1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/asm-prototypes.h>
32
33 int __read_mostly alternatives_patched;
34
35 EXPORT_SYMBOL_GPL(alternatives_patched);
36
37 #define MAX_PATCH_LEN (255-1)
38
39 static int __initdata_or_module debug_alternative;
40
debug_alt(char * str)41 static int __init debug_alt(char *str)
42 {
43 debug_alternative = 1;
44 return 1;
45 }
46 __setup("debug-alternative", debug_alt);
47
48 static int noreplace_smp;
49
setup_noreplace_smp(char * str)50 static int __init setup_noreplace_smp(char *str)
51 {
52 noreplace_smp = 1;
53 return 1;
54 }
55 __setup("noreplace-smp", setup_noreplace_smp);
56
57 #define DPRINTK(fmt, args...) \
58 do { \
59 if (debug_alternative) \
60 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
61 } while (0)
62
63 #define DUMP_BYTES(buf, len, fmt, args...) \
64 do { \
65 if (unlikely(debug_alternative)) { \
66 int j; \
67 \
68 if (!(len)) \
69 break; \
70 \
71 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
72 for (j = 0; j < (len) - 1; j++) \
73 printk(KERN_CONT "%02hhx ", buf[j]); \
74 printk(KERN_CONT "%02hhx\n", buf[j]); \
75 } \
76 } while (0)
77
78 /*
79 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
80 * that correspond to that nop. Getting from one nop to the next, we
81 * add to the array the offset that is equal to the sum of all sizes of
82 * nops preceding the one we are after.
83 *
84 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
85 * nice symmetry of sizes of the previous nops.
86 */
87 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
88 static const unsigned char intelnops[] =
89 {
90 GENERIC_NOP1,
91 GENERIC_NOP2,
92 GENERIC_NOP3,
93 GENERIC_NOP4,
94 GENERIC_NOP5,
95 GENERIC_NOP6,
96 GENERIC_NOP7,
97 GENERIC_NOP8,
98 GENERIC_NOP5_ATOMIC
99 };
100 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
101 {
102 NULL,
103 intelnops,
104 intelnops + 1,
105 intelnops + 1 + 2,
106 intelnops + 1 + 2 + 3,
107 intelnops + 1 + 2 + 3 + 4,
108 intelnops + 1 + 2 + 3 + 4 + 5,
109 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
110 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
111 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
112 };
113 #endif
114
115 #ifdef K8_NOP1
116 static const unsigned char k8nops[] =
117 {
118 K8_NOP1,
119 K8_NOP2,
120 K8_NOP3,
121 K8_NOP4,
122 K8_NOP5,
123 K8_NOP6,
124 K8_NOP7,
125 K8_NOP8,
126 K8_NOP5_ATOMIC
127 };
128 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
129 {
130 NULL,
131 k8nops,
132 k8nops + 1,
133 k8nops + 1 + 2,
134 k8nops + 1 + 2 + 3,
135 k8nops + 1 + 2 + 3 + 4,
136 k8nops + 1 + 2 + 3 + 4 + 5,
137 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
138 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
139 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
140 };
141 #endif
142
143 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
144 static const unsigned char k7nops[] =
145 {
146 K7_NOP1,
147 K7_NOP2,
148 K7_NOP3,
149 K7_NOP4,
150 K7_NOP5,
151 K7_NOP6,
152 K7_NOP7,
153 K7_NOP8,
154 K7_NOP5_ATOMIC
155 };
156 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
157 {
158 NULL,
159 k7nops,
160 k7nops + 1,
161 k7nops + 1 + 2,
162 k7nops + 1 + 2 + 3,
163 k7nops + 1 + 2 + 3 + 4,
164 k7nops + 1 + 2 + 3 + 4 + 5,
165 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
166 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
167 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
168 };
169 #endif
170
171 #ifdef P6_NOP1
172 static const unsigned char p6nops[] =
173 {
174 P6_NOP1,
175 P6_NOP2,
176 P6_NOP3,
177 P6_NOP4,
178 P6_NOP5,
179 P6_NOP6,
180 P6_NOP7,
181 P6_NOP8,
182 P6_NOP5_ATOMIC
183 };
184 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
185 {
186 NULL,
187 p6nops,
188 p6nops + 1,
189 p6nops + 1 + 2,
190 p6nops + 1 + 2 + 3,
191 p6nops + 1 + 2 + 3 + 4,
192 p6nops + 1 + 2 + 3 + 4 + 5,
193 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
194 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
195 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
196 };
197 #endif
198
199 /* Initialize these to a safe default */
200 #ifdef CONFIG_X86_64
201 const unsigned char * const *ideal_nops = p6_nops;
202 #else
203 const unsigned char * const *ideal_nops = intel_nops;
204 #endif
205
arch_init_ideal_nops(void)206 void __init arch_init_ideal_nops(void)
207 {
208 switch (boot_cpu_data.x86_vendor) {
209 case X86_VENDOR_INTEL:
210 /*
211 * Due to a decoder implementation quirk, some
212 * specific Intel CPUs actually perform better with
213 * the "k8_nops" than with the SDM-recommended NOPs.
214 */
215 if (boot_cpu_data.x86 == 6 &&
216 boot_cpu_data.x86_model >= 0x0f &&
217 boot_cpu_data.x86_model != 0x1c &&
218 boot_cpu_data.x86_model != 0x26 &&
219 boot_cpu_data.x86_model != 0x27 &&
220 boot_cpu_data.x86_model < 0x30) {
221 ideal_nops = k8_nops;
222 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
223 ideal_nops = p6_nops;
224 } else {
225 #ifdef CONFIG_X86_64
226 ideal_nops = k8_nops;
227 #else
228 ideal_nops = intel_nops;
229 #endif
230 }
231 break;
232
233 case X86_VENDOR_HYGON:
234 ideal_nops = p6_nops;
235 return;
236
237 case X86_VENDOR_AMD:
238 if (boot_cpu_data.x86 > 0xf) {
239 ideal_nops = p6_nops;
240 return;
241 }
242
243 fallthrough;
244
245 default:
246 #ifdef CONFIG_X86_64
247 ideal_nops = k8_nops;
248 #else
249 if (boot_cpu_has(X86_FEATURE_K8))
250 ideal_nops = k8_nops;
251 else if (boot_cpu_has(X86_FEATURE_K7))
252 ideal_nops = k7_nops;
253 else
254 ideal_nops = intel_nops;
255 #endif
256 }
257 }
258
259 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
add_nops(void * insns,unsigned int len)260 static void __init_or_module add_nops(void *insns, unsigned int len)
261 {
262 while (len > 0) {
263 unsigned int noplen = len;
264 if (noplen > ASM_NOP_MAX)
265 noplen = ASM_NOP_MAX;
266 memcpy(insns, ideal_nops[noplen], noplen);
267 insns += noplen;
268 len -= noplen;
269 }
270 }
271
272 extern s32 __retpoline_sites[], __retpoline_sites_end[];
273 extern s32 __return_sites[], __return_sites_end[];
274 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
275 extern s32 __smp_locks[], __smp_locks_end[];
276 void text_poke_early(void *addr, const void *opcode, size_t len);
277
278 /*
279 * Are we looking at a near JMP with a 1 or 4-byte displacement.
