• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)91 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
92 {
93 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
94 	struct bpf_prog_aux *aux;
95 	struct bpf_prog *fp;
96 
97 	size = round_up(size, PAGE_SIZE);
98 	fp = __vmalloc(size, gfp_flags);
99 	if (fp == NULL)
100 		return NULL;
101 
102 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
103 	if (aux == NULL) {
104 		vfree(fp);
105 		return NULL;
106 	}
107 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (!fp->active) {
109 		vfree(fp);
110 		kfree(aux);
111 		return NULL;
112 	}
113 
114 	fp->pages = size / PAGE_SIZE;
115 	fp->aux = aux;
116 	fp->aux->prog = fp;
117 	fp->jit_requested = ebpf_jit_enabled();
118 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
119 #ifdef CONFIG_CGROUP_BPF
120 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
121 #endif
122 
123 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
124 	mutex_init(&fp->aux->used_maps_mutex);
125 	mutex_init(&fp->aux->ext_mutex);
126 	mutex_init(&fp->aux->dst_mutex);
127 
128 	return fp;
129 }
130 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)131 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
132 {
133 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
134 	struct bpf_prog *prog;
135 	int cpu;
136 
137 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
138 	if (!prog)
139 		return NULL;
140 
141 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
142 	if (!prog->stats) {
143 		free_percpu(prog->active);
144 		kfree(prog->aux);
145 		vfree(prog);
146 		return NULL;
147 	}
148 
149 	for_each_possible_cpu(cpu) {
150 		struct bpf_prog_stats *pstats;
151 
152 		pstats = per_cpu_ptr(prog->stats, cpu);
153 		u64_stats_init(&pstats->syncp);
154 	}
155 	return prog;
156 }
157 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
158 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)159 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
160 {
161 	if (!prog->aux->nr_linfo || !prog->jit_requested)
162 		return 0;
163 
164 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
165 					  sizeof(*prog->aux->jited_linfo),
166 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
167 	if (!prog->aux->jited_linfo)
168 		return -ENOMEM;
169 
170 	return 0;
171 }
172 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)173 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
174 {
175 	if (prog->aux->jited_linfo &&
176 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
177 		kvfree(prog->aux->jited_linfo);
178 		prog->aux->jited_linfo = NULL;
179 	}
180 
181 	kfree(prog->aux->kfunc_tab);
182 	prog->aux->kfunc_tab = NULL;
183 }
184 
185 /* The jit engine is responsible to provide an array
186  * for insn_off to the jited_off mapping (insn_to_jit_off).
187  *
188  * The idx to this array is the insn_off.  Hence, the insn_off
189  * here is relative to the prog itself instead of the main prog.
190  * This array has one entry for each xlated bpf insn.
191  *
192  * jited_off is the byte off to the end of the jited insn.
193  *
194  * Hence, with
195  * insn_start:
196  *      The first bpf insn off of the prog.  The insn off
197  *      here is relative to the main prog.
198  *      e.g. if prog is a subprog, insn_start > 0
199  * linfo_idx:
200  *      The prog's idx to prog->aux->linfo and jited_linfo
201  *
202  * jited_linfo[linfo_idx] = prog->bpf_func
203  *
204  * For i > linfo_idx,
205  *
206  * jited_linfo[i] = prog->bpf_func +
207  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
208  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)209 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
210 			       const u32 *insn_to_jit_off)
211 {
212 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
213 	const struct bpf_line_info *linfo;
214 	void **jited_linfo;
215 
216 	if (!prog->aux->jited_linfo)
217 		/* Userspace did not provide linfo */
218 		return;
219 
220 	linfo_idx = prog->aux->linfo_idx;
221 	linfo = &prog->aux->linfo[linfo_idx];
222 	insn_start = linfo[0].insn_off;
223 	insn_end = insn_start + prog->len;
224 
225 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
226 	jited_linfo[0] = prog->bpf_func;
227 
228 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
229 
230 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
231 		/* The verifier ensures that linfo[i].insn_off is
232 		 * strictly increasing
233 		 */
234 		jited_linfo[i] = prog->bpf_func +
235 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
236 }
237 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)238 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
239 				  gfp_t gfp_extra_flags)
240 {
241 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
242 	struct bpf_prog *fp;
243 	u32 pages;
244 
245 	size = round_up(size, PAGE_SIZE);
246 	pages = size / PAGE_SIZE;
247 	if (pages <= fp_old->pages)
248 		return fp_old;
249 
250 	fp = __vmalloc(size, gfp_flags);
251 	if (fp) {
252 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
253 		fp->pages = pages;
254 		fp->aux->prog = fp;
255 
256 		/* We keep fp->aux from fp_old around in the new
257 		 * reallocated structure.
258 		 */
259 		fp_old->aux = NULL;
260 		fp_old->stats = NULL;
261 		fp_old->active = NULL;
262 		__bpf_prog_free(fp_old);
263 	}
264 
265 	return fp;
266 }
267 
__bpf_prog_free(struct bpf_prog * fp)268 void __bpf_prog_free(struct bpf_prog *fp)
269 {
270 	if (fp->aux) {
271 		mutex_destroy(&fp->aux->used_maps_mutex);
272 		mutex_destroy(&fp->aux->dst_mutex);
273 		kfree(fp->aux->poke_tab);
274 		kfree(fp->aux);
275 	}
276 	free_percpu(fp->stats);
277 	free_percpu(fp->active);
278 	vfree(fp);
279 }
280 
bpf_prog_calc_tag(struct bpf_prog * fp)281 int bpf_prog_calc_tag(struct bpf_prog *fp)
282 {
283 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
284 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
285 	u32 digest[SHA1_DIGEST_WORDS];
286 	u32 ws[SHA1_WORKSPACE_WORDS];
287 	u32 i, bsize, psize, blocks;
288 	struct bpf_insn *dst;
289 	bool was_ld_map;
290 	u8 *raw, *todo;
291 	__be32 *result;
292 	__be64 *bits;
293 
294 	raw = vmalloc(raw_size);
295 	if (!raw)
296 		return -ENOMEM;
297 
298 	sha1_init(digest);
299 	memset(ws, 0, sizeof(ws));
300 
301 	/* We need to take out the map fd for the digest calculation
302 	 * since they are unstable from user space side.
303 	 */
304 	dst = (void *)raw;
305 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
306 		dst[i] = fp->insnsi[i];
307 		if (!was_ld_map &&
308 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
309 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
310 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
311 			was_ld_map = true;
312 			dst[i].imm = 0;
313 		} else if (was_ld_map &&
314 			   dst[i].code == 0 &&
315 			   dst[i].dst_reg == 0 &&
316 			   dst[i].src_reg == 0 &&
317 			   dst[i].off == 0) {
318 			was_ld_map = false;
319 			dst[i].imm = 0;
320 		} else {
321 			was_ld_map = false;
322 		}
323 	}
324 
325 	psize = bpf_prog_insn_size(fp);
326 	memset(&raw[psize], 0, raw_size - psize);
327 	raw[psize++] = 0x80;
328 
329 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
330 	blocks = bsize / SHA1_BLOCK_SIZE;
331 	todo   = raw;
332 	if (bsize - psize >= sizeof(__be64)) {
333 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
334 	} else {
335 		bits = (__be64 *)(todo + bsize + bits_offset);
336 		blocks++;
337 	}
338 	*bits = cpu_to_be64((psize - 1) << 3);
339 
340 	while (blocks--) {
341 		sha1_transform(digest, todo, ws);
342 		todo += SHA1_BLOCK_SIZE;
343 	}
344 
345 	result = (__force __be32 *)digest;
346 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
347 		result[i] = cpu_to_be32(digest[i]);
348 	memcpy(fp->tag, result, sizeof(fp->tag));
349 
350 	vfree(raw);
351 	return 0;
352 }
353 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)354 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
355 				s32 end_new, s32 curr, const bool probe_pass)
356 {
357 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
358 	s32 delta = end_new - end_old;
359 	s64 imm = insn->imm;
360 
361 	if (curr < pos && curr + imm + 1 >= end_old)
362 		imm += delta;
363 	else if (curr >= end_new && curr + imm + 1 < end_new)
364 		imm -= delta;
365 	if (imm < imm_min || imm > imm_max)
366 		return -ERANGE;
367 	if (!probe_pass)
368 		insn->imm = imm;
369 	return 0;
370 }
371 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)372 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
373 				s32 end_new, s32 curr, const bool probe_pass)
374 {
375 	s64 off_min, off_max, off;
376 	s32 delta = end_new - end_old;
377 
378 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
379 		off = insn->imm;
380 		off_min = S32_MIN;
381 		off_max = S32_MAX;
382 	} else {
383 		off = insn->off;
384 		off_min = S16_MIN;
385 		off_max = S16_MAX;
386 	}
387 
388 	if (curr < pos && curr + off + 1 >= end_old)
389 		off += delta;
390 	else if (curr >= end_new && curr + off + 1 < end_new)
391 		off -= delta;
392 	if (off < off_min || off > off_max)
393 		return -ERANGE;
394 	if (!probe_pass) {
395 		if (insn->code == (BPF_JMP32 | BPF_JA))
396 			insn->imm = off;
397 		else
398 			insn->off = off;
399 	}
400 	return 0;
401 }
402 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)403 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
404 			    s32 end_new, const bool probe_pass)
405 {
406 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
407 	struct bpf_insn *insn = prog->insnsi;
408 	int ret = 0;
409 
410 	for (i = 0; i < insn_cnt; i++, insn++) {
411 		u8 code;
412 
413 		/* In the probing pass we still operate on the original,
414 		 * unpatched image in order to check overflows before we
415 		 * do any other adjustments. Therefore skip the patchlet.
