker::GetHighestSaturationColor(ColorManager::Color &color) const
150 {
151 if (featureColors_.empty()) {
152 return ERR_EFFECT_INVALID_VALUE;
153 }
154 uint32_t colorPicked = 0;
155 HSV hsv = {0};
156 double maxSaturation = 0.0;
157 for (size_t i = 0; i < featureColors_.size(); i++) {
158 hsv = RGB2HSV(featureColors_[i].first);
159 if (hsv.s >= maxSaturation) {
160 maxSaturation = hsv.s;
161 colorPicked = featureColors_[i].first;
162 }
163 }
164 color = ColorManager::Color(colorPicked | 0xFF000000);
165 return SUCCESS;
166 }
167
GetAverageColor(ColorManager::Color & color) const168 uint32_t ColorPicker::GetAverageColor(ColorManager::Color &color) const
169 {
170 uint32_t colorPicked = 0;
171 uint32_t redSum = 0;
172 uint32_t greenSum = 0;
173 uint32_t blueSum = 0;
174 int totalPixelNum = 0;
175 if (featureColors_.empty()) {
176 return ERR_EFFECT_INVALID_VALUE;
177 }
178 for (size_t i = 0; i < featureColors_.size(); i++) {
179 totalPixelNum += featureColors_[i].second;
180 redSum += featureColors_[i].second * ((featureColors_[i].first >> ARGB_R_SHIFT) & ARGB_MASK);
181 greenSum += featureColors_[i].second * ((featureColors_[i].first >> ARGB_G_SHIFT) & ARGB_MASK);
182 blueSum += featureColors_[i].second * ((featureColors_[i].first >> ARGB_B_SHIFT) & ARGB_MASK);
183 }
184 if (totalPixelNum == 0) {
185 return ERR_EFFECT_INVALID_VALUE;
186 }
187 uint32_t redMean = round(redSum / (float)totalPixelNum);
188 uint32_t greenMean = round(greenSum / (float)totalPixelNum);
189 uint32_t blueMean = round(blueSum / (float)totalPixelNum);
190 colorPicked = redMean << ARGB_R_SHIFT | greenMean << ARGB_G_SHIFT | blueMean << ARGB_B_SHIFT;
191 color = ColorManager::Color(colorPicked | 0xFF000000);
192 return SUCCESS;
193 }
194
IsBlackOrWhiteOrGrayColor(uint32_t color) const195 bool ColorPicker::IsBlackOrWhiteOrGrayColor(uint32_t color) const
196 {
197 HSV hsv = RGB2HSV(color);
198 // A color is black, white or gray colr when its hsv satisfy (v>30, s<=5) or (15<v<=30, s<=15) or (v<=15).
199 if ((hsv.v > 30 && hsv.s <= 5) || (hsv.v > 15 && hsv.v <= 30 && hsv.s <= 15) || (hsv.v <= 15)) {
200 return true;
201 }
202 return false;
203 }
204
205 // Transfrom rgb to ligthtness
RGB2GRAY(uint32_t color) const206 uint32_t ColorPicker::RGB2GRAY(uint32_t color) const
207 {
208 uint32_t r = GetARGB32ColorR(color);
209 uint32_t g = GetARGB32ColorG(color);
210 uint32_t b = GetARGB32ColorB(color);
211 return static_cast<uint32_t>(r * GRAY_RATIO_RED + g * GRAY_RATIO_GREEN + b * GRAY_RATIO_BLUE);
212 }
213
214 // Calculate Lightness Variance
CalcGrayVariance() const215 uint32_t ColorPicker::CalcGrayVariance() const
216 {
217 long long int grayVariance = 0;
218
219 ColorManager::Color color;
220 bool rst = GetAverageColor(color);
221 if (rst != SUCCESS) {
222 return ERR_EFFECT_INVALID_VALUE;
223 }
224 uint32_t averageColor = ((color.PackValue() >> 32) & 0xFFFFFFFF);
225 uint32_t averageGray = RGB2GRAY(averageColor);
226 for (size_t i = 0; i < featureColors_.size(); i++) {
227 // 2 is square
228 grayVariance += pow(static_cast<long long int>(RGB2GRAY(featureColors_[i].first)) - averageGray, 2) *
229 featureColors_[i].second;
230 }
231 grayVariance /= colorValLen_;
232 return static_cast<uint32_t>(grayVariance);
233 }
234
235 // Relative luminance calculation, normalized to 0 - 1
CalcRelaticeLuminance(uint32_t color) const236 double ColorPicker::CalcRelaticeLuminance(uint32_t color) const
237 {
238 uint32_t r = GetARGB32ColorR(color);
239 uint32_t g = GetARGB32ColorG(color);
240 uint32_t b = GetARGB32ColorB(color);
241 return (r * LUMINANCE_RATIO_RED + g * LUMINANCE_RATIO_GREEN + b * LUMINANCE_RATIO_BLUE) / 255; // 255 is max value.