280 */
is_jmp(const u8 opcode)281 static inline bool is_jmp(const u8 opcode)
282 {
283 return opcode == 0xeb || opcode == 0xe9;
284 }
285
286 static void __init_or_module
recompute_jump(struct alt_instr * a,u8 * orig_insn,u8 * repl_insn,u8 * insn_buff)287 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
288 {
289 u8 *next_rip, *tgt_rip;
290 s32 n_dspl, o_dspl;
291 int repl_len;
292
293 if (a->replacementlen != 5)
294 return;
295
296 o_dspl = *(s32 *)(insn_buff + 1);
297
298 /* next_rip of the replacement JMP */
299 next_rip = repl_insn + a->replacementlen;
300 /* target rip of the replacement JMP */
301 tgt_rip = next_rip + o_dspl;
302 n_dspl = tgt_rip - orig_insn;
303
304 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
305
306 if (tgt_rip - orig_insn >= 0) {
307 if (n_dspl - 2 <= 127)
308 goto two_byte_jmp;
309 else
310 goto five_byte_jmp;
311 /* negative offset */
312 } else {
313 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
314 goto two_byte_jmp;
315 else
316 goto five_byte_jmp;
317 }
318
319 two_byte_jmp:
320 n_dspl -= 2;
321
322 insn_buff[0] = 0xeb;
323 insn_buff[1] = (s8)n_dspl;
324 add_nops(insn_buff + 2, 3);
325
326 repl_len = 2;
327 goto done;
328
329 five_byte_jmp:
330 n_dspl -= 5;
331
332 insn_buff[0] = 0xe9;
333 *(s32 *)&insn_buff[1] = n_dspl;
334
335 repl_len = 5;
336
337 done:
338
339 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
340 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
341 }
342
343 /*
344 * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
345 *
346 * @instr: instruction byte stream
347 * @instrlen: length of the above
348 * @off: offset within @instr where the first NOP has been detected
349 *
350 * Return: number of NOPs found (and replaced).
351 */
optimize_nops_range(u8 * instr,u8 instrlen,int off)352 static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
353 {
354 unsigned long flags;
355 int i = off, nnops;
356
357 while (i < instrlen) {
358 if (instr[i] != 0x90)
359 break;
360
361 i++;
362 }
363
364 nnops = i - off;
365
366 if (nnops <= 1)
367 return nnops;
368
369 local_irq_save(flags);
370 add_nops(instr + off, nnops);
371 local_irq_restore(flags);
372
373 DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
374
375 return nnops;
376 }
377
378 /*
379 * "noinline" to cause control flow change and thus invalidate I$ and
380 * cause refetch after modification.
381 */
optimize_nops(u8 * instr,size_t len)382 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
383 {
384 struct insn insn;
385 int i = 0;
386
387 /*
388 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
389 * ones.
390 */
391 for (;;) {
392 if (insn_decode_kernel(&insn, &instr[i]))
393 return;
394
395 /*
396 * See if this and any potentially following NOPs can be
397 * optimized.
398 */
399 if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
400 i += optimize_nops_range(instr, len, i);
401 else
402 i += insn.length;
403
404 if (i >= len)
405 return;
406 }
407 }
408
409 /*
410 * Replace instructions with better alternatives for this CPU type. This runs
411 * before SMP is initialized to avoid SMP problems with self modifying code.
412 * This implies that asymmetric systems where APs have less capabilities than
413 * the boot processor are not handled. Tough. Make sure you disable such
414 * features by hand.
415 *
416 * Marked "noinline" to cause control flow change and thus insn cache
417 * to refetch changed I$ lines.
418 */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)419 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
420 struct alt_instr *end)
421 {
422 struct alt_instr *a;
423 u8 *instr, *replacement;
424 u8 insn_buff[MAX_PATCH_LEN];
425
426 DPRINTK("alt table %px, -> %px", start, end);
427
428 /*
429 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
430 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
431 * During the process, KASAN becomes confused seeing partial LA57
432 * conversion and triggers a false-positive out-of-bound report.
433 *
434 * Disable KASAN until the patching is complete.
435 */
436 kasan_disable_current();
437
438 /*
439 * The scan order should be from start to end. A later scanned
440 * alternative code can overwrite previously scanned alternative code.
441 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
442 * patch code.
443 *
444 * So be careful if you want to change the scan order to any other
445 * order.
446 */
447 for (a = start; a < end; a++) {
448 int insn_buff_sz = 0;
449 /* Mask away "NOT" flag bit for feature to test. */
450 u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
451
452 instr = (u8 *)&a->instr_offset + a->instr_offset;
453 replacement = (u8 *)&a->repl_offset + a->repl_offset;
454 BUG_ON(a->instrlen > sizeof(insn_buff));
455 BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
456
457 /*
458 * Patch if either:
459 * - feature is present
460 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
461 * patch if feature is *NOT* present.
462 */
463 if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
464 goto next;
465
466 DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
467 (a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
468 feature >> 5,
469 feature & 0x1f,
470 instr, instr, a->instrlen,
471 replacement, a->replacementlen);
472
473 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
474 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
475
476 memcpy(insn_buff, replacement, a->replacementlen);
477 insn_buff_sz = a->replacementlen;
478
479 /*
480 * 0xe8 is a relative jump; fix the offset.
481 *
482 * Instruction length is checked before the opcode to avoid
483 * accessing uninitialized bytes for zero-length replacements.