416 		 */
417 		if (probe_pass && i == pos) {
418 			i = end_new;
419 			insn = prog->insnsi + end_old;
420 		}
421 		if (bpf_pseudo_func(insn)) {
422 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
423 						   end_new, i, probe_pass);
424 			if (ret)
425 				return ret;
426 			continue;
427 		}
428 		code = insn->code;
429 		if ((BPF_CLASS(code) != BPF_JMP &&
430 		     BPF_CLASS(code) != BPF_JMP32) ||
431 		    BPF_OP(code) == BPF_EXIT)
432 			continue;
433 		/* Adjust offset of jmps if we cross patch boundaries. */
434 		if (BPF_OP(code) == BPF_CALL) {
435 			if (insn->src_reg != BPF_PSEUDO_CALL)
436 				continue;
437 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
438 						   end_new, i, probe_pass);
439 		} else {
440 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
441 						   end_new, i, probe_pass);
442 		}
443 		if (ret)
444 			break;
445 	}
446 
447 	return ret;
448 }
449 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)450 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
451 {
452 	struct bpf_line_info *linfo;
453 	u32 i, nr_linfo;
454 
455 	nr_linfo = prog->aux->nr_linfo;
456 	if (!nr_linfo || !delta)
457 		return;
458 
459 	linfo = prog->aux->linfo;
460 
461 	for (i = 0; i < nr_linfo; i++)
462 		if (off < linfo[i].insn_off)
463 			break;
464 
465 	/* Push all off < linfo[i].insn_off by delta */
466 	for (; i < nr_linfo; i++)
467 		linfo[i].insn_off += delta;
468 }
469 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)470 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
471 				       const struct bpf_insn *patch, u32 len)
472 {
473 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
474 	const u32 cnt_max = S16_MAX;
475 	struct bpf_prog *prog_adj;
476 	int err;
477 
478 	/* Since our patchlet doesn't expand the image, we're done. */
479 	if (insn_delta == 0) {
480 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
481 		return prog;
482 	}
483 
484 	insn_adj_cnt = prog->len + insn_delta;
485 
486 	/* Reject anything that would potentially let the insn->off
487 	 * target overflow when we have excessive program expansions.
488 	 * We need to probe here before we do any reallocation where
489 	 * we afterwards may not fail anymore.
490 	 */
491 	if (insn_adj_cnt > cnt_max &&
492 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
493 		return ERR_PTR(err);
494 
495 	/* Several new instructions need to be inserted. Make room
496 	 * for them. Likely, there's no need for a new allocation as
497 	 * last page could have large enough tailroom.
498 	 */
499 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
500 				    GFP_USER);
501 	if (!prog_adj)
502 		return ERR_PTR(-ENOMEM);
503 
504 	prog_adj->len = insn_adj_cnt;
505 
506 	/* Patching happens in 3 steps:
507 	 *
508 	 * 1) Move over tail of insnsi from next instruction onwards,
509 	 *    so we can patch the single target insn with one or more
510 	 *    new ones (patching is always from 1 to n insns, n > 0).
511 	 * 2) Inject new instructions at the target location.
512 	 * 3) Adjust branch offsets if necessary.
513 	 */
514 	insn_rest = insn_adj_cnt - off - len;
515 
516 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
517 		sizeof(*patch) * insn_rest);
518 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
519 
520 	/* We are guaranteed to not fail at this point, otherwise
521 	 * the ship has sailed to reverse to the original state. An
522 	 * overflow cannot happen at this point.
523 	 */
524 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
525 
526 	bpf_adj_linfo(prog_adj, off, insn_delta);
527 
528 	return prog_adj;
529 }
530 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)531 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
532 {
533 	int err;
534 
535 	/* Branch offsets can't overflow when program is shrinking, no need
536 	 * to call bpf_adj_branches(..., true) here
537 	 */
538 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
539 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
540 	prog->len -= cnt;
541 
542 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
543 	WARN_ON_ONCE(err);
544 	return err;
545 }
546 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)547 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
548 {
549 	int i;
550 
551 	for (i = 0; i < fp->aux->func_cnt; i++)
552 		bpf_prog_kallsyms_del(fp->aux->func[i]);
553 }
554 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)555 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
556 {
557 	bpf_prog_kallsyms_del_subprogs(fp);
558 	bpf_prog_kallsyms_del(fp);
559 }
560 
561 #ifdef CONFIG_BPF_JIT
562 /* All BPF JIT sysctl knobs here. */
563 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
564 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
565 int bpf_jit_harden   __read_mostly;
566 long bpf_jit_limit   __read_mostly;
567 long bpf_jit_limit_max __read_mostly;
568 
569 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)570 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
571 {
572 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
573 
574 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
575 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
576 }
577 
578 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)579 bpf_prog_ksym_set_name(struct bpf_prog *prog)
580 {
581 	char *sym = prog->aux->ksym.name;
582 	const char *end = sym + KSYM_NAME_LEN;
583 	const struct btf_type *type;
584 	const char *func_name;
585 
586 	BUILD_BUG_ON(sizeof("bpf_prog_") +
587 		     sizeof(prog->tag) * 2 +
588 		     /* name has been null terminated.
589 		      * We should need +1 for the '_' preceding
590 		      * the name.  However, the null character
591 		      * is double counted between the name and the
592 		      * sizeof("bpf_prog_") above, so we omit
593 		      * the +1 here.
594 		      */
595 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
596 
597 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
598 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
599 
600 	/* prog->aux->name will be ignored if full btf name is available */
601 	if (prog->aux->func_info_cnt) {
602 		type = btf_type_by_id(prog->aux->btf,
603 				      prog->aux->func_info[prog->aux->func_idx].type_id);
604 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
605 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
606 		return;
607 	}
608 
609 	if (prog->aux->name[0])
610 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
611 	else
612 		*sym = 0;
613 }
614 
bpf_get_ksym_start(struct latch_tree_node * n)615 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
616 {
617 	return container_of(n, struct bpf_ksym, tnode)->start;
618 }
619 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)620 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
621 					  struct latch_tree_node *b)
622 {
623 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
624 }
625 
bpf_tree_comp(void * key,struct latch_tree_node * n)626 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
627 {
628 	unsigned long val = (unsigned long)key;
629 	const struct bpf_ksym *ksym;
630 
631 	ksym = container_of(n, struct bpf_ksym, tnode);
632 
633 	if (val < ksym->start)
634 		return -1;
635 	/* Ensure that we detect return addresses as part of the program, when
636 	 * the final instruction is a call for a program part of the stack
637 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
638 	 */
639 	if (val > ksym->end)
640 		return  1;
641 
642 	return 0;
643 }
644 
645 static const struct latch_tree_ops bpf_tree_ops = {
646 	.less	= bpf_tree_less,
647 	.comp	= bpf_tree_comp,
648 };
649 
650 static DEFINE_SPINLOCK(bpf_lock);
651 static LIST_HEAD(bpf_kallsyms);
652 static struct latch_tree_root bpf_tree __cacheline_aligned;
653 
bpf_ksym_add(struct bpf_ksym * ksym)654 void bpf_ksym_add(struct bpf_ksym *ksym)
655 {
656 	spin_lock_bh(&bpf_lock);
657 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
658 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
659 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
660 	spin_unlock_bh(&bpf_lock);
661 }
662 
__bpf_ksym_del(struct bpf_ksym * ksym)663 static void __bpf_ksym_del(struct bpf_ksym *ksym)
664 {
665 	if (list_empty(&ksym->lnode))
666 		return;
667 
668 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
669 	list_del_rcu(&ksym->lnode);
670 }
671 
bpf_ksym_del(struct bpf_ksym * ksym)672 void bpf_ksym_del(struct bpf_ksym *ksym)
673 {
674 	spin_lock_bh(&bpf_lock);
675 	__bpf_ksym_del(ksym);
676 	spin_unlock_bh(&bpf_lock);
677 }
678 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)679 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
680 {
681 	return fp->jited && !bpf_prog_was_classic(fp);
682 }
683 
bpf_prog_kallsyms_add(struct bpf_prog * fp)684 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
685 {
686 	if (!bpf_prog_kallsyms_candidate(fp) ||
687 	    !bpf_capable())
688 		return;
689 
690 	bpf_prog_ksym_set_addr(fp);
691 	bpf_prog_ksym_set_name(fp);
692 	fp->aux->ksym.prog = true;
693 
694 	bpf_ksym_add(&fp->aux->ksym);
695 }
696 
bpf_prog_kallsyms_del(struct bpf_prog * fp)697 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
698 {
699 	if (!bpf_prog_kallsyms_candidate(fp))
700 		return;
701 
702 	bpf_ksym_del(&fp->aux->ksym);
703 }
704 
bpf_ksym_find(unsigned long addr)705 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
706 {
707 	struct latch_tree_node *n;
708 
709 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
710 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
711 }
712 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)713 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
714 				 unsigned long *off, char *sym)
715 {
716 	struct bpf_ksym *ksym;
717 	char *ret = NULL;
718 
719 	rcu_read_lock();
720 	ksym = bpf_ksym_find(addr);
721 	if (ksym) {
722 		unsigned long symbol_start = ksym->start;
723 		unsigned long symbol_end = ksym->end;
724 
725 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
726 
727 		ret = sym;
728 		if (size)
729 			*size = symbol_end - symbol_start;
730 		if (off)
731 			*off  = addr - symbol_start;
732 	}
733 	rcu_read_unlock();
734 
735 	return ret;
736 }
737 
is_bpf_text_address(unsigned long addr)738 bool is_bpf_text_address(unsigned long addr)
739 {
740 	bool ret;
741 
742 	rcu_read_lock();
743 	ret = bpf_ksym_find(addr) != NULL;
744 	rcu_read_unlock();
745 
746 	return ret;
747 }
748 
bpf_prog_ksym_find(unsigned long addr)749 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
750 {
751 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
752 
753 	return ksym && ksym->prog ?