242 }
243
CalcContrastRatioWithWhite() const244 double ColorPicker::CalcContrastRatioWithWhite() const
245 {
246 double lightColorDegree = 0;
247 for (size_t i = 0; i < featureColors_.size(); i++) {
248 // 0.05 is used to calculate contrast ratio.
249 lightColorDegree += (((1 + 0.05) / (CalcRelaticeLuminance(featureColors_[i].first) + 0.05))
250 * featureColors_[i].second);
251 }
252 lightColorDegree /= colorValLen_;
253 return lightColorDegree;
254 }
255
256 // Discriminate wallpaper color shade mode
DiscriminatePitureLightDegree(PictureLightColorDegree & degree) const257 uint32_t ColorPicker::DiscriminatePitureLightDegree(PictureLightColorDegree °ree) const
258 {
259 if (featureColors_.empty()) {
260 return ERR_EFFECT_INVALID_VALUE;
261 }
262 uint32_t grayVariance = grayMsd_;
263 // Gray variance less than 6000 means not extremely flowery picture.
264 if (grayVariance < 6000) {
265 double lightColorDegree = contrastToWhite_;
266 // LightColorDegree less than 1.5 means extremely light color picture.
267 if (lightColorDegree < 1.5) {
268 degree = EXTREMELY_LIGHT_COLOR_PICTURE;
269 // LightColorDegree between 1.5 and 1.9 means light color picture.
270 } else if (lightColorDegree >= 1.5 && lightColorDegree < 1.9) {
271 degree = LIGHT_COLOR_PICTURE;
272 // LightColorDegree between 1.9 and 7 means flowery picture.
273 } else if (lightColorDegree >= 1.9 && lightColorDegree <= 7) {
274 degree = FLOWERY_PICTURE;
275 } else {
276 // GrayVariance more than 3000 means dark color picture.
277 if (grayVariance >= 3000) {
278 degree = DARK_COLOR_PICTURE;
279 } else {
280 degree = EXTREMELY_DARK_COLOR_PICTURE;
281 }
282 }
283 } else {
284 degree = EXTREMELY_FLOWERY_PICTURE;
285 }
286 return SUCCESS;
287 }
288
289 // Reverse picture color
GetReverseColor(ColorManager::Color & color) const290 uint32_t ColorPicker::GetReverseColor(ColorManager::Color &color) const
291 {
292 PictureLightColorDegree lightColorDegree;
293 bool rst = DiscriminatePitureLightDegree(lightColorDegree);
294 if (rst != SUCCESS) {
295 return ERR_EFFECT_INVALID_VALUE;
296 }
297 if (lightColorDegree == EXTREMELY_LIGHT_COLOR_PICTURE) {
298 uint32_t black = 0xFF000000;
299 color = ColorManager::Color(black);
300 return SUCCESS;
301 } else {
302 uint32_t white = 0xFFFFFFFF;
303 color = ColorManager::Color(white);
304 return SUCCESS;
305 }
306 };
307
GenerateMorandiBackgroundColor(HSV & hsv) const308 void ColorPicker::GenerateMorandiBackgroundColor(HSV& hsv) const
309 {
310 hsv.s = 9; // 9 is morandi background color's saturation.
311 hsv.v = 84; // 84 is morandi background color's value.