484 */
485 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
486 *(s32 *)(insn_buff + 1) += replacement - instr;
487 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
488 *(s32 *)(insn_buff + 1),
489 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
490 }
491
492 if (a->replacementlen && is_jmp(replacement[0]))
493 recompute_jump(a, instr, replacement, insn_buff);
494
495 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
496 insn_buff[insn_buff_sz] = 0x90;
497
498 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
499
500 text_poke_early(instr, insn_buff, insn_buff_sz);
501
502 next:
503 optimize_nops(instr, a->instrlen);
504 }
505
506 kasan_enable_current();
507 }
508
509 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_STACK_VALIDATION)
510
511 /*
512 * CALL/JMP *%\reg
513 */
emit_indirect(int op,int reg,u8 * bytes)514 static int emit_indirect(int op, int reg, u8 *bytes)
515 {
516 int i = 0;
517 u8 modrm;
518
519 switch (op) {
520 case CALL_INSN_OPCODE:
521 modrm = 0x10; /* Reg = 2; CALL r/m */
522 break;
523
524 case JMP32_INSN_OPCODE:
525 modrm = 0x20; /* Reg = 4; JMP r/m */
526 break;
527
528 default:
529 WARN_ON_ONCE(1);
530 return -1;
531 }
532
533 if (reg >= 8) {
534 bytes[i++] = 0x41; /* REX.B prefix */
535 reg -= 8;
536 }
537
538 modrm |= 0xc0; /* Mod = 3 */
539 modrm += reg;
540
541 bytes[i++] = 0xff; /* opcode */
542 bytes[i++] = modrm;
543
544 return i;
545 }
546
547 /*
548 * Rewrite the compiler generated retpoline thunk calls.
549 *
550 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
551 * indirect instructions, avoiding the extra indirection.
552 *
553 * For example, convert:
554 *
555 * CALL __x86_indirect_thunk_\reg
556 *
557 * into:
558 *
559 * CALL *%\reg
560 *
561 * It also tries to inline spectre_v2=retpoline,amd when size permits.
562 */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)563 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
564 {
565 retpoline_thunk_t *target;
566 int reg, ret, i = 0;
567 u8 op, cc;
568
569 target = addr + insn->length + insn->immediate.value;
570 reg = target - __x86_indirect_thunk_array;
571
572 if (WARN_ON_ONCE(reg & ~0xf))
573 return -1;
574
575 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
576 BUG_ON(reg == 4);
577
578 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
579 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE))
580 return -1;
581
582 op = insn->opcode.bytes[0];
583
584 /*
585 * Convert:
586 *
587 * Jcc.d32 __x86_indirect_thunk_\reg
588 *
589 * into:
590 *
591 * Jncc.d8 1f
592 * [ LFENCE ]
593 * JMP *%\reg
594 * [ NOP ]
595 * 1:
596 */
597 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
598 if (op == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80) {
599 cc = insn->opcode.bytes[1] & 0xf;
600 cc ^= 1; /* invert condition */
601
602 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
603 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
604
605 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
606 op = JMP32_INSN_OPCODE;
607 }
608
609 /*
610 * For RETPOLINE_AMD: prepend the indirect CALL/JMP with an LFENCE.
611 */
612 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
613 bytes[i++] = 0x0f;
614 bytes[i++] = 0xae;
615 bytes[i++] = 0xe8; /* LFENCE */
616 }
617
618 ret = emit_indirect(op, reg, bytes + i);
619 if (ret < 0)
620 return ret;
621 i += ret;
622
623 for (; i < insn->length;)
624 bytes[i++] = 0x90;
625
626 return i;
627 }
628
629 /*
630 * Generated by 'objtool --retpoline'.
631 */
apply_retpolines(s32 * start,s32 * end)632 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
633 {
634 s32 *s;
635
636 for (s = start; s < end; s++) {
637 void *addr = (void *)s + *s;
638 struct insn insn;
639 int len, ret;
640 u8 bytes[16];
641 u8 op1, op2;
642
643 ret = insn_decode_kernel(&insn, addr);
644 if (WARN_ON_ONCE(ret < 0))
645 continue;
646
647 op1 = insn.opcode.bytes[0];
648 op2 = insn.opcode.bytes[1];
649
650 switch (op1) {
651 case CALL_INSN_OPCODE:
652 case JMP32_INSN_OPCODE:
653 break;
654
655 case 0x0f: /* escape */
656 if (op2 >= 0x80 && op2 <= 0x8f)
657 break;
658 fallthrough;
659 default:
660 WARN_ON_ONCE(1);
661 continue;
662 }
663
664 DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
665 addr, addr, insn.length,
666 addr + insn.length + insn.immediate.value);
667
668 len = patch_retpoline(addr, &insn, bytes);
669 if (len == insn.length) {
670 optimize_nops(bytes, len);
671 DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
672 DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
673 text_poke_early(addr, bytes, len);
674 }
675 }
676 }
677
678 #ifdef CONFIG_RETHUNK
679 /*
680 * Rewrite the compiler generated return thunk tail-calls.