754 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
755 	       NULL;
756 }
757 
search_bpf_extables(unsigned long addr)758 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
759 {
760 	const struct exception_table_entry *e = NULL;
761 	struct bpf_prog *prog;
762 
763 	rcu_read_lock();
764 	prog = bpf_prog_ksym_find(addr);
765 	if (!prog)
766 		goto out;
767 	if (!prog->aux->num_exentries)
768 		goto out;
769 
770 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
771 out:
772 	rcu_read_unlock();
773 	return e;
774 }
775 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)776 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
777 		    char *sym)
778 {
779 	struct bpf_ksym *ksym;
780 	unsigned int it = 0;
781 	int ret = -ERANGE;
782 
783 	if (!bpf_jit_kallsyms_enabled())
784 		return ret;
785 
786 	rcu_read_lock();
787 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
788 		if (it++ != symnum)
789 			continue;
790 
791 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
792 
793 		*value = ksym->start;
794 		*type  = BPF_SYM_ELF_TYPE;
795 
796 		ret = 0;
797 		break;
798 	}
799 	rcu_read_unlock();
800 
801 	return ret;
802 }
803 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)804 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
805 				struct bpf_jit_poke_descriptor *poke)
806 {
807 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
808 	static const u32 poke_tab_max = 1024;
809 	u32 slot = prog->aux->size_poke_tab;
810 	u32 size = slot + 1;
811 
812 	if (size > poke_tab_max)
813 		return -ENOSPC;
814 	if (poke->tailcall_target || poke->tailcall_target_stable ||
815 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
816 		return -EINVAL;
817 
818 	switch (poke->reason) {
819 	case BPF_POKE_REASON_TAIL_CALL:
820 		if (!poke->tail_call.map)
821 			return -EINVAL;
822 		break;
823 	default:
824 		return -EINVAL;
825 	}
826 
827 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
828 	if (!tab)
829 		return -ENOMEM;
830 
831 	memcpy(&tab[slot], poke, sizeof(*poke));
832 	prog->aux->size_poke_tab = size;
833 	prog->aux->poke_tab = tab;
834 
835 	return slot;
836 }
837 
838 /*
839  * BPF program pack allocator.
840  *
841  * Most BPF programs are pretty small. Allocating a hole page for each
842  * program is sometime a waste. Many small bpf program also adds pressure
843  * to instruction TLB. To solve this issue, we introduce a BPF program pack
844  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
845  * to host BPF programs.
846  */
847 #define BPF_PROG_CHUNK_SHIFT	6
848 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
849 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
850 
851 struct bpf_prog_pack {
852 	struct list_head list;
853 	void *ptr;
854 	unsigned long bitmap[];
855 };
856 
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)857 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
858 {
859 	memset(area, 0, size);
860 }
861 
862 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
863 
864 static DEFINE_MUTEX(pack_mutex);
865 static LIST_HEAD(pack_list);
866 
867 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
868  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
869  */
870 #ifdef PMD_SIZE
871 /* PMD_SIZE is really big for some archs. It doesn't make sense to
872  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
873  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
874  * greater than or equal to 2MB.
875  */
876 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
877 #else
878 #define BPF_PROG_PACK_SIZE PAGE_SIZE
879 #endif
880 
881 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
882 
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)883 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
884 {
885 	struct bpf_prog_pack *pack;
886 
887 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
888 		       GFP_KERNEL);
889 	if (!pack)
890 		return NULL;
891 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
892 	if (!pack->ptr) {
893 		kfree(pack);
894 		return NULL;
895 	}
896 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
897 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
898 	list_add_tail(&pack->list, &pack_list);
899 
900 	set_vm_flush_reset_perms(pack->ptr);
901 	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
902 	return pack;
903 }
904 
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)905 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
906 {
907 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
908 	struct bpf_prog_pack *pack;
909 	unsigned long pos;
910 	void *ptr = NULL;
911 
912 	mutex_lock(&pack_mutex);
913 	if (size > BPF_PROG_PACK_SIZE) {
914 		size = round_up(size, PAGE_SIZE);
915 		ptr = bpf_jit_alloc_exec(size);
916 		if (ptr) {
917 			bpf_fill_ill_insns(ptr, size);
918 			set_vm_flush_reset_perms(ptr);
919 			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
920 		}
921 		goto out;
922 	}
923 	list_for_each_entry(pack, &pack_list, list) {
924 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
925 						 nbits, 0);
926 		if (pos < BPF_PROG_CHUNK_COUNT)
927 			goto found_free_area;
928 	}
929 
930 	pack = alloc_new_pack(bpf_fill_ill_insns);
931 	if (!pack)
932 		goto out;
933 
934 	pos = 0;
935 
936 found_free_area:
937 	bitmap_set(pack->bitmap, pos, nbits);
938 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
939 
940 out:
941 	mutex_unlock(&pack_mutex);
942 	return ptr;
943 }
944 
bpf_prog_pack_free(struct bpf_binary_header * hdr)945 void bpf_prog_pack_free(struct bpf_binary_header *hdr)
946 {
947 	struct bpf_prog_pack *pack = NULL, *tmp;
948 	unsigned int nbits;
949 	unsigned long pos;
950 
951 	mutex_lock(&pack_mutex);
952 	if (hdr->size > BPF_PROG_PACK_SIZE) {
953 		bpf_jit_free_exec(hdr);
954 		goto out;
955 	}
956 
957 	list_for_each_entry(tmp, &pack_list, list) {
958 		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
959 			pack = tmp;
960 			break;
961 		}
962 	}
963 
964 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
965 		goto out;
966 
967 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
968 	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
969 
970 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
971 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
972 
973 	bitmap_clear(pack->bitmap, pos, nbits);
974 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
975 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
976 		list_del(&pack->list);
977 		bpf_jit_free_exec(pack->ptr);
978 		kfree(pack);
979 	}
980 out:
981 	mutex_unlock(&pack_mutex);
982 }
983 
984 static atomic_long_t bpf_jit_current;
985 
986 /* Can be overridden by an arch's JIT compiler if it has a custom,
987  * dedicated BPF backend memory area, or if neither of the two
988  * below apply.
989  */
bpf_jit_alloc_exec_limit(void)990 u64 __weak bpf_jit_alloc_exec_limit(void)
991 {
992 #if defined(MODULES_VADDR)
993 	return MODULES_END - MODULES_VADDR;
994 #else
995 	return VMALLOC_END - VMALLOC_START;
996 #endif
997 }
998 
bpf_jit_charge_init(void)999 static int __init bpf_jit_charge_init(void)
1000 {
1001 	/* Only used as heuristic here to derive limit. */
1002 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1003 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1004 					    PAGE_SIZE), LONG_MAX);
1005 	return 0;
1006 }
1007 pure_initcall(bpf_jit_charge_init);
1008 
bpf_jit_charge_modmem(u32 size)1009 int bpf_jit_charge_modmem(u32 size)
1010 {
1011 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1012 		if (!bpf_capable()) {
1013 			atomic_long_sub(size, &bpf_jit_current);
1014 			return -EPERM;
1015 		}
1016 	}
1017 
1018 	return 0;
1019 }
1020 
bpf_jit_uncharge_modmem(u32 size)1021 void bpf_jit_uncharge_modmem(u32 size)
1022 {
1023 	atomic_long_sub(size, &bpf_jit_current);
1024 }
1025 
bpf_jit_alloc_exec(unsigned long size)1026 void *__weak bpf_jit_alloc_exec(unsigned long size)
1027 {
1028 	return module_alloc(size);
1029 }
1030 
bpf_jit_free_exec(void * addr)1031 void __weak bpf_jit_free_exec(void *addr)
1032 {
1033 	module_memfree(addr);
1034 }
1035 
1036 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1037 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1038 		     unsigned int alignment,
1039 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1040 {
1041 	struct bpf_binary_header *hdr;
1042 	u32 size, hole, start;
1043 
1044 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1045 		     alignment > BPF_IMAGE_ALIGNMENT);
1046 
1047 	/* Most of BPF filters are really small, but if some of them
1048 	 * fill a page, allow at least 128 extra bytes to insert a
1049 	 * random section of illegal instructions.
1050 	 */
1051 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1052 
1053 	if (bpf_jit_charge_modmem(size))
1054 		return NULL;
1055 	hdr = bpf_jit_alloc_exec(size);
1056 	if (!hdr) {
1057 		bpf_jit_uncharge_modmem(size);
1058 		return NULL;
1059 	}
1060 
1061 	/* Fill space with illegal/arch-dep instructions. */
1062 	bpf_fill_ill_insns(hdr, size);
1063 
1064 	hdr->size = size;
1065 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1066 		     PAGE_SIZE - sizeof(*hdr));
1067 	start = get_random_u32_below(hole) & ~(alignment - 1);
1068 
1069 	/* Leave a random number of instructions before BPF code. */
1070 	*image_ptr = &hdr->image[start];
1071 
1072 	return hdr;
1073 }
1074 
bpf_jit_binary_free(struct bpf_binary_header * hdr)1075 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1076 {
1077 	u32 size = hdr->size;
1078 
1079 	bpf_jit_free_exec(hdr);
1080 	bpf_jit_uncharge_modmem(size);
1081 }
1082 
1083 /* Allocate jit binary from bpf_prog_pack allocator.
1084  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1085  * to the memory. To solve this problem, a RW buffer is also allocated at
1086  * as the same time. The JIT engine should calculate offsets based on the
1087  * RO memory address, but write JITed program to the RW buffer. Once the
1088  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1089  * the JITed program to the RO memory.
1090  */
1091 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1092 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1093 			  unsigned int alignment,
1094 			  struct bpf_binary_header **rw_header,
1095 			  u8 **rw_image,
1096 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1097 {
1098 	struct bpf_binary_header *ro_header;
1099 	u32 size, hole, start;
1100 
1101 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1102 		     alignment > BPF_IMAGE_ALIGNMENT);
1103 
1104 	/* add 16 bytes for a random section of illegal instructions */
1105 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1106 
1107 	if (bpf_jit_charge_modmem(size))
1108 		return NULL;
1109 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1110 	if (!ro_header) {
1111 		bpf_jit_uncharge_modmem(size);
1112 		return NULL;
1113 	}
1114 
1115 	*rw_header = kvmalloc(size, GFP_KERNEL);
1116 	if (!*rw_header) {
1117 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1118 		bpf_prog_pack_free(ro_header);
1119 		bpf_jit_uncharge_modmem(size);
1120 		return NULL;
1121 	}
1122 
1123 	/* Fill space with illegal/arch-dep instructions. */
1124 	bpf_fill_ill_insns(*rw_header, size);
1125 	(*rw_header)->size = size;
1126 
1127 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1128 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1129 	start = get_random_u32_below(hole) & ~(alignment - 1);
1130 
1131 	*image_ptr = &ro_header->image[start];
1132 	*rw_image = &(*rw_header)->image[start];
1133 
1134 	return ro_header;
1135 }
1136 
1137 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_prog * prog,struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1138 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1139 				 struct bpf_binary_header *ro_header,
1140 				 struct bpf_binary_header *rw_header)
1141 {
1142 	void *ptr;
1143 
1144 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1145 
1146 	kvfree(rw_header);
1147 
1148 	if (IS_ERR(ptr)) {
1149 		bpf_prog_pack_free(ro_header);
1150 		return PTR_ERR(ptr);
1151 	}
1152 	return 0;
1153 }
1154 
1155 /* bpf_jit_binary_pack_free is called in two different scenarios:
1156  *   1) when the program is freed after;
1157  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1158  * For case 2), we need to free both the RO memory and the RW buffer.