312 return;
313 }
314
315 // Get morandi background color
GetMorandiBackgroundColor(ColorManager::Color & color) const316 uint32_t ColorPicker::GetMorandiBackgroundColor(ColorManager::Color &color) const
317 {
318 bool rst = GetLargestProportionColor(color);
319 if (rst != SUCCESS) {
320 return ERR_EFFECT_INVALID_VALUE;
321 }
322 uint32_t dominantColor = ((color.PackValue() >> 32) & 0xFFFFFFFF);
323 HSV hsv = RGB2HSV(dominantColor);
324 bool isBWGColor = IsBlackOrWhiteOrGrayColor(dominantColor);
325 if (isBWGColor) {
326 uint32_t nextDominantColor = 0;
327 uint32_t nextDominantColorCnt = 0;
328 bool existColor = false;
329 for (size_t i = 0; i < featureColors_.size(); i++) {
330 if (!IsBlackOrWhiteOrGrayColor(featureColors_[i].first) &&
331 featureColors_[i].second > nextDominantColorCnt) {
332 nextDominantColor = featureColors_[i].first;
333 nextDominantColorCnt = featureColors_[i].second;
334 existColor = true;
335 }
336 }
337 if (existColor) {
338 HSV nextColorHsv = RGB2HSV(nextDominantColor);
339 GenerateMorandiBackgroundColor(nextColorHsv);
340 nextDominantColor = HSVtoRGB(nextColorHsv);
341 color = ColorManager::Color(nextDominantColor | 0xFF000000);
342 return SUCCESS;
343 } else {
344 hsv.s = 0;
345 hsv.v = 77; // Adjust value to 77.
346 dominantColor = HSVtoRGB(hsv);
347 color = ColorManager::Color(dominantColor | 0xFF000000);
348 return SUCCESS;
349 }
350 } else {
351 GenerateMorandiBackgroundColor(hsv);
352 dominantColor = HSVtoRGB(hsv);
353 color = ColorManager::Color(dominantColor | 0xFF000000);
354 return SUCCESS;
355 }
356 }
357
GenerateMorandiShadowColor(HSV & hsv) const358 void ColorPicker::GenerateMorandiShadowColor(HSV& hsv) const
359 {
360 // When hue between 20 and 60, adjust s and v.
361 if (hsv.h > 20 && hsv.h <= 60) {
362 hsv.s = 53; // Adjust saturation to 53.
363 hsv.v = 46; // Adjust value to 46.
364 // When hue between 60 and 190, adjust s and v.
365 } else if (hsv.h > 60 && hsv.h <= 190) {
366 hsv.s = 23; // Adjust saturation to 23.
367 hsv.v = 36; // Adjust value to 36.
368 // When hue between 190 and 270, adjust s and v.
369 } else if (hsv.h > 190 && hsv.h <= 270) {
370 hsv.s = 34; // Adjust saturation to 34.
371 hsv.v = 35; // Adjust value to 35.
372 } else {
373 hsv.s = 48; // Adjust saturation to 48.
374 hsv.v = 40; // Adjust value to 40.
375 }
376 }
377
378 // Get morandi shadow color
GetMorandiShadowColor(ColorManager::Color & color) const379 uint32_t ColorPicker::GetMorandiShadowColor(ColorManager::Color &color) const
380 {
381 bool rst = GetLargestProportionColor(color);
382 if (rst != SUCCESS) {
383 return ERR_EFFECT_INVALID_VALUE;
384 }
385 uint32_t dominantColor = ((color.PackValue() >> 32) & 0xFFFFFFFF);
386
387 HSV hsv = RGB2HSV(dominantColor);
388 bool isBWGColor = IsBlackOrWhiteOrGrayColor(dominantColor);
389 if (isBWGColor) {
390 uint32_t nextDominantColor = 0;
391 uint32_t nextDominantColorCnt = 0;
392 bool existColor = false;
393 for (size_t i = 0; i < featureColors_.size(); i++) {
394 if (!IsBlackOrWhiteOrGrayColor(featureColors_[i].first) &&
395 featureColors_[i].second > nextDominantColorCnt) {
396 nextDominantColor = featureColors_[i].first;
397 nextDominantColorCnt = featureColors_[i].second;
398 existColor = true;
399 }
400 }
401 if (existColor) {
402 HSV nextColorHsv = RGB2HSV(nextDominantColor);
403 GenerateMorandiShadowColor(nextColorHsv);
404 nextDominantColor = HSVtoRGB(nextColorHsv);
405 color = ColorManager::Color(nextDominantColor | 0xFF000000);
406 return SUCCESS;
407 } else {
408 hsv.s = 0;
409 hsv.v = 26; // Adjust value to 26.
410 dominantColor = HSVtoRGB(hsv);
411 color = ColorManager::Color(dominantColor | 0xFF000000);
412 return SUCCESS;
413 }
414 } else {
415 GenerateMorandiShadowColor(hsv);
416 dominantColor = HSVtoRGB(hsv);
417 color = ColorManager::Color(dominantColor | 0xFF000000);
418 return SUCCESS;
419 }
420 }
421
DiscriminateDarkOrBrightColor(const HSV & hsv) const422 ColorBrightnessMode ColorPicker::DiscriminateDarkOrBrightColor(const HSV& hsv) const
423 {
424 // 80 is dark color judgement condition.