681 *
682 * For example, convert:
683 *
684 * JMP __x86_return_thunk
685 *
686 * into:
687 *
688 * RET
689 */
patch_return(void * addr,struct insn * insn,u8 * bytes)690 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
691 {
692 int i = 0;
693
694 if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
695 return -1;
696
697 bytes[i++] = RET_INSN_OPCODE;
698
699 for (; i < insn->length;)
700 bytes[i++] = INT3_INSN_OPCODE;
701
702 return i;
703 }
704
apply_returns(s32 * start,s32 * end)705 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
706 {
707 s32 *s;
708
709 for (s = start; s < end; s++) {
710 void *dest = NULL, *addr = (void *)s + *s;
711 struct insn insn;
712 int len, ret;
713 u8 bytes[16];
714 u8 op;
715
716 ret = insn_decode_kernel(&insn, addr);
717 if (WARN_ON_ONCE(ret < 0))
718 continue;
719
720 op = insn.opcode.bytes[0];
721 if (op == JMP32_INSN_OPCODE)
722 dest = addr + insn.length + insn.immediate.value;
723
724 if (__static_call_fixup(addr, op, dest) ||
725 WARN_ONCE(dest != &__x86_return_thunk,
726 "missing return thunk: %pS-%pS: %*ph",
727 addr, dest, 5, addr))
728 continue;
729
730 DPRINTK("return thunk at: %pS (%px) len: %d to: %pS",
731 addr, addr, insn.length,
732 addr + insn.length + insn.immediate.value);
733
734 len = patch_return(addr, &insn, bytes);
735 if (len == insn.length) {
736 DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
737 DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
738 text_poke_early(addr, bytes, len);
739 }
740 }
741 }
742 #else
apply_returns(s32 * start,s32 * end)743 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
744 #endif /* CONFIG_RETHUNK */
745
746 #else /* !RETPOLINES || !CONFIG_STACK_VALIDATION */
747
apply_retpolines(s32 * start,s32 * end)748 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)749 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
750
751 #endif /* CONFIG_RETPOLINE && CONFIG_STACK_VALIDATION */
752
753 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)754 static void alternatives_smp_lock(const s32 *start, const s32 *end,
755 u8 *text, u8 *text_end)
756 {
757 const s32 *poff;
758
759 for (poff = start; poff < end; poff++) {
760 u8 *ptr = (u8 *)poff + *poff;
761
762 if (!*poff || ptr < text || ptr >= text_end)
763 continue;
764 /* turn DS segment override prefix into lock prefix */
765 if (*ptr == 0x3e)
766 text_poke(ptr, ((unsigned char []){0xf0}), 1);
767 }
768 }
769
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)770 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
771 u8 *text, u8 *text_end)
772 {
773 const s32 *poff;
774
775 for (poff = start; poff < end; poff++) {
776 u8 *ptr = (u8 *)poff + *poff;
777
778 if (!*poff || ptr < text || ptr >= text_end)
779 continue;
780 /* turn lock prefix into DS segment override prefix */
781 if (*ptr == 0xf0)
782 text_poke(ptr, ((unsigned char []){0x3E}), 1);
783 }
784 }
785
786 struct smp_alt_module {
787 /* what is this ??? */
788 struct module *mod;
789 char *name;
790
791 /* ptrs to lock prefixes */
792 const s32 *locks;
793 const s32 *locks_end;
794
795 /* .text segment, needed to avoid patching init code ;) */
796 u8 *text;
797 u8 *text_end;
798
799 struct list_head next;
800 };
801 static LIST_HEAD(smp_alt_modules);
802 static bool uniproc_patched = false; /* protected by text_mutex */
803
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)804 void __init_or_module alternatives_smp_module_add(struct module *mod,
805 char *name,
806 void *locks, void *locks_end,
807 void *text, void *text_end)
808 {
809 struct smp_alt_module *smp;
810
811 mutex_lock(&text_mutex);
812 if (!uniproc_patched)
813 goto unlock;
814
815 if (num_possible_cpus() == 1)
816 /* Don't bother remembering, we'll never have to undo it. */
817 goto smp_unlock;
818
819 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
820 if (NULL == smp)
821 /* we'll run the (safe but slow) SMP code then ... */
822 goto unlock;
823
824 smp->mod = mod;
825 smp->name = name;
826 smp->locks = locks;
827 smp->locks_end = locks_end;
828 smp->text = text;
829 smp->text_end = text_end;
830 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
831 smp->locks, smp->locks_end,
832 smp->text, smp->text_end, smp->name);
833
834 list_add_tail(&smp->next, &smp_alt_modules);
835 smp_unlock:
836 alternatives_smp_unlock(locks, locks_end, text, text_end);
837 unlock:
838 mutex_unlock(&text_mutex);
839 }
840
alternatives_smp_module_del(struct module * mod)841 void __init_or_module alternatives_smp_module_del(struct module *mod)
842 {
843 struct smp_alt_module *item;
844
845 mutex_lock(&text_mutex);
846 list_for_each_entry(item, &smp_alt_modules, next) {
847 if (mod != item->mod)
848 continue;
849 list_del(&item->next);
850 kfree(item);
851 break;
852 }
853 mutex_unlock(&text_mutex);
854 }
855
alternatives_enable_smp(void)856 void alternatives_enable_smp(void)
857 {
858 struct smp_alt_module *mod;
859
860 /* Why bother if there are no other CPUs? */
861 BUG_ON(num_possible_cpus() == 1);
862
863 mutex_lock(&text_mutex);
864
865 if (uniproc_patched) {
866 pr_info("switching to SMP code\n");
867 BUG_ON(num_online_cpus() != 1);
868 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
869 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
870 list_for_each_entry(mod, &smp_alt_modules, next)
871 alternatives_smp_lock(mod->locks, mod->locks_end,
872 mod->text, mod->text_end);
873 uniproc_patched = false;
874 }
875 mutex_unlock(&text_mutex);
876 }
877
878 /*
879 * Return 1 if the address range is reserved for SMP-alternatives.
880 * Must hold text_mutex.
881 */
alternatives_text_reserved(void * start,void * end)882 int alternatives_text_reserved(void *start, void *end)
883 {
884 struct smp_alt_module *mod;
885 const s32 *poff;
886 u8 *text_start = start;
887 u8 *text_end = end;
888
889 lockdep_assert_held(&text_mutex);
890
891 list_for_each_entry(mod, &smp_alt_modules, next) {
892 if (mod->text > text_end || mod->text_end < text_start)
893 continue;
894 for (poff = mod->locks; poff < mod->locks_end; poff++) {
895 const u8 *ptr = (const u8 *)poff + *poff;
896
897 if (text_start <= ptr && text_end > ptr)
898 return 1;
899 }
900 }
901
902 return 0;
903 }
904 #endif /* CONFIG_SMP */
905
906 #ifdef CONFIG_PARAVIRT
apply_paravirt(struct paravirt_patch_site * start,struct paravirt_patch_site * end)907 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
908 struct paravirt_patch_site *end)
909 {
910 struct paravirt_patch_site *p;
911 char insn_buff[MAX_PATCH_LEN];
912
913 for (p = start; p < end; p++) {
914 unsigned int used;
915
916 BUG_ON(p->len > MAX_PATCH_LEN);
917 /* prep the buffer with the original instructions */
918 memcpy(insn_buff, p->instr, p->len);
919 used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
920
921 BUG_ON(used > p->len);
922
923 /* Pad the rest with nops */
924 add_nops(insn_buff + used, p->len - used);
925 text_poke_early(p->instr, insn_buff, p->len);
926 }
927 }
928 extern struct paravirt_patch_site __start_parainstructions[],
929 __stop_parainstructions[];
930 #endif /* CONFIG_PARAVIRT */
931
932 /*
933 * Self-test for the INT3 based CALL emulation code.
934 *
935 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
936 * properly and that there is a stack gap between the INT3 frame and the
937 * previous context. Without this gap doing a virtual PUSH on the interrupted
938 * stack would corrupt the INT3 IRET frame.