1159  *
1160  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1161  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1162  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1163  * bpf_arch_text_copy (when jit fails).
1164  */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1165 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1166 			      struct bpf_binary_header *rw_header)
1167 {
1168 	u32 size = ro_header->size;
1169 
1170 	bpf_prog_pack_free(ro_header);
1171 	kvfree(rw_header);
1172 	bpf_jit_uncharge_modmem(size);
1173 }
1174 
1175 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1176 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1177 {
1178 	unsigned long real_start = (unsigned long)fp->bpf_func;
1179 	unsigned long addr;
1180 
1181 	addr = real_start & BPF_PROG_CHUNK_MASK;
1182 	return (void *)addr;
1183 }
1184 
1185 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1186 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1187 {
1188 	unsigned long real_start = (unsigned long)fp->bpf_func;
1189 	unsigned long addr;
1190 
1191 	addr = real_start & PAGE_MASK;
1192 	return (void *)addr;
1193 }
1194 
1195 /* This symbol is only overridden by archs that have different
1196  * requirements than the usual eBPF JITs, f.e. when they only
1197  * implement cBPF JIT, do not set images read-only, etc.
1198  */
bpf_jit_free(struct bpf_prog * fp)1199 void __weak bpf_jit_free(struct bpf_prog *fp)
1200 {
1201 	if (fp->jited) {
1202 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1203 
1204 		bpf_jit_binary_free(hdr);
1205 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1206 	}
1207 
1208 	bpf_prog_unlock_free(fp);
1209 }
1210 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1211 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1212 			  const struct bpf_insn *insn, bool extra_pass,
1213 			  u64 *func_addr, bool *func_addr_fixed)
1214 {
1215 	s16 off = insn->off;
1216 	s32 imm = insn->imm;
1217 	u8 *addr;
1218 	int err;
1219 
1220 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1221 	if (!*func_addr_fixed) {
1222 		/* Place-holder address till the last pass has collected
1223 		 * all addresses for JITed subprograms in which case we
1224 		 * can pick them up from prog->aux.
1225 		 */
1226 		if (!extra_pass)
1227 			addr = NULL;
1228 		else if (prog->aux->func &&
1229 			 off >= 0 && off < prog->aux->func_cnt)
1230 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1231 		else
1232 			return -EINVAL;
1233 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1234 		   bpf_jit_supports_far_kfunc_call()) {
1235 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1236 		if (err)
1237 			return err;
1238 	} else {
1239 		/* Address of a BPF helper call. Since part of the core
1240 		 * kernel, it's always at a fixed location. __bpf_call_base
1241 		 * and the helper with imm relative to it are both in core
1242 		 * kernel.
1243 		 */
1244 		addr = (u8 *)__bpf_call_base + imm;
1245 	}
1246 
1247 	*func_addr = (unsigned long)addr;
1248 	return 0;
1249 }
1250 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1251 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1252 			      const struct bpf_insn *aux,
1253 			      struct bpf_insn *to_buff,
1254 			      bool emit_zext)
1255 {
1256 	struct bpf_insn *to = to_buff;
1257 	u32 imm_rnd = get_random_u32();
1258 	s16 off;
1259 
1260 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1261 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1262 
1263 	/* Constraints on AX register:
1264 	 *
1265 	 * AX register is inaccessible from user space. It is mapped in
1266 	 * all JITs, and used here for constant blinding rewrites. It is
1267 	 * typically "stateless" meaning its contents are only valid within
1268 	 * the executed instruction, but not across several instructions.
1269 	 * There are a few exceptions however which are further detailed
1270 	 * below.
1271 	 *
1272 	 * Constant blinding is only used by JITs, not in the interpreter.
1273 	 * The interpreter uses AX in some occasions as a local temporary
1274 	 * register e.g. in DIV or MOD instructions.
1275 	 *
1276 	 * In restricted circumstances, the verifier can also use the AX
1277 	 * register for rewrites as long as they do not interfere with
1278 	 * the above cases!
1279 	 */
1280 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1281 		goto out;
1282 
1283 	if (from->imm == 0 &&
1284 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1285 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1286 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1287 		goto out;
1288 	}
1289 
1290 	switch (from->code) {
1291 	case BPF_ALU | BPF_ADD | BPF_K:
1292 	case BPF_ALU | BPF_SUB | BPF_K:
1293 	case BPF_ALU | BPF_AND | BPF_K:
1294 	case BPF_ALU | BPF_OR  | BPF_K:
1295 	case BPF_ALU | BPF_XOR | BPF_K:
1296 	case BPF_ALU | BPF_MUL | BPF_K:
1297 	case BPF_ALU | BPF_MOV | BPF_K:
1298 	case BPF_ALU | BPF_DIV | BPF_K:
1299 	case BPF_ALU | BPF_MOD | BPF_K:
1300 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1301 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1302 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1303 		break;
1304 
1305 	case BPF_ALU64 | BPF_ADD | BPF_K:
1306 	case BPF_ALU64 | BPF_SUB | BPF_K:
1307 	case BPF_ALU64 | BPF_AND | BPF_K:
1308 	case BPF_ALU64 | BPF_OR  | BPF_K:
1309 	case BPF_ALU64 | BPF_XOR | BPF_K:
1310 	case BPF_ALU64 | BPF_MUL | BPF_K:
1311 	case BPF_ALU64 | BPF_MOV | BPF_K:
1312 	case BPF_ALU64 | BPF_DIV | BPF_K:
1313 	case BPF_ALU64 | BPF_MOD | BPF_K:
1314 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1315 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1316 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1317 		break;
1318 
1319 	case BPF_JMP | BPF_JEQ  | BPF_K:
1320 	case BPF_JMP | BPF_JNE  | BPF_K:
1321 	case BPF_JMP | BPF_JGT  | BPF_K:
1322 	case BPF_JMP | BPF_JLT  | BPF_K:
1323 	case BPF_JMP | BPF_JGE  | BPF_K:
1324 	case BPF_JMP | BPF_JLE  | BPF_K:
1325 	case BPF_JMP | BPF_JSGT | BPF_K:
1326 	case BPF_JMP | BPF_JSLT | BPF_K:
1327 	case BPF_JMP | BPF_JSGE | BPF_K:
1328 	case BPF_JMP | BPF_JSLE | BPF_K:
1329 	case BPF_JMP | BPF_JSET | BPF_K:
1330 		/* Accommodate for extra offset in case of a backjump. */
1331 		off = from->off;
1332 		if (off < 0)
1333 			off -= 2;
1334 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1335 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1336 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1337 		break;
1338 
1339 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1340 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1341 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1342 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1343 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1344 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1345 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1346 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1347 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1348 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1349 	case BPF_JMP32 | BPF_JSET | BPF_K:
1350 		/* Accommodate for extra offset in case of a backjump. */
1351 		off = from->off;
1352 		if (off < 0)
1353 			off -= 2;
1354 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1355 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1356 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1357 				      off);
1358 		break;
1359 
1360 	case BPF_LD | BPF_IMM | BPF_DW:
1361 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1362 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1363 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1364 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1365 		break;
1366 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1367 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1368 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1369 		if (emit_zext)
1370 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1371 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1372 		break;
1373 
1374 	case BPF_ST | BPF_MEM | BPF_DW:
1375 	case BPF_ST | BPF_MEM | BPF_W:
1376 	case BPF_ST | BPF_MEM | BPF_H:
1377 	case BPF_ST | BPF_MEM | BPF_B:
1378 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1379 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1380 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1381 		break;
1382 	}
1383 out:
1384 	return to - to_buff;
1385 }
1386 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1387 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1388 					      gfp_t gfp_extra_flags)
1389 {
1390 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1391 	struct bpf_prog *fp;
1392 
1393 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1394 	if (fp != NULL) {
1395 		/* aux->prog still points to the fp_other one, so
1396 		 * when promoting the clone to the real program,
1397 		 * this still needs to be adapted.
1398 		 */
1399 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1400 	}
1401 
1402 	return fp;
1403 }
1404 
bpf_prog_clone_free(struct bpf_prog * fp)1405 static void bpf_prog_clone_free(struct bpf_prog *fp)
1406 {
1407 	/* aux was stolen by the other clone, so we cannot free
1408 	 * it from this path! It will be freed eventually by the
1409 	 * other program on release.
1410 	 *
1411 	 * At this point, we don't need a deferred release since
1412 	 * clone is guaranteed to not be locked.
1413 	 */
1414 	fp->aux = NULL;
1415 	fp->stats = NULL;
1416 	fp->active = NULL;
1417 	__bpf_prog_free(fp);
1418 }
1419 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1420 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1421 {
1422 	/* We have to repoint aux->prog to self, as we don't
1423 	 * know whether fp here is the clone or the original.