425 if (hsv.v <= 80) {
426 return ColorBrightnessMode::DARK_COLOR;
427 } else {
428 // 20 and 50 is color judgement condition.
429 if (hsv.h > 20 && hsv.h <= 50) {
430 // 60 is color judgement condition.
431 if (hsv.s > 60) {
432 return ColorBrightnessMode::HIGH_SATURATION_BRIGHT_COLOR;
433 } else {
434 return ColorBrightnessMode::LOW_SATURATION_BRIGHT_COLOR;
435 }
436 // 50 and 269 is color judgement condition.
437 } else if (hsv.h > 50 && hsv.h <= 269) {
438 // 40 is color judgement condition.
439 if (hsv.s > 40) {
440 return ColorBrightnessMode::DARK_COLOR;
441 } else {
442 return ColorBrightnessMode::LOW_SATURATION_BRIGHT_COLOR;
443 }
444 } else {
445 // // 50 is color judgement condition.
446 if (hsv.s > 50) {
447 return ColorBrightnessMode::HIGH_SATURATION_BRIGHT_COLOR;
448 } else {
449 return ColorBrightnessMode::LOW_SATURATION_BRIGHT_COLOR;
450 }
451 }
452 }
453 }
454
ProcessToBrightColor(HSV & hsv) const455 void ColorPicker::ProcessToBrightColor(HSV& hsv) const
456 {
457 static const double valueUpperLimit = 95.0;
458 // Value more than 95, adjust to 95.
459 hsv.v = std::min(hsv.v, valueUpperLimit);
460 }
461
AdjustToBasicColor(HSV & hsv,double basicS,double basicV) const462 void ColorPicker::AdjustToBasicColor(HSV& hsv, double basicS, double basicV) const
463 {
464 double x = hsv.s + hsv.v;
465 double y = basicS + basicV;
466 if (x <= y) {
467 return;
468 } else {
469 double z = x - y;
470 hsv.s = hsv.s - hsv.s / x * z;
471 hsv.v = hsv.v - hsv.v / x * z;
472 return;
473 }
474 }
475
ProcessToDarkColor(HSV & hsv) const476 void ColorPicker::ProcessToDarkColor(HSV& hsv) const
477 {
478 // 18 and 69 is basic color threshold.
479 if (hsv.h >= 18 && hsv.h <= 69) {
480 AdjustToBasicColor(hsv, 70, 60); // 70 and 60 is basic color's s and v
481 // 69 and 189 is basic color threshold.
482 } else if (hsv.h > 69 && hsv.h <= 189) {
483 AdjustToBasicColor(hsv, 50, 50); // 50 is basic color's s and v
484 // 189 and 269 is basic color threshold.
485 } else if (hsv.h > 189 && hsv.h <= 269) {
486 AdjustToBasicColor(hsv, 70, 70); // 70 is basic color's s and v
487 } else {
488 AdjustToBasicColor(hsv, 60, 60); // 60 is basic color's s and v
489 }
490 }
491
AdjustLowSaturationBrightColor(HSV & colorHsv,HSV & mainHsv,HSV & secondaryHsv,const std::pair<uint32_t,uint32_t> & primaryColor,const std::pair<uint32_t,uint32_t> & secondaryColor) const492 void ColorPicker::AdjustLowSaturationBrightColor(HSV &colorHsv, HSV &mainHsv, HSV &secondaryHsv,
493 const std::pair<uint32_t, uint32_t> &primaryColor,
494 const std::pair<uint32_t, uint32_t> &secondaryColor) const
495 {
496 if (colorHsv.s >= 10) { // 10 is the saturate's threshold
497 ProcessToBrightColor(mainHsv);
498 colorHsv = mainHsv;
499 return;
500 }
501 ColorBrightnessMode secondaryColorBrightMode = DiscriminateDarkOrBrightColor(secondaryHsv);
502 if (secondaryColorBrightMode == ColorBrightnessMode::LOW_SATURATION_BRIGHT_COLOR) {
503 ProcessToBrightColor(mainHsv);
504 colorHsv = mainHsv;
505 } else {
506 // 10 used to calculate threshold.