939 *
940 * See entry_{32,64}.S for more details.
941 */
942
943 /*
944 * We define the int3_magic() function in assembly to control the calling
945 * convention such that we can 'call' it from assembly.
946 */
947
948 extern void int3_magic(unsigned int *ptr); /* defined in asm */
949
950 asm (
951 " .pushsection .init.text, \"ax\", @progbits\n"
952 " .type int3_magic, @function\n"
953 "int3_magic:\n"
954 " movl $1, (%" _ASM_ARG1 ")\n"
955 ASM_RET
956 " .size int3_magic, .-int3_magic\n"
957 " .popsection\n"
958 );
959
960 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
961
962 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)963 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
964 {
965 struct die_args *args = data;
966 struct pt_regs *regs = args->regs;
967
968 if (!regs || user_mode(regs))
969 return NOTIFY_DONE;
970
971 if (val != DIE_INT3)
972 return NOTIFY_DONE;
973
974 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
975 return NOTIFY_DONE;
976
977 int3_emulate_call(regs, (unsigned long)&int3_magic);
978 return NOTIFY_STOP;
979 }
980
int3_selftest(void)981 static void __init int3_selftest(void)
982 {
983 static __initdata struct notifier_block int3_exception_nb = {
984 .notifier_call = int3_exception_notify,
985 .priority = INT_MAX-1, /* last */
986 };
987 unsigned int val = 0;
988
989 BUG_ON(register_die_notifier(&int3_exception_nb));
990
991 /*
992 * Basically: int3_magic(&val); but really complicated :-)
993 *
994 * Stick the address of the INT3 instruction into int3_selftest_ip,
995 * then trigger the INT3, padded with NOPs to match a CALL instruction
996 * length.
997 */
998 asm volatile ("1: int3; nop; nop; nop; nop\n\t"
999 ".pushsection .init.data,\"aw\"\n\t"
1000 ".align " __ASM_SEL(4, 8) "\n\t"
1001 ".type int3_selftest_ip, @object\n\t"
1002 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
1003 "int3_selftest_ip:\n\t"
1004 __ASM_SEL(.long, .quad) " 1b\n\t"
1005 ".popsection\n\t"
1006 : ASM_CALL_CONSTRAINT
1007 : __ASM_SEL_RAW(a, D) (&val)
1008 : "memory");
1009
1010 BUG_ON(val != 1);
1011
1012 unregister_die_notifier(&int3_exception_nb);
1013 }
1014
alternative_instructions(void)1015 void __init alternative_instructions(void)
1016 {
1017 int3_selftest();
1018
1019 /*
1020 * The patching is not fully atomic, so try to avoid local
1021 * interruptions that might execute the to be patched code.
1022 * Other CPUs are not running.
1023 */
1024 stop_nmi();
1025
1026 /*
1027 * Don't stop machine check exceptions while patching.
1028 * MCEs only happen when something got corrupted and in this
1029 * case we must do something about the corruption.
1030 * Ignoring it is worse than an unlikely patching race.
1031 * Also machine checks tend to be broadcast and if one CPU
1032 * goes into machine check the others follow quickly, so we don't
1033 * expect a machine check to cause undue problems during to code
1034 * patching.
1035 */
1036
1037 /*
1038 * Rewrite the retpolines, must be done before alternatives since
1039 * those can rewrite the retpoline thunks.
1040 */
1041 apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1042 apply_returns(__return_sites, __return_sites_end);
1043
1044 apply_alternatives(__alt_instructions, __alt_instructions_end);
1045
1046 #ifdef CONFIG_SMP
1047 /* Patch to UP if other cpus not imminent. */
1048 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1049 uniproc_patched = true;
1050 alternatives_smp_module_add(NULL, "core kernel",
1051 __smp_locks, __smp_locks_end,
1052 _text, _etext);
1053 }
1054
1055 if (!uniproc_patched || num_possible_cpus() == 1) {
1056 free_init_pages("SMP alternatives",
1057 (unsigned long)__smp_locks,
1058 (unsigned long)__smp_locks_end);
1059 }
1060 #endif
1061
1062 apply_paravirt(__parainstructions, __parainstructions_end);
1063
1064 restart_nmi();
1065 alternatives_patched = 1;
1066 }
1067
1068 /**
1069 * text_poke_early - Update instructions on a live kernel at boot time
1070 * @addr: address to modify
1071 * @opcode: source of the copy
1072 * @len: length to copy
1073 *
1074 * When you use this code to patch more than one byte of an instruction
1075 * you need to make sure that other CPUs cannot execute this code in parallel.
1076 * Also no thread must be currently preempted in the middle of these
1077 * instructions. And on the local CPU you need to be protected against NMI or
1078 * MCE handlers seeing an inconsistent instruction while you patch.
1079 */
text_poke_early(void * addr,const void * opcode,size_t len)1080 void __init_or_module text_poke_early(void *addr, const void *opcode,
1081 size_t len)
1082 {
1083 unsigned long flags;
1084
1085 if (boot_cpu_has(X86_FEATURE_NX) &&
1086 is_module_text_address((unsigned long)addr)) {
1087 /*
1088 * Modules text is marked initially as non-executable, so the
1089 * code cannot be running and speculative code-fetches are
1090 * prevented. Just change the code.
1091 */
1092 memcpy(addr, opcode, len);
1093 } else {
1094 local_irq_save(flags);
1095 memcpy(addr, opcode, len);
1096 sync_core();
1097 local_irq_restore(flags);
1098
1099 /*
1100 * Could also do a CLFLUSH here to speed up CPU recovery; but
1101 * that causes hangs on some VIA CPUs.
1102 */
1103 }
1104 }
1105
1106 typedef struct {
1107 struct mm_struct *mm;
1108 } temp_mm_state_t;
1109
1110 /*
1111 * Using a temporary mm allows to set temporary mappings that are not accessible
1112 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1113 * that override the kernel memory protections (e.g., W^X), without exposing the
1114 * temporary page-table mappings that are required for these write operations to
1115 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1116 * mapping is torn down.
1117 *
1118 * Context: The temporary mm needs to be used exclusively by a single core. To
1119 * harden security IRQs must be disabled while the temporary mm is
1120 * loaded, thereby preventing interrupt handler bugs from overriding
1121 * the kernel memory protection.