1424 	 */
1425 	fp->aux->prog = fp;
1426 	bpf_prog_clone_free(fp_other);
1427 }
1428 
bpf_jit_blind_constants(struct bpf_prog * prog)1429 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1430 {
1431 	struct bpf_insn insn_buff[16], aux[2];
1432 	struct bpf_prog *clone, *tmp;
1433 	int insn_delta, insn_cnt;
1434 	struct bpf_insn *insn;
1435 	int i, rewritten;
1436 
1437 	if (!prog->blinding_requested || prog->blinded)
1438 		return prog;
1439 
1440 	clone = bpf_prog_clone_create(prog, GFP_USER);
1441 	if (!clone)
1442 		return ERR_PTR(-ENOMEM);
1443 
1444 	insn_cnt = clone->len;
1445 	insn = clone->insnsi;
1446 
1447 	for (i = 0; i < insn_cnt; i++, insn++) {
1448 		if (bpf_pseudo_func(insn)) {
1449 			/* ld_imm64 with an address of bpf subprog is not
1450 			 * a user controlled constant. Don't randomize it,
1451 			 * since it will conflict with jit_subprogs() logic.
1452 			 */
1453 			insn++;
1454 			i++;
1455 			continue;
1456 		}
1457 
1458 		/* We temporarily need to hold the original ld64 insn
1459 		 * so that we can still access the first part in the
1460 		 * second blinding run.
1461 		 */
1462 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1463 		    insn[1].code == 0)
1464 			memcpy(aux, insn, sizeof(aux));
1465 
1466 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1467 						clone->aux->verifier_zext);
1468 		if (!rewritten)
1469 			continue;
1470 
1471 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1472 		if (IS_ERR(tmp)) {
1473 			/* Patching may have repointed aux->prog during
1474 			 * realloc from the original one, so we need to
1475 			 * fix it up here on error.
1476 			 */
1477 			bpf_jit_prog_release_other(prog, clone);
1478 			return tmp;
1479 		}
1480 
1481 		clone = tmp;
1482 		insn_delta = rewritten - 1;
1483 
1484 		/* Walk new program and skip insns we just inserted. */
1485 		insn = clone->insnsi + i + insn_delta;
1486 		insn_cnt += insn_delta;
1487 		i        += insn_delta;
1488 	}
1489 
1490 	clone->blinded = 1;
1491 	return clone;
1492 }
1493 #endif /* CONFIG_BPF_JIT */
1494 
1495 /* Base function for offset calculation. Needs to go into .text section,
1496  * therefore keeping it non-static as well; will also be used by JITs
1497  * anyway later on, so do not let the compiler omit it. This also needs
1498  * to go into kallsyms for correlation from e.g. bpftool, so naming
1499  * must not change.
1500  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1501 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1502 {
1503 	return 0;
1504 }
1505 EXPORT_SYMBOL_GPL(__bpf_call_base);
1506 
1507 /* All UAPI available opcodes. */
1508 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1509 	/* 32 bit ALU operations. */		\
1510 	/*   Register based. */			\
1511 	INSN_3(ALU, ADD,  X),			\
1512 	INSN_3(ALU, SUB,  X),			\
1513 	INSN_3(ALU, AND,  X),			\
1514 	INSN_3(ALU, OR,   X),			\
1515 	INSN_3(ALU, LSH,  X),			\
1516 	INSN_3(ALU, RSH,  X),			\
1517 	INSN_3(ALU, XOR,  X),			\
1518 	INSN_3(ALU, MUL,  X),			\
1519 	INSN_3(ALU, MOV,  X),			\
1520 	INSN_3(ALU, ARSH, X),			\
1521 	INSN_3(ALU, DIV,  X),			\
1522 	INSN_3(ALU, MOD,  X),			\
1523 	INSN_2(ALU, NEG),			\
1524 	INSN_3(ALU, END, TO_BE),		\
1525 	INSN_3(ALU, END, TO_LE),		\
1526 	/*   Immediate based. */		\
1527 	INSN_3(ALU, ADD,  K),			\
1528 	INSN_3(ALU, SUB,  K),			\
1529 	INSN_3(ALU, AND,  K),			\
1530 	INSN_3(ALU, OR,   K),			\
1531 	INSN_3(ALU, LSH,  K),			\
1532 	INSN_3(ALU, RSH,  K),			\
1533 	INSN_3(ALU, XOR,  K),			\
1534 	INSN_3(ALU, MUL,  K),			\
1535 	INSN_3(ALU, MOV,  K),			\
1536 	INSN_3(ALU, ARSH, K),			\
1537 	INSN_3(ALU, DIV,  K),			\
1538 	INSN_3(ALU, MOD,  K),			\
1539 	/* 64 bit ALU operations. */		\
1540 	/*   Register based. */			\
1541 	INSN_3(ALU64, ADD,  X),			\
1542 	INSN_3(ALU64, SUB,  X),			\
1543 	INSN_3(ALU64, AND,  X),			\
1544 	INSN_3(ALU64, OR,   X),			\
1545 	INSN_3(ALU64, LSH,  X),			\
1546 	INSN_3(ALU64, RSH,  X),			\
1547 	INSN_3(ALU64, XOR,  X),			\
1548 	INSN_3(ALU64, MUL,  X),			\
1549 	INSN_3(ALU64, MOV,  X),			\
1550 	INSN_3(ALU64, ARSH, X),			\
1551 	INSN_3(ALU64, DIV,  X),			\
1552 	INSN_3(ALU64, MOD,  X),			\
1553 	INSN_2(ALU64, NEG),			\
1554 	INSN_3(ALU64, END, TO_LE),		\
1555 	/*   Immediate based. */		\
1556 	INSN_3(ALU64, ADD,  K),			\
1557 	INSN_3(ALU64, SUB,  K),			\
1558 	INSN_3(ALU64, AND,  K),			\
1559 	INSN_3(ALU64, OR,   K),			\
1560 	INSN_3(ALU64, LSH,  K),			\
1561 	INSN_3(ALU64, RSH,  K),			\
1562 	INSN_3(ALU64, XOR,  K),			\
1563 	INSN_3(ALU64, MUL,  K),			\
1564 	INSN_3(ALU64, MOV,  K),			\
1565 	INSN_3(ALU64, ARSH, K),			\
1566 	INSN_3(ALU64, DIV,  K),			\
1567 	INSN_3(ALU64, MOD,  K),			\
1568 	/* Call instruction. */			\
1569 	INSN_2(JMP, CALL),			\
1570 	/* Exit instruction. */			\
1571 	INSN_2(JMP, EXIT),			\
1572 	/* 32-bit Jump instructions. */		\
1573 	/*   Register based. */			\
1574 	INSN_3(JMP32, JEQ,  X),			\
1575 	INSN_3(JMP32, JNE,  X),			\
1576 	INSN_3(JMP32, JGT,  X),			\
1577 	INSN_3(JMP32, JLT,  X),			\
1578 	INSN_3(JMP32, JGE,  X),			\
1579 	INSN_3(JMP32, JLE,  X),			\
1580 	INSN_3(JMP32, JSGT, X),			\
1581 	INSN_3(JMP32, JSLT, X),			\
1582 	INSN_3(JMP32, JSGE, X),			\
1583 	INSN_3(JMP32, JSLE, X),			\
1584 	INSN_3(JMP32, JSET, X),			\
1585 	/*   Immediate based. */		\
1586 	INSN_3(JMP32, JEQ,  K),			\
1587 	INSN_3(JMP32, JNE,  K),			\
1588 	INSN_3(JMP32, JGT,  K),			\
1589 	INSN_3(JMP32, JLT,  K),			\
1590 	INSN_3(JMP32, JGE,  K),			\
1591 	INSN_3(JMP32, JLE,  K),			\
1592 	INSN_3(JMP32, JSGT, K),			\
1593 	INSN_3(JMP32, JSLT, K),			\
1594 	INSN_3(JMP32, JSGE, K),			\
1595 	INSN_3(JMP32, JSLE, K),			\
1596 	INSN_3(JMP32, JSET, K),			\
1597 	/* Jump instructions. */		\
1598 	/*   Register based. */			\
1599 	INSN_3(JMP, JEQ,  X),			\
1600 	INSN_3(JMP, JNE,  X),			\
1601 	INSN_3(JMP, JGT,  X),			\
1602 	INSN_3(JMP, JLT,  X),			\
1603 	INSN_3(JMP, JGE,  X),			\
1604 	INSN_3(JMP, JLE,  X),			\
1605 	INSN_3(JMP, JSGT, X),			\
1606 	INSN_3(JMP, JSLT, X),			\
1607 	INSN_3(JMP, JSGE, X),			\
1608 	INSN_3(JMP, JSLE, X),			\
1609 	INSN_3(JMP, JSET, X),			\
1610 	/*   Immediate based. */		\
1611 	INSN_3(JMP, JEQ,  K),			\
1612 	INSN_3(JMP, JNE,  K),			\
1613 	INSN_3(JMP, JGT,  K),			\
1614 	INSN_3(JMP, JLT,  K),			\
1615 	INSN_3(JMP, JGE,  K),			\
1616 	INSN_3(JMP, JLE,  K),			\
1617 	INSN_3(JMP, JSGT, K),			\
1618 	INSN_3(JMP, JSLT, K),			\
1619 	INSN_3(JMP, JSGE, K),			\
1620 	INSN_3(JMP, JSLE, K),			\
1621 	INSN_3(JMP, JSET, K),			\
1622 	INSN_2(JMP, JA),			\
1623 	INSN_2(JMP32, JA),			\
1624 	/* Store instructions. */		\
1625 	/*   Register based. */			\
1626 	INSN_3(STX, MEM,  B),			\
1627 	INSN_3(STX, MEM,  H),			\
1628 	INSN_3(STX, MEM,  W),			\
1629 	INSN_3(STX, MEM,  DW),			\
1630 	INSN_3(STX, ATOMIC, W),			\
1631 	INSN_3(STX, ATOMIC, DW),		\
1632 	/*   Immediate based. */		\
1633 	INSN_3(ST, MEM, B),			\
1634 	INSN_3(ST, MEM, H),			\
1635 	INSN_3(ST, MEM, W),			\
1636 	INSN_3(ST, MEM, DW),			\
1637 	/* Load instructions. */		\
1638 	/*   Register based. */			\
1639 	INSN_3(LDX, MEM, B),			\
1640 	INSN_3(LDX, MEM, H),			\
1641 	INSN_3(LDX, MEM, W),			\
1642 	INSN_3(LDX, MEM, DW),			\
1643 	INSN_3(LDX, MEMSX, B),			\
1644 	INSN_3(LDX, MEMSX, H),			\
1645 	INSN_3(LDX, MEMSX, W),			\
1646 	/*   Immediate based. */		\
1647 	INSN_3(LD, IMM, DW)
1648 
bpf_opcode_in_insntable(u8 code)1649 bool bpf_opcode_in_insntable(u8 code)
1650 {
1651 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1652 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1653 	static const bool public_insntable[256] = {
1654 		[0 ... 255] = false,
1655 		/* Now overwrite non-defaults ... */
1656 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1657 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1658 		[BPF_LD | BPF_ABS | BPF_B] = true,
1659 		[BPF_LD | BPF_ABS | BPF_H] = true,
1660 		[BPF_LD | BPF_ABS | BPF_W] = true,
1661 		[BPF_LD | BPF_IND | BPF_B] = true,
1662 		[BPF_LD | BPF_IND | BPF_H] = true,
1663 		[BPF_LD | BPF_IND | BPF_W] = true,
1664 	};
1665 #undef BPF_INSN_3_TBL
1666 #undef BPF_INSN_2_TBL
1667 	return public_insntable[code];
1668 }
1669 
1670 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1671 /**
1672  *	___bpf_prog_run - run eBPF program on a given context
1673  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1674  *	@insn: is the array of eBPF instructions
1675  *
1676  * Decode and execute eBPF instructions.