507 if (primaryColor.second - secondaryColor.second > colorValLen_ / 10) {
508 ProcessToBrightColor(mainHsv);
509 colorHsv = mainHsv;
510 } else {
511 secondaryHsv.s = 10; // Adjust secondary color's s to 10
512 secondaryHsv.v = 95; // Adjust secondary color's v to 95
513 colorHsv = secondaryHsv;
514 }
515 }
516 }
517
518 // Get immersive background color
GetImmersiveBackgroundColor(ColorManager::Color & color) const519 uint32_t ColorPicker::GetImmersiveBackgroundColor(ColorManager::Color &color) const
520 {
521 uint32_t colorPicked = 0;
522 HSV colorHsv;
523 std::pair<uint32_t, uint32_t> primaryColor;
524 std::pair<uint32_t, uint32_t> secondaryColor;
525 if (featureColors_.empty()) {
526 return ERR_EFFECT_INVALID_VALUE;
527 }
528 bool hasPrimaryColor = GetDominantColor(primaryColor, secondaryColor);
529 HSV mainHsv = RGB2HSV(primaryColor.first);
530 HSV secondaryHsv = RGB2HSV(secondaryColor.first);
531 if (hasPrimaryColor || (mainHsv.s >= secondaryHsv.s)) {
532 colorHsv = mainHsv;
533 } else {
534 colorHsv = secondaryHsv;
535 }
536 ColorBrightnessMode colorBrightMode = DiscriminateDarkOrBrightColor(colorHsv);
537 switch (colorBrightMode) {
538 case ColorBrightnessMode::HIGH_SATURATION_BRIGHT_COLOR:
539 ProcessToDarkColor(colorHsv);
540 break;
541 case ColorBrightnessMode::LOW_SATURATION_BRIGHT_COLOR:
542 AdjustLowSaturationBrightColor(colorHsv, mainHsv, secondaryHsv, primaryColor, secondaryColor);
543 break;
544 case ColorBrightnessMode::DARK_COLOR:
545 ProcessToDarkColor(colorHsv);
546 break;
547 default:
548 break;
549 }
550 colorPicked = HSVtoRGB(colorHsv);
551 color = ColorManager::Color(colorPicked | 0xFF000000);
552 return SUCCESS;
553 }
554
555 // Get immersive foreground color
GetImmersiveForegroundColor(ColorManager::Color & color) const556 uint32_t ColorPicker::GetImmersiveForegroundColor(ColorManager::Color &color) const
557 {
558 // Get mask color
559 bool rst = GetImmersiveBackgroundColor(color);
560 if (rst != SUCCESS) {
561 return ERR_EFFECT_INVALID_VALUE;
562 }
563 uint32_t colorPicked = ((color.PackValue() >> 32) & 0xFFFFFFFF);
564
565 HSV colorHsv = RGB2HSV(colorPicked);
566 ColorBrightnessMode colorBrightMode = DiscriminateDarkOrBrightColor(colorHsv);
567 if ((colorBrightMode == ColorBrightnessMode::HIGH_SATURATION_BRIGHT_COLOR) ||
568 (colorBrightMode == ColorBrightnessMode::DARK_COLOR)) {
569 ProcessToDarkColor(colorHsv);
570 if (colorHsv.s >= 20) { // 20 is saturation threshold.
571 colorHsv.s = 20; // Adjust saturation to 20
572 colorHsv.v = 100; // Adjust value to 100.
573 } else {
574 colorHsv.v = 100; // Adjust value to 100.
575 }
576 } else {
577 ProcessToBrightColor(colorHsv);
578 colorHsv.s = 30; // Adjust saturation to 30.
579 colorHsv.v = 40; // Adjust value to 40.
580 }
581 colorPicked = HSVtoRGB(colorHsv);
582 color = ColorManager::Color(colorPicked | 0xFF000000);
583 return SUCCESS;
584 }
585
GetDominantColor(std::pair<uint32_t,uint32_t> & primaryColor,std::pair<uint32_t,uint32_t> & secondaryColor) const586 bool ColorPicker::GetDominantColor(
587 std::pair<uint32_t, uint32_t>& primaryColor, std::pair<uint32_t, uint32_t>& secondaryColor) const
588 {
589 if (featureColors_.empty()) {
590 primaryColor.first = 0;
591 primaryColor.second = 0;
592 secondaryColor.first = 0;
593 secondaryColor.second = 0;
594 return false;
595 }
596 if (featureColors_.size() == 1) {
597 primaryColor.first = featureColors_[0].first;
598 primaryColor.second = featureColors_[0].second;
599 secondaryColor.first = 0;
600 secondaryColor.second = 0;
601 return true;
602 } else {
603 primaryColor.first = featureColors_[0].first;
604 primaryColor.second = featureColors_[0].second;
605 secondaryColor.first = featureColors_[1].first;
606 secondaryColor.second = featureColors_[1].second;
607 // 20 used to calculate threshold.