1122 */
use_temporary_mm(struct mm_struct * mm)1123 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1124 {
1125 temp_mm_state_t temp_state;
1126
1127 lockdep_assert_irqs_disabled();
1128
1129 /*
1130 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1131 * with a stale address space WITHOUT being in lazy mode after
1132 * restoring the previous mm.
1133 */
1134 if (this_cpu_read(cpu_tlbstate.is_lazy))
1135 leave_mm(smp_processor_id());
1136
1137 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1138 switch_mm_irqs_off(NULL, mm, current);
1139
1140 /*
1141 * If breakpoints are enabled, disable them while the temporary mm is
1142 * used. Userspace might set up watchpoints on addresses that are used
1143 * in the temporary mm, which would lead to wrong signals being sent or
1144 * crashes.
1145 *
1146 * Note that breakpoints are not disabled selectively, which also causes
1147 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1148 * undesirable, but still seems reasonable as the code that runs in the
1149 * temporary mm should be short.
1150 */
1151 if (hw_breakpoint_active())
1152 hw_breakpoint_disable();
1153
1154 return temp_state;
1155 }
1156
unuse_temporary_mm(temp_mm_state_t prev_state)1157 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1158 {
1159 lockdep_assert_irqs_disabled();
1160 switch_mm_irqs_off(NULL, prev_state.mm, current);
1161
1162 /*
1163 * Restore the breakpoints if they were disabled before the temporary mm
1164 * was loaded.
1165 */
1166 if (hw_breakpoint_active())
1167 hw_breakpoint_restore();
1168 }
1169
1170 __ro_after_init struct mm_struct *poking_mm;
1171 __ro_after_init unsigned long poking_addr;
1172
__text_poke(void * addr,const void * opcode,size_t len)1173 static void *__text_poke(void *addr, const void *opcode, size_t len)
1174 {
1175 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1176 struct page *pages[2] = {NULL};
1177 temp_mm_state_t prev;
1178 unsigned long flags;
1179 pte_t pte, *ptep;
1180 spinlock_t *ptl;
1181 pgprot_t pgprot;
1182
1183 /*
1184 * While boot memory allocator is running we cannot use struct pages as
1185 * they are not yet initialized. There is no way to recover.
1186 */
1187 BUG_ON(!after_bootmem);
1188
1189 if (!core_kernel_text((unsigned long)addr)) {
1190 pages[0] = vmalloc_to_page(addr);
1191 if (cross_page_boundary)
1192 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1193 } else {
1194 pages[0] = virt_to_page(addr);
1195 WARN_ON(!PageReserved(pages[0]));
1196 if (cross_page_boundary)
1197 pages[1] = virt_to_page(addr + PAGE_SIZE);
1198 }
1199 /*
1200 * If something went wrong, crash and burn since recovery paths are not
1201 * implemented.
1202 */
1203 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1204
1205 /*
1206 * Map the page without the global bit, as TLB flushing is done with
1207 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1208 */
1209 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1210
1211 /*
1212 * The lock is not really needed, but this allows to avoid open-coding.
1213 */
1214 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1215
1216 /*
1217 * This must not fail; preallocated in poking_init().
1218 */
1219 VM_BUG_ON(!ptep);
1220
1221 local_irq_save(flags);
1222
1223 pte = mk_pte(pages[0], pgprot);
1224 set_pte_at(poking_mm, poking_addr, ptep, pte);
1225
1226 if (cross_page_boundary) {
1227 pte = mk_pte(pages[1], pgprot);
1228 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1229 }
1230
1231 /*
1232 * Loading the temporary mm behaves as a compiler barrier, which
1233 * guarantees that the PTE will be set at the time memcpy() is done.
1234 */
1235 prev = use_temporary_mm(poking_mm);
1236
1237 kasan_disable_current();
1238 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
1239 kasan_enable_current();
1240
1241 /*
1242 * Ensure that the PTE is only cleared after the instructions of memcpy
1243 * were issued by using a compiler barrier.
1244 */
1245 barrier();
1246
1247 pte_clear(poking_mm, poking_addr, ptep);
1248 if (cross_page_boundary)
1249 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1250
1251 /*
1252 * Loading the previous page-table hierarchy requires a serializing
1253 * instruction that already allows the core to see the updated version.
1254 * Xen-PV is assumed to serialize execution in a similar manner.
1255 */
1256 unuse_temporary_mm(prev);
1257
1258 /*
1259 * Flushing the TLB might involve IPIs, which would require enabled
1260 * IRQs, but not if the mm is not used, as it is in this point.
1261 */
1262 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1263 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1264 PAGE_SHIFT, false);
1265
1266 /*
1267 * If the text does not match what we just wrote then something is
1268 * fundamentally screwy; there's nothing we can really do about that.
1269 */
1270 BUG_ON(memcmp(addr, opcode, len));
1271
1272 local_irq_restore(flags);
1273 pte_unmap_unlock(ptep, ptl);
1274 return addr;
1275 }
1276
1277 /**
1278 * text_poke - Update instructions on a live kernel
1279 * @addr: address to modify
1280 * @opcode: source of the copy
1281 * @len: length to copy
1282 *
1283 * Only atomic text poke/set should be allowed when not doing early patching.
1284 * It means the size must be writable atomically and the address must be aligned
1285 * in a way that permits an atomic write. It also makes sure we fit on a single
1286 * page.
1287 *
1288 * Note that the caller must ensure that if the modified code is part of a
1289 * module, the module would not be removed during poking. This can be achieved
1290 * by registering a module notifier, and ordering module removal and patching
1291 * trough a mutex.
1292 */
text_poke(void * addr,const void * opcode,size_t len)1293 void *text_poke(void *addr, const void *opcode, size_t len)
1294 {
1295 lockdep_assert_held(&text_mutex);
1296
1297 return __text_poke(addr, opcode, len);
1298 }
1299
1300 /**
1301 * text_poke_kgdb - Update instructions on a live kernel by kgdb
1302 * @addr: address to modify
1303 * @opcode: source of the copy
1304 * @len: length to copy
1305 *
1306 * Only atomic text poke/set should be allowed when not doing early patching.
1307 * It means the size must be writable atomically and the address must be aligned
1308 * in a way that permits an atomic write. It also makes sure we fit on a single
1309 * page.
1310 *
1311 * Context: should only be used by kgdb, which ensures no other core is running,
1312 * despite the fact it does not hold the text_mutex.