1677  *
1678  * Return: whatever value is in %BPF_R0 at program exit
1679  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1680 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1681 {
1682 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1683 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1684 	static const void * const jumptable[256] __annotate_jump_table = {
1685 		[0 ... 255] = &&default_label,
1686 		/* Now overwrite non-defaults ... */
1687 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1688 		/* Non-UAPI available opcodes. */
1689 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1690 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1691 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1692 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1693 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1694 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1695 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1696 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1697 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1698 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1699 	};
1700 #undef BPF_INSN_3_LBL
1701 #undef BPF_INSN_2_LBL
1702 	u32 tail_call_cnt = 0;
1703 
1704 #define CONT	 ({ insn++; goto select_insn; })
1705 #define CONT_JMP ({ insn++; goto select_insn; })
1706 
1707 select_insn:
1708 	goto *jumptable[insn->code];
1709 
1710 	/* Explicitly mask the register-based shift amounts with 63 or 31
1711 	 * to avoid undefined behavior. Normally this won't affect the
1712 	 * generated code, for example, in case of native 64 bit archs such
1713 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1714 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1715 	 * the BPF shift operations to machine instructions which produce
1716 	 * implementation-defined results in such a case; the resulting
1717 	 * contents of the register may be arbitrary, but program behaviour
1718 	 * as a whole remains defined. In other words, in case of JIT backends,
1719 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1720 	 */
1721 	/* ALU (shifts) */
1722 #define SHT(OPCODE, OP)					\
1723 	ALU64_##OPCODE##_X:				\
1724 		DST = DST OP (SRC & 63);		\
1725 		CONT;					\
1726 	ALU_##OPCODE##_X:				\
1727 		DST = (u32) DST OP ((u32) SRC & 31);	\
1728 		CONT;					\
1729 	ALU64_##OPCODE##_K:				\
1730 		DST = DST OP IMM;			\
1731 		CONT;					\
1732 	ALU_##OPCODE##_K:				\
1733 		DST = (u32) DST OP (u32) IMM;		\
1734 		CONT;
1735 	/* ALU (rest) */
1736 #define ALU(OPCODE, OP)					\
1737 	ALU64_##OPCODE##_X:				\
1738 		DST = DST OP SRC;			\
1739 		CONT;					\
1740 	ALU_##OPCODE##_X:				\
1741 		DST = (u32) DST OP (u32) SRC;		\
1742 		CONT;					\
1743 	ALU64_##OPCODE##_K:				\
1744 		DST = DST OP IMM;			\
1745 		CONT;					\
1746 	ALU_##OPCODE##_K:				\
1747 		DST = (u32) DST OP (u32) IMM;		\
1748 		CONT;
1749 	ALU(ADD,  +)
1750 	ALU(SUB,  -)
1751 	ALU(AND,  &)
1752 	ALU(OR,   |)
1753 	ALU(XOR,  ^)
1754 	ALU(MUL,  *)
1755 	SHT(LSH, <<)
1756 	SHT(RSH, >>)
1757 #undef SHT
1758 #undef ALU
1759 	ALU_NEG:
1760 		DST = (u32) -DST;
1761 		CONT;
1762 	ALU64_NEG:
1763 		DST = -DST;
1764 		CONT;
1765 	ALU_MOV_X:
1766 		switch (OFF) {
1767 		case 0:
1768 			DST = (u32) SRC;
1769 			break;
1770 		case 8:
1771 			DST = (u32)(s8) SRC;
1772 			break;
1773 		case 16:
1774 			DST = (u32)(s16) SRC;
1775 			break;
1776 		}
1777 		CONT;
1778 	ALU_MOV_K:
1779 		DST = (u32) IMM;
1780 		CONT;
1781 	ALU64_MOV_X:
1782 		switch (OFF) {
1783 		case 0:
1784 			DST = SRC;
1785 			break;
1786 		case 8:
1787 			DST = (s8) SRC;
1788 			break;
1789 		case 16:
1790 			DST = (s16) SRC;
1791 			break;
1792 		case 32:
1793 			DST = (s32) SRC;
1794 			break;
1795 		}
1796 		CONT;
1797 	ALU64_MOV_K:
1798 		DST = IMM;
1799 		CONT;
1800 	LD_IMM_DW:
1801 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1802 		insn++;
1803 		CONT;
1804 	ALU_ARSH_X:
1805 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1806 		CONT;
1807 	ALU_ARSH_K:
1808 		DST = (u64) (u32) (((s32) DST) >> IMM);
1809 		CONT;
1810 	ALU64_ARSH_X:
1811 		(*(s64 *) &DST) >>= (SRC & 63);
1812 		CONT;
1813 	ALU64_ARSH_K:
1814 		(*(s64 *) &DST) >>= IMM;
1815 		CONT;
1816 	ALU64_MOD_X:
1817 		switch (OFF) {
1818 		case 0:
1819 			div64_u64_rem(DST, SRC, &AX);
1820 			DST = AX;
1821 			break;
1822 		case 1:
1823 			AX = div64_s64(DST, SRC);
1824 			DST = DST - AX * SRC;
1825 			break;
1826 		}
1827 		CONT;
1828 	ALU_MOD_X:
1829 		switch (OFF) {
1830 		case 0:
1831 			AX = (u32) DST;
1832 			DST = do_div(AX, (u32) SRC);
1833 			break;
1834 		case 1:
1835 			AX = abs((s32)DST);
1836 			AX = do_div(AX, abs((s32)SRC));
1837 			if ((s32)DST < 0)
1838 				DST = (u32)-AX;
1839 			else
1840 				DST = (u32)AX;
1841 			break;
1842 		}
1843 		CONT;
1844 	ALU64_MOD_K:
1845 		switch (OFF) {
1846 		case 0:
1847 			div64_u64_rem(DST, IMM, &AX);
1848 			DST = AX;
1849 			break;
1850 		case 1:
1851 			AX = div64_s64(DST, IMM);
1852 			DST = DST - AX * IMM;
1853 			break;
1854 		}
1855 		CONT;
1856 	ALU_MOD_K:
1857 		switch (OFF) {
1858 		case 0:
1859 			AX = (u32) DST;
1860 			DST = do_div(AX, (u32) IMM);
1861 			break;
1862 		case 1:
1863 			AX = abs((s32)DST);
1864 			AX = do_div(AX, abs((s32)IMM));
1865 			if ((s32)DST < 0)
1866 				DST = (u32)-AX;
1867 			else
1868 				DST = (u32)AX;
1869 			break;
1870 		}
1871 		CONT;
1872 	ALU64_DIV_X:
1873 		switch (OFF) {
1874 		case 0:
1875 			DST = div64_u64(DST, SRC);
1876 			break;
1877 		case 1:
1878 			DST = div64_s64(DST, SRC);
1879 			break;
1880 		}
1881 		CONT;
1882 	ALU_DIV_X:
1883 		switch (OFF) {
1884 		case 0:
1885 			AX = (u32) DST;
1886 			do_div(AX, (u32) SRC);
1887 			DST = (u32) AX;
1888 			break;
1889 		case 1:
1890 			AX = abs((s32)DST);
1891 			do_div(AX, abs((s32)SRC));
1892 			if (((s32)DST < 0) == ((s32)SRC < 0))
1893 				DST = (u32)AX;
1894 			else
1895 				DST = (u32)-AX;
1896 			break;
1897 		}
1898 		CONT;
1899 	ALU64_DIV_K:
1900 		switch (OFF) {
1901 		case 0:
1902 			DST = div64_u64(DST, IMM);
1903 			break;
1904 		case 1:
1905 			DST = div64_s64(DST, IMM);
1906 			break;
1907 		}
1908 		CONT;
1909 	ALU_DIV_K:
1910 		switch (OFF) {
1911 		case 0:
1912 			AX = (u32) DST;
1913 			do_div(AX, (u32) IMM);
1914 			DST = (u32) AX;
1915 			break;
1916 		case 1:
1917 			AX = abs((s32)DST);
1918 			do_div(AX, abs((s32)IMM));
1919 			if (((s32)DST < 0) == ((s32)IMM < 0))
1920 				DST = (u32)AX;
1921 			else
1922 				DST = (u32)-AX;
1923 			break;
1924 		}
1925 		CONT;
1926 	ALU_END_TO_BE:
1927 		switch (IMM) {
1928 		case 16:
1929 			DST = (__force u16) cpu_to_be16(DST);
1930 			break;
1931 		case 32:
1932 			DST = (__force u32) cpu_to_be32(DST);
1933 			break;
1934 		case 64:
1935 			DST = (__force u64) cpu_to_be64(DST);
1936 			break;
1937 		}
1938 		CONT;
1939 	ALU_END_TO_LE:
1940 		switch (IMM) {
1941 		case 16:
1942 			DST = (__force u16) cpu_to_le16(DST);
1943 			break;
1944 		case 32:
1945 			DST = (__force u32) cpu_to_le32(DST);
1946 			break;
1947 		case 64:
1948 			DST = (__force u64) cpu_to_le64(DST);
1949 			break;
1950 		}
1951 		CONT;
1952 	ALU64_END_TO_LE:
1953 		switch (IMM) {
1954 		case 16:
1955 			DST = (__force u16) __swab16(DST);
1956 			break;
1957 		case 32:
1958 			DST = (__force u32) __swab32(DST);
1959 			break;
1960 		case 64:
1961 			DST = (__force u64) __swab64(DST);
1962 			break;
1963 		}
1964 		CONT;
1965 
1966 	/* CALL */
1967 	JMP_CALL:
1968 		/* Function call scratches BPF_R1-BPF_R5 registers,
1969 		 * preserves BPF_R6-BPF_R9, and stores return value
1970 		 * into BPF_R0.