608 if (primaryColor.second - secondaryColor.second > colorValLen_ / 20) {
609 return true;
610 }
611 return false;
612 }
613 }
614
615 // Gradient Mask Coloring - Deepening the Immersion Color (Fusing with the Background but Deeper than the Background)
GetDeepenImmersionColor(ColorManager::Color & color) const616 uint32_t ColorPicker::GetDeepenImmersionColor(ColorManager::Color &color) const
617 {
618 uint32_t colorPicked = 0;
619 std::pair<uint32_t, uint32_t> primaryColor;
620 std::pair<uint32_t, uint32_t> secondaryColor;
621 if (featureColors_.empty()) {
622 return ERR_EFFECT_INVALID_VALUE;
623 }
624 bool hasPrimaryColor = GetDominantColor(primaryColor, secondaryColor);
625 if (hasPrimaryColor) {
626 HSV hsv = RGB2HSV(primaryColor.first);
627 if (hsv.v >= 40) { // 40 is value threshold.
628 hsv.v = 30; // Adjust value to 30.
629 } else if (hsv.v >= 20 && hsv.v < 40) { // 20, 40 is value threshold.
630 hsv.v -= 10; // 10 used to decrease value.
631 } else {
632 hsv.v += 20; // 20 used to increse saturation.
633 }
634 colorPicked = HSVtoRGB(hsv);
635 } else {
636 // If there is no dominant color, return black-0x00000000
637 colorPicked = 0xFF000000;
638 }
639 color = ColorManager::Color(colorPicked | 0xFF000000);
640 return SUCCESS;
641 }
642
643 // Get top proportion colors
GetTopProportionColors(uint32_t colorsNum) const644 std::vector<ColorManager::Color> ColorPicker::GetTopProportionColors(uint32_t colorsNum) const
645 {
646 if (featureColors_.empty() || colorsNum == 0) {
647 return {};
648 }
649 std::vector<ColorManager::Color> colors;
650 uint32_t num = std::min(static_cast<uint32_t>(featureColors_.size()), colorsNum);
651
652 for (uint32_t i = 0; i < num; ++i) {
653 colors.emplace_back(ColorManager::Color(featureColors_[i].first | 0xFF000000));
654 }
655 return colors;
656 };
657
IsEquals(double val1,double val2) const658 bool ColorPicker::IsEquals(double val1, double val2) const
659 {
660 // 0.001 is used for double number compare.
661 return fabs(val1 - val2) < 0.001;
662 }
663
664 // Transform RGB to HSV.
RGB2HSV(uint32_t rgb) const665 HSV ColorPicker::RGB2HSV(uint32_t rgb) const
666 {
667 double r, g, b;
668 double h, s, v;
669 double minComponent, maxComponent;
670 double delta;
671 HSV hsv;
672 r = GetARGB32ColorR(rgb) / 255.0; // 255.0 is used to normalize color to [0, 1].
673 g = GetARGB32ColorG(rgb) / 255.0; // 255.0 is used to normalize color to [0, 1].
674 b = GetARGB32ColorB(rgb) / 255.0; // 255.0 is used to normalize color to [0, 1].
675 if (r > g) {
676 maxComponent = std::max(r, b);
677 minComponent = std::min(g, b);
678 } else {
679 maxComponent = std::max(g, b);
680 minComponent = std::min(r, b);
681 }
682 v = maxComponent;
683 delta = maxComponent - minComponent;
684
685 if (IsEquals(maxComponent, 0)) {
686 s = 0.0;
687 } else {
688 s = delta / maxComponent;
689 }
690
691 if (maxComponent == minComponent) {
692 h = 0.0;
693 } else {
694 if (delta == 0) {
695 return hsv;
696 }
697 if (IsEquals(r, maxComponent) && g >= b) {
698 h = 60 * (g - b) / delta + 0; // 60 is used to calculate color's hue, ranging between 0 and 360.