1313 */
text_poke_kgdb(void * addr,const void * opcode,size_t len)1314 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1315 {
1316 return __text_poke(addr, opcode, len);
1317 }
1318
do_sync_core(void * info)1319 static void do_sync_core(void *info)
1320 {
1321 sync_core();
1322 }
1323
text_poke_sync(void)1324 void text_poke_sync(void)
1325 {
1326 on_each_cpu(do_sync_core, NULL, 1);
1327 }
1328
1329 struct text_poke_loc {
1330 /* addr := _stext + rel_addr */
1331 s32 rel_addr;
1332 s32 disp;
1333 u8 len;
1334 u8 opcode;
1335 const u8 text[POKE_MAX_OPCODE_SIZE];
1336 /* see text_poke_bp_batch() */
1337 u8 old;
1338 };
1339
1340 struct bp_patching_desc {
1341 struct text_poke_loc *vec;
1342 int nr_entries;
1343 atomic_t refs;
1344 };
1345
1346 static struct bp_patching_desc bp_desc;
1347
1348 static __always_inline
try_get_desc(void)1349 struct bp_patching_desc *try_get_desc(void)
1350 {
1351 struct bp_patching_desc *desc = &bp_desc;
1352
1353 if (!arch_atomic_inc_not_zero(&desc->refs))
1354 return NULL;
1355
1356 return desc;
1357 }
1358
put_desc(void)1359 static __always_inline void put_desc(void)
1360 {
1361 struct bp_patching_desc *desc = &bp_desc;
1362
1363 smp_mb__before_atomic();
1364 arch_atomic_dec(&desc->refs);
1365 }
1366
text_poke_addr(struct text_poke_loc * tp)1367 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1368 {
1369 return _stext + tp->rel_addr;
1370 }
1371
patch_cmp(const void * key,const void * elt)1372 static __always_inline int patch_cmp(const void *key, const void *elt)
1373 {
1374 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1375
1376 if (key < text_poke_addr(tp))
1377 return -1;
1378 if (key > text_poke_addr(tp))
1379 return 1;
1380 return 0;
1381 }
1382
poke_int3_handler(struct pt_regs * regs)1383 noinstr int poke_int3_handler(struct pt_regs *regs)
1384 {
1385 struct bp_patching_desc *desc;
1386 struct text_poke_loc *tp;
1387 int ret = 0;
1388 void *ip;
1389
1390 if (user_mode(regs))
1391 return 0;
1392
1393 /*
1394 * Having observed our INT3 instruction, we now must observe
1395 * bp_desc with non-zero refcount:
1396 *
1397 * bp_desc.refs = 1 INT3
1398 * WMB RMB
1399 * write INT3 if (bp_desc.refs != 0)
1400 */
1401 smp_rmb();
1402
1403 desc = try_get_desc();
1404 if (!desc)
1405 return 0;
1406
1407 /*
1408 * Discount the INT3. See text_poke_bp_batch().
1409 */
1410 ip = (void *) regs->ip - INT3_INSN_SIZE;
1411
1412 /*
1413 * Skip the binary search if there is a single member in the vector.
1414 */
1415 if (unlikely(desc->nr_entries > 1)) {
1416 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1417 sizeof(struct text_poke_loc),
1418 patch_cmp);
1419 if (!tp)
1420 goto out_put;
1421 } else {
1422 tp = desc->vec;
1423 if (text_poke_addr(tp) != ip)
1424 goto out_put;
1425 }
1426
1427 ip += tp->len;
1428
1429 switch (tp->opcode) {
1430 case INT3_INSN_OPCODE:
1431 /*
1432 * Someone poked an explicit INT3, they'll want to handle it,
1433 * do not consume.
1434 */
1435 goto out_put;
1436
1437 case RET_INSN_OPCODE:
1438 int3_emulate_ret(regs);
1439 break;
1440
1441 case CALL_INSN_OPCODE:
1442 int3_emulate_call(regs, (long)ip + tp->disp);
1443 break;
1444
1445 case JMP32_INSN_OPCODE:
1446 case JMP8_INSN_OPCODE:
1447 int3_emulate_jmp(regs, (long)ip + tp->disp);
1448 break;
1449
1450 default:
1451 BUG();
1452 }
1453
1454 ret = 1;
1455
1456 out_put:
1457 put_desc();
1458 return ret;
1459 }
1460
1461 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1462 static struct text_poke_loc tp_vec[TP_VEC_MAX];
1463 static int tp_vec_nr;
1464
1465 /**
1466 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1467 * @tp: vector of instructions to patch
1468 * @nr_entries: number of entries in the vector
1469 *
1470 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1471 * We completely avoid stop_machine() here, and achieve the
1472 * synchronization using int3 breakpoint.
1473 *
1474 * The way it is done:
1475 * - For each entry in the vector:
1476 * - add a int3 trap to the address that will be patched
1477 * - sync cores
1478 * - For each entry in the vector:
1479 * - update all but the first byte of the patched range
1480 * - sync cores
1481 * - For each entry in the vector:
1482 * - replace the first byte (int3) by the first byte of
1483 * replacing opcode
1484 * - sync cores
1485 */
text_poke_bp_batch(struct text_poke_loc * tp,unsigned int nr_entries)1486 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1487 {
1488 unsigned char int3 = INT3_INSN_OPCODE;
1489 unsigned int i;
1490 int do_sync;
1491
1492 lockdep_assert_held(&text_mutex);
1493
1494 bp_desc.vec = tp;
1495 bp_desc.nr_entries = nr_entries;
1496
1497 /*
1498 * Corresponds to the implicit memory barrier in try_get_desc() to
1499 * ensure reading a non-zero refcount provides up to date bp_desc data.
1500 */
1501 atomic_set_release(&bp_desc.refs, 1);
1502
1503 /*
1504 * Corresponding read barrier in int3 notifier for making sure the
1505 * nr_entries and handler are correctly ordered wrt. patching.
1506 */
1507 smp_wmb();
1508
1509 /*
1510 * First step: add a int3 trap to the address that will be patched.
1511 */
1512 for (i = 0; i < nr_entries; i++) {
1513 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1514 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1515 }
1516
1517 text_poke_sync();
1518
1519 /*
1520 * Second step: update all but the first byte of the patched range.