1971 		 */
1972 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1973 						       BPF_R4, BPF_R5);
1974 		CONT;
1975 
1976 	JMP_CALL_ARGS:
1977 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1978 							    BPF_R3, BPF_R4,
1979 							    BPF_R5,
1980 							    insn + insn->off + 1);
1981 		CONT;
1982 
1983 	JMP_TAIL_CALL: {
1984 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1985 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1986 		struct bpf_prog *prog;
1987 		u32 index = BPF_R3;
1988 
1989 		if (unlikely(index >= array->map.max_entries))
1990 			goto out;
1991 
1992 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1993 			goto out;
1994 
1995 		tail_call_cnt++;
1996 
1997 		prog = READ_ONCE(array->ptrs[index]);
1998 		if (!prog)
1999 			goto out;
2000 
2001 		/* ARG1 at this point is guaranteed to point to CTX from
2002 		 * the verifier side due to the fact that the tail call is
2003 		 * handled like a helper, that is, bpf_tail_call_proto,
2004 		 * where arg1_type is ARG_PTR_TO_CTX.
2005 		 */
2006 		insn = prog->insnsi;
2007 		goto select_insn;
2008 out:
2009 		CONT;
2010 	}
2011 	JMP_JA:
2012 		insn += insn->off;
2013 		CONT;
2014 	JMP32_JA:
2015 		insn += insn->imm;
2016 		CONT;
2017 	JMP_EXIT:
2018 		return BPF_R0;
2019 	/* JMP */
2020 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2021 	JMP_##OPCODE##_X:					\
2022 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2023 			insn += insn->off;			\
2024 			CONT_JMP;				\
2025 		}						\
2026 		CONT;						\
2027 	JMP32_##OPCODE##_X:					\
2028 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2029 			insn += insn->off;			\
2030 			CONT_JMP;				\
2031 		}						\
2032 		CONT;						\
2033 	JMP_##OPCODE##_K:					\
2034 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2035 			insn += insn->off;			\
2036 			CONT_JMP;				\
2037 		}						\
2038 		CONT;						\
2039 	JMP32_##OPCODE##_K:					\
2040 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2041 			insn += insn->off;			\
2042 			CONT_JMP;				\
2043 		}						\
2044 		CONT;
2045 	COND_JMP(u, JEQ, ==)
2046 	COND_JMP(u, JNE, !=)
2047 	COND_JMP(u, JGT, >)
2048 	COND_JMP(u, JLT, <)
2049 	COND_JMP(u, JGE, >=)
2050 	COND_JMP(u, JLE, <=)
2051 	COND_JMP(u, JSET, &)
2052 	COND_JMP(s, JSGT, >)
2053 	COND_JMP(s, JSLT, <)
2054 	COND_JMP(s, JSGE, >=)
2055 	COND_JMP(s, JSLE, <=)
2056 #undef COND_JMP
2057 	/* ST, STX and LDX*/
2058 	ST_NOSPEC:
2059 		/* Speculation barrier for mitigating Speculative Store Bypass.
2060 		 * In case of arm64, we rely on the firmware mitigation as
2061 		 * controlled via the ssbd kernel parameter. Whenever the
2062 		 * mitigation is enabled, it works for all of the kernel code
2063 		 * with no need to provide any additional instructions here.
2064 		 * In case of x86, we use 'lfence' insn for mitigation. We
2065 		 * reuse preexisting logic from Spectre v1 mitigation that
2066 		 * happens to produce the required code on x86 for v4 as well.
2067 		 */
2068 		barrier_nospec();
2069 		CONT;
2070 #define LDST(SIZEOP, SIZE)						\
2071 	STX_MEM_##SIZEOP:						\
2072 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2073 		CONT;							\
2074 	ST_MEM_##SIZEOP:						\
2075 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2076 		CONT;							\
2077 	LDX_MEM_##SIZEOP:						\
2078 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2079 		CONT;							\
2080 	LDX_PROBE_MEM_##SIZEOP:						\
2081 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2082 			      (const void *)(long) (SRC + insn->off));	\
2083 		DST = *((SIZE *)&DST);					\
2084 		CONT;
2085 
2086 	LDST(B,   u8)
2087 	LDST(H,  u16)
2088 	LDST(W,  u32)
2089 	LDST(DW, u64)
2090 #undef LDST
2091 
2092 #define LDSX(SIZEOP, SIZE)						\
2093 	LDX_MEMSX_##SIZEOP:						\
2094 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2095 		CONT;							\
2096 	LDX_PROBE_MEMSX_##SIZEOP:					\
2097 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2098 				      (const void *)(long) (SRC + insn->off));	\
2099 		DST = *((SIZE *)&DST);					\
2100 		CONT;
2101 
2102 	LDSX(B,   s8)
2103 	LDSX(H,  s16)
2104 	LDSX(W,  s32)
2105 #undef LDSX
2106 
2107 #define ATOMIC_ALU_OP(BOP, KOP)						\
2108 		case BOP:						\
2109 			if (BPF_SIZE(insn->code) == BPF_W)		\
2110 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2111 					     (DST + insn->off));	\
2112 			else						\
2113 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2114 					       (DST + insn->off));	\
2115 			break;						\
2116 		case BOP | BPF_FETCH:					\
2117 			if (BPF_SIZE(insn->code) == BPF_W)		\
2118 				SRC = (u32) atomic_fetch_##KOP(		\
2119 					(u32) SRC,			\
2120 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2121 			else						\
2122 				SRC = (u64) atomic64_fetch_##KOP(	\
2123 					(u64) SRC,			\
2124 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2125 			break;
2126 
2127 	STX_ATOMIC_DW:
2128 	STX_ATOMIC_W:
2129 		switch (IMM) {
2130 		ATOMIC_ALU_OP(BPF_ADD, add)
2131 		ATOMIC_ALU_OP(BPF_AND, and)
2132 		ATOMIC_ALU_OP(BPF_OR, or)
2133 		ATOMIC_ALU_OP(BPF_XOR, xor)
2134 #undef ATOMIC_ALU_OP
2135 
2136 		case BPF_XCHG:
2137 			if (BPF_SIZE(insn->code) == BPF_W)
2138 				SRC = (u32) atomic_xchg(
2139 					(atomic_t *)(unsigned long) (DST + insn->off),
2140 					(u32) SRC);
2141 			else
2142 				SRC = (u64) atomic64_xchg(
2143 					(atomic64_t *)(unsigned long) (DST + insn->off),
2144 					(u64) SRC);
2145 			break;
2146 		case BPF_CMPXCHG:
2147 			if (BPF_SIZE(insn->code) == BPF_W)
2148 				BPF_R0 = (u32) atomic_cmpxchg(
2149 					(atomic_t *)(unsigned long) (DST + insn->off),
2150 					(u32) BPF_R0, (u32) SRC);
2151 			else
2152 				BPF_R0 = (u64) atomic64_cmpxchg(
2153 					(atomic64_t *)(unsigned long) (DST + insn->off),
2154 					(u64) BPF_R0, (u64) SRC);
2155 			break;
2156 
2157 		default:
2158 			goto default_label;
2159 		}
2160 		CONT;
2161 
2162 	default_label:
2163 		/* If we ever reach this, we have a bug somewhere. Die hard here
2164 		 * instead of just returning 0; we could be somewhere in a subprog,
2165 		 * so execution could continue otherwise which we do /not/ want.
2166 		 *
2167 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2168 		 */
2169 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2170 			insn->code, insn->imm);
2171 		BUG_ON(1);
2172 		return 0;
2173 }
2174 
2175 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2176 #define DEFINE_BPF_PROG_RUN(stack_size) \
2177 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2178 { \
2179 	u64 stack[stack_size / sizeof(u64)]; \
2180 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2181 \
2182 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2183 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2184 	ARG1 = (u64) (unsigned long) ctx; \
2185 	return ___bpf_prog_run(regs, insn); \
2186 }
2187 
2188 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2189 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2190 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2191 				      const struct bpf_insn *insn) \
2192 { \
2193 	u64 stack[stack_size / sizeof(u64)]; \
2194 	u64 regs[MAX_BPF_EXT_REG]; \
2195 \
2196 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2197 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2198 	BPF_R1 = r1; \
2199 	BPF_R2 = r2; \
2200 	BPF_R3 = r3; \
2201 	BPF_R4 = r4; \
2202 	BPF_R5 = r5; \
2203 	return ___bpf_prog_run(regs, insn); \
2204 }
2205 
2206 #define EVAL1(FN, X) FN(X)
2207 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2208 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2209 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2210 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2211 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2212 
2213 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2214 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2215 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2216 
2217 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2218 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2219 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2220 
2221 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2222 
2223 static unsigned int (*interpreters[])(const void *ctx,
2224 				      const struct bpf_insn *insn) = {
2225 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2226 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2227 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2228 };
2229 #undef PROG_NAME_LIST
2230 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2231 static __maybe_unused
2232 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2233 			   const struct bpf_insn *insn) = {
2234 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2235 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2236 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2237 };
2238 #undef PROG_NAME_LIST
2239 
2240 #ifdef CONFIG_BPF_SYSCALL
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2241 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2242 {
2243 	stack_depth = max_t(u32, stack_depth, 1);
2244 	insn->off = (s16) insn->imm;
2245 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2246 		__bpf_call_base_args;
2247 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2248 }
2249 #endif
2250 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2251 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2252 					 const struct bpf_insn *insn)
2253 {
2254 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2255 	 * is not working properly, so warn about it!