699 } else if (IsEquals(r, maxComponent) && g < b) {
700 h = 60 * (g - b) / delta + 360; // 60,360 is used to calculate color's hue, ranging between 0 and 360.
701 } else if (IsEquals(g, maxComponent)) {
702 h = 60 * (b - r) / delta + 120; // 60,120 is used to calculate color's hue, ranging between 0 and 360.
703 } else {
704 h = 60 * (r - g) / delta + 240; // 60,240 is used to calculate color's hue, ranging between 0 and 360.
705 }
706 }
707 hsv.h = (int)(h + 0.5); // Hue add 0.5 to round up.
708 hsv.h = (hsv.h > 359) ? (hsv.h - 360) : hsv.h; // 359 is used to adjust hue to range [0, 360].
709 hsv.h = (hsv.h < 0) ? (hsv.h + 360) : hsv.h; // Adjust hue to range [0, 360].
710 hsv.s = s * 100; // Adjust saturation to range [0, 100].
711 hsv.v = v * 100; // Adjust value to range [0, 100].
712
713 return hsv;
714 }
715
AdjustHSVToDefinedInterval(HSV & hsv) const716 void ColorPicker::AdjustHSVToDefinedInterval(HSV& hsv) const
717 {
718 if (hsv.h > 360) { // Adjust hue to range [0, 360].
719 hsv.h = 360; // Adjust hue to range [0, 360].
720 }
721 if (hsv.h < 0) {
722 hsv.h = 0;
723 }
724 if (hsv.s > 100) { // Adjust saturation to range [0, 100].
725 hsv.s = 100; // Adjust saturation to range [0, 100].
726 }
727 if (hsv.s < 0) {
728 hsv.s = 0;
729 }
730 if (hsv.v > 100) { // Adjust value to range [0, 100].
731 hsv.v = 100; // Adjust value to range [0, 100].
732 }
733 if (hsv.v < 0) {
734 hsv.v = 0;
735 }
736 return;
737 }
738
739 // Transform HSV to RGB.
HSVtoRGB(HSV hsv) const740 uint32_t ColorPicker::HSVtoRGB(HSV hsv) const
741 {
742 uint32_t r, g, b;
743 uint32_t rgb = 0;
744 AdjustHSVToDefinedInterval(hsv);
745
746 // The brightness is directly proportional to the maximum value that RGB can reach, which is 2.55 times.
747 float rgb_max = hsv.v * 2.55f;
748
749 /**
750 * Each time the saturation decreases from 100, the minimum value that RGB can achieve increases
751 * linearly by 1/100 from 0 to the maximum value set by the brightness.
752 */
753 float rgb_min = rgb_max * (100 - hsv.s) / 100.0f;
754
755 int i = hsv.h / 60;
756 int difs = hsv.h % 60;
757 float rgb_Adj = (rgb_max - rgb_min) * difs / 60.0f;
758
759 /**
760 * According to the change of H, there are six cases. In each case, a parameter in RBG is linearly
761 * transformed (increased or decreased) between the minimum and maximum values that can be achieved
762 * by RGB.
763 */
764 switch (i) {
765 case 0: // 0: when hue's range is [0, 60).
766 r = rgb_max;
767 g = rgb_min + rgb_Adj;
768 b = rgb_min;
769 break;
770 case 1: // 1: when hue's range is [60, 120).
771 r = rgb_max - rgb_Adj;
772 g = rgb_max;
773 b = rgb_min;
774 break;
775 case 2: // 2: when hue's range is [120, 180).
776 r = rgb_min;
777 g = rgb_max;
778 b = rgb_min + rgb_Adj;
779 break;
780 case 3: // 3: when hue's range is [180, 240).
781 r = rgb_min;
782 g = rgb_max - rgb_Adj;
783 b = rgb_max;
784 break;
785 case 4: // 4: when hue's range is [240, 300).
786 r = rgb_min + rgb_Adj;
787 g = rgb_min;
788 b = rgb_max;
789 break;
790 default:
791 r = rgb_max;
792 g = rgb_min;
793 b = rgb_max - rgb_Adj;
794 break;
795 }
796 rgb = r << ARGB_R_SHIFT | g << ARGB_G_SHIFT | b << ARGB_B_SHIFT;
797 return rgb;
798 }
799 } // namespace Rosen
800 } // namespace OHOS
801
802 #ifdef __cplusplus
803 }
804 #endif
805