1521 */
1522 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1523 u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1524 int len = tp[i].len;
1525
1526 if (len - INT3_INSN_SIZE > 0) {
1527 memcpy(old + INT3_INSN_SIZE,
1528 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1529 len - INT3_INSN_SIZE);
1530 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1531 (const char *)tp[i].text + INT3_INSN_SIZE,
1532 len - INT3_INSN_SIZE);
1533 do_sync++;
1534 }
1535
1536 /*
1537 * Emit a perf event to record the text poke, primarily to
1538 * support Intel PT decoding which must walk the executable code
1539 * to reconstruct the trace. The flow up to here is:
1540 * - write INT3 byte
1541 * - IPI-SYNC
1542 * - write instruction tail
1543 * At this point the actual control flow will be through the
1544 * INT3 and handler and not hit the old or new instruction.
1545 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1546 * can still be decoded. Subsequently:
1547 * - emit RECORD_TEXT_POKE with the new instruction
1548 * - IPI-SYNC
1549 * - write first byte
1550 * - IPI-SYNC
1551 * So before the text poke event timestamp, the decoder will see
1552 * either the old instruction flow or FUP/TIP of INT3. After the
1553 * text poke event timestamp, the decoder will see either the
1554 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1555 * use the timestamp as the point at which to modify the
1556 * executable code.
1557 * The old instruction is recorded so that the event can be
1558 * processed forwards or backwards.
1559 */
1560 perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1561 tp[i].text, len);
1562 }
1563
1564 if (do_sync) {
1565 /*
1566 * According to Intel, this core syncing is very likely
1567 * not necessary and we'd be safe even without it. But
1568 * better safe than sorry (plus there's not only Intel).
1569 */
1570 text_poke_sync();
1571 }
1572
1573 /*
1574 * Third step: replace the first byte (int3) by the first byte of
1575 * replacing opcode.
1576 */
1577 for (do_sync = 0, i = 0; i < nr_entries; i++) {
1578 if (tp[i].text[0] == INT3_INSN_OPCODE)
1579 continue;
1580
1581 text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1582 do_sync++;
1583 }
1584
1585 if (do_sync)
1586 text_poke_sync();
1587
1588 /*
1589 * Remove and wait for refs to be zero.
1590 */
1591 if (!atomic_dec_and_test(&bp_desc.refs))
1592 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
1593 }
1594
text_poke_loc_init(struct text_poke_loc * tp,void * addr,const void * opcode,size_t len,const void * emulate)1595 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1596 const void *opcode, size_t len, const void *emulate)
1597 {
1598 struct insn insn;
1599 int ret, i;
1600
1601 memcpy((void *)tp->text, opcode, len);
1602 if (!emulate)
1603 emulate = opcode;
1604
1605 ret = insn_decode_kernel(&insn, emulate);
1606 BUG_ON(ret < 0);
1607
1608 tp->rel_addr = addr - (void *)_stext;
1609 tp->len = len;
1610 tp->opcode = insn.opcode.bytes[0];
1611
1612 switch (tp->opcode) {
1613 case RET_INSN_OPCODE:
1614 case JMP32_INSN_OPCODE:
1615 case JMP8_INSN_OPCODE:
1616 /*
1617 * Control flow instructions without implied execution of the
1618 * next instruction can be padded with INT3.
1619 */
1620 for (i = insn.length; i < len; i++)
1621 BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
1622 break;
1623
1624 default:
1625 BUG_ON(len != insn.length);
1626 };
1627
1628
1629 switch (tp->opcode) {
1630 case INT3_INSN_OPCODE:
1631 case RET_INSN_OPCODE:
1632 break;
1633
1634 case CALL_INSN_OPCODE:
1635 case JMP32_INSN_OPCODE:
1636 case JMP8_INSN_OPCODE:
1637 tp->disp = insn.immediate.value;
1638 break;
1639
1640 default: /* assume NOP */
1641 switch (len) {
1642 case 2: /* NOP2 -- emulate as JMP8+0 */
1643 BUG_ON(memcmp(emulate, ideal_nops[len], len));
1644 tp->opcode = JMP8_INSN_OPCODE;
1645 tp->disp = 0;
1646 break;
1647
1648 case 5: /* NOP5 -- emulate as JMP32+0 */
1649 BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1650 tp->opcode = JMP32_INSN_OPCODE;
1651 tp->disp = 0;
1652 break;
1653
1654 default: /* unknown instruction */
1655 BUG();
1656 }
1657 break;
1658 }
1659 }
1660
1661 /*
1662 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1663 * early if needed.
1664 */
tp_order_fail(void * addr)1665 static bool tp_order_fail(void *addr)
1666 {
1667 struct text_poke_loc *tp;
1668
1669 if (!tp_vec_nr)
1670 return false;
1671
1672 if (!addr) /* force */
1673 return true;
1674
1675 tp = &tp_vec[tp_vec_nr - 1];
1676 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1677 return true;
1678
1679 return false;
1680 }
1681
text_poke_flush(void * addr)1682 static void text_poke_flush(void *addr)
1683 {
1684 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1685 text_poke_bp_batch(tp_vec, tp_vec_nr);
1686 tp_vec_nr = 0;
1687 }
1688 }
1689
text_poke_finish(void)1690 void text_poke_finish(void)
1691 {
1692 text_poke_flush(NULL);
1693 }
1694
text_poke_queue(void * addr,const void * opcode,size_t len,const void * emulate)1695 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1696 {
1697 struct text_poke_loc *tp;
1698
1699 if (unlikely(system_state == SYSTEM_BOOTING)) {
1700 text_poke_early(addr, opcode, len);
1701 return;
1702 }
1703
1704 text_poke_flush(addr);
1705
1706 tp = &tp_vec[tp_vec_nr++];
1707 text_poke_loc_init(tp, addr, opcode, len, emulate);
1708 }
1709
1710 /**
1711 * text_poke_bp() -- update instructions on live kernel on SMP
1712 * @addr: address to patch
1713 * @opcode: opcode of new instruction
1714 * @len: length to copy
1715 * @handler: address to jump to when the temporary breakpoint is hit
1716 *
1717 * Update a single instruction with the vector in the stack, avoiding
1718 * dynamically allocated memory. This function should be used when it is
1719 * not possible to allocate memory.
1720 */
text_poke_bp(void * addr,const void * opcode,size_t len,const void * emulate)1721 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1722 {
1723 struct text_poke_loc tp;
1724
1725 if (unlikely(system_state == SYSTEM_BOOTING)) {
1726 text_poke_early(addr, opcode, len);
1727 return;
1728 }
1729
1730 text_poke_loc_init(&tp, addr, opcode, len, emulate);
1731 text_poke_bp_batch(&tp, 1);
1732 }
1733