2256 	 */
2257 	WARN_ON_ONCE(1);
2258 	return 0;
2259 }
2260 #endif
2261 
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2262 bool bpf_prog_map_compatible(struct bpf_map *map,
2263 			     const struct bpf_prog *fp)
2264 {
2265 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2266 	bool ret;
2267 	struct bpf_prog_aux *aux = fp->aux;
2268 
2269 	if (fp->kprobe_override)
2270 		return false;
2271 
2272 	/* XDP programs inserted into maps are not guaranteed to run on
2273 	 * a particular netdev (and can run outside driver context entirely
2274 	 * in the case of devmap and cpumap). Until device checks
2275 	 * are implemented, prohibit adding dev-bound programs to program maps.
2276 	 */
2277 	if (bpf_prog_is_dev_bound(aux))
2278 		return false;
2279 
2280 	spin_lock(&map->owner.lock);
2281 	if (!map->owner.type) {
2282 		/* There's no owner yet where we could check for
2283 		 * compatibility.
2284 		 */
2285 		map->owner.type  = prog_type;
2286 		map->owner.jited = fp->jited;
2287 		map->owner.xdp_has_frags = aux->xdp_has_frags;
2288 		map->owner.attach_func_proto = aux->attach_func_proto;
2289 		ret = true;
2290 	} else {
2291 		ret = map->owner.type  == prog_type &&
2292 		      map->owner.jited == fp->jited &&
2293 		      map->owner.xdp_has_frags == aux->xdp_has_frags;
2294 		if (ret &&
2295 		    map->owner.attach_func_proto != aux->attach_func_proto) {
2296 			switch (prog_type) {
2297 			case BPF_PROG_TYPE_TRACING:
2298 			case BPF_PROG_TYPE_LSM:
2299 			case BPF_PROG_TYPE_EXT:
2300 			case BPF_PROG_TYPE_STRUCT_OPS:
2301 				ret = false;
2302 				break;
2303 			default:
2304 				break;
2305 			}
2306 		}
2307 	}
2308 	spin_unlock(&map->owner.lock);
2309 
2310 	return ret;
2311 }
2312 
bpf_check_tail_call(const struct bpf_prog * fp)2313 static int bpf_check_tail_call(const struct bpf_prog *fp)
2314 {
2315 	struct bpf_prog_aux *aux = fp->aux;
2316 	int i, ret = 0;
2317 
2318 	mutex_lock(&aux->used_maps_mutex);
2319 	for (i = 0; i < aux->used_map_cnt; i++) {
2320 		struct bpf_map *map = aux->used_maps[i];
2321 
2322 		if (!map_type_contains_progs(map))
2323 			continue;
2324 
2325 		if (!bpf_prog_map_compatible(map, fp)) {
2326 			ret = -EINVAL;
2327 			goto out;
2328 		}
2329 	}
2330 
2331 out:
2332 	mutex_unlock(&aux->used_maps_mutex);
2333 	return ret;
2334 }
2335 
bpf_prog_select_func(struct bpf_prog * fp)2336 static void bpf_prog_select_func(struct bpf_prog *fp)
2337 {
2338 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2339 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2340 
2341 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2342 #else
2343 	fp->bpf_func = __bpf_prog_ret0_warn;
2344 #endif
2345 }
2346 
2347 /**
2348  *	bpf_prog_select_runtime - select exec runtime for BPF program
2349  *	@fp: bpf_prog populated with BPF program
2350  *	@err: pointer to error variable
2351  *
2352  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2353  * The BPF program will be executed via bpf_prog_run() function.
2354  *
2355  * Return: the &fp argument along with &err set to 0 for success or
2356  * a negative errno code on failure
2357  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2358 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2359 {
2360 	/* In case of BPF to BPF calls, verifier did all the prep
2361 	 * work with regards to JITing, etc.
2362 	 */
2363 	bool jit_needed = false;
2364 
2365 	if (fp->bpf_func)
2366 		goto finalize;
2367 
2368 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2369 	    bpf_prog_has_kfunc_call(fp))
2370 		jit_needed = true;
2371 
2372 	bpf_prog_select_func(fp);
2373 
2374 	/* eBPF JITs can rewrite the program in case constant
2375 	 * blinding is active. However, in case of error during
2376 	 * blinding, bpf_int_jit_compile() must always return a
2377 	 * valid program, which in this case would simply not
2378 	 * be JITed, but falls back to the interpreter.
2379 	 */
2380 	if (!bpf_prog_is_offloaded(fp->aux)) {
2381 		*err = bpf_prog_alloc_jited_linfo(fp);
2382 		if (*err)
2383 			return fp;
2384 
2385 		fp = bpf_int_jit_compile(fp);
2386 		bpf_prog_jit_attempt_done(fp);
2387 		if (!fp->jited && jit_needed) {
2388 			*err = -ENOTSUPP;
2389 			return fp;
2390 		}
2391 	} else {
2392 		*err = bpf_prog_offload_compile(fp);
2393 		if (*err)
2394 			return fp;
2395 	}
2396 
2397 finalize:
2398 	bpf_prog_lock_ro(fp);
2399 
2400 	/* The tail call compatibility check can only be done at
2401 	 * this late stage as we need to determine, if we deal
2402 	 * with JITed or non JITed program concatenations and not
2403 	 * all eBPF JITs might immediately support all features.
2404 	 */
2405 	*err = bpf_check_tail_call(fp);
2406 
2407 	return fp;
2408 }
2409 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2410 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2411 static unsigned int __bpf_prog_ret1(const void *ctx,
2412 				    const struct bpf_insn *insn)
2413 {
2414 	return 1;
2415 }
2416 
2417 static struct bpf_prog_dummy {
2418 	struct bpf_prog prog;
2419 } dummy_bpf_prog = {
2420 	.prog = {
2421 		.bpf_func = __bpf_prog_ret1,
2422 	},
2423 };
2424 
2425 struct bpf_empty_prog_array bpf_empty_prog_array = {
2426 	.null_prog = NULL,
2427 };
2428 EXPORT_SYMBOL(bpf_empty_prog_array);
2429 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2430 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2431 {
2432 	if (prog_cnt)
2433 		return kzalloc(sizeof(struct bpf_prog_array) +
2434 			       sizeof(struct bpf_prog_array_item) *
2435 			       (prog_cnt + 1),
2436 			       flags);
2437 
2438 	return &bpf_empty_prog_array.hdr;
2439 }
2440 
bpf_prog_array_free(struct bpf_prog_array * progs)2441 void bpf_prog_array_free(struct bpf_prog_array *progs)
2442 {
2443 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2444 		return;
2445 	kfree_rcu(progs, rcu);
2446 }
2447 
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2448 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2449 {
2450 	struct bpf_prog_array *progs;
2451 
2452 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2453 	 * no need to call kfree_rcu(), just call kfree() directly.
2454 	 */
2455 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2456 	if (rcu_trace_implies_rcu_gp())
2457 		kfree(progs);
2458 	else
2459 		kfree_rcu(progs, rcu);
2460 }
2461 
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2462 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2463 {
2464 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2465 		return;
2466 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2467 }
2468 
bpf_prog_array_length(struct bpf_prog_array * array)2469 int bpf_prog_array_length(struct bpf_prog_array *array)
2470 {
2471 	struct bpf_prog_array_item *item;
2472 	u32 cnt = 0;
2473 
2474 	for (item = array->items; item->prog; item++)
2475 		if (item->prog != &dummy_bpf_prog.prog)
2476 			cnt++;
2477 	return cnt;
2478 }
2479 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2480 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2481 {
2482 	struct bpf_prog_array_item *item;
2483 
2484 	for (item = array->items; item->prog; item++)
2485 		if (item->prog != &dummy_bpf_prog.prog)
2486 			return false;
2487 	return true;
2488 }
2489 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2490 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2491 				     u32 *prog_ids,
2492 				     u32 request_cnt)
2493 {
2494 	struct bpf_prog_array_item *item;
2495 	int i = 0;
2496 
2497 	for (item = array->items; item->prog; item++) {
2498 		if (item->prog == &dummy_bpf_prog.prog)
2499 			continue;
2500 		prog_ids[i] = item->prog->aux->id;
2501 		if (++i == request_cnt) {
2502 			item++;
2503 			break;
2504 		}
2505 	}
2506 
2507 	return !!(item->prog);
2508 }
2509 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2510 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2511 				__u32 __user *prog_ids, u32 cnt)
2512 {
2513 	unsigned long err = 0;
2514 	bool nospc;
2515 	u32 *ids;
2516 
2517 	/* users of this function are doing:
2518 	 * cnt = bpf_prog_array_length();
2519 	 * if (cnt > 0)
2520 	 *     bpf_prog_array_copy_to_user(..., cnt);
2521 	 * so below kcalloc doesn't need extra cnt > 0 check.
2522 	 */
2523 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2524 	if (!ids)
2525 		return -ENOMEM;
2526 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2527 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2528 	kfree(ids);
2529 	if (err)
2530 		return -EFAULT;
2531 	if (nospc)
2532 		return -ENOSPC;
2533 	return 0;
2534 }
2535 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2536 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2537 				struct bpf_prog *old_prog)
2538 {
2539 	struct bpf_prog_array_item *item;
2540 
2541 	for (item = array->items; item->prog; item++)
2542 		if (item->prog == old_prog) {
2543 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2544 			break;
2545 		}
2546 }
2547 
2548 /**
2549  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2550  *                                   index into the program array with
2551  *                                   a dummy no-op program.
2552  * @array: a bpf_prog_array
2553  * @index: the index of the program to replace
2554  *
2555  * Skips over dummy programs, by not counting them, when calculating
2556  * the position of the program to replace.
2557  *
2558  * Return:
2559  * * 0		- Success
2560  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2561  * * -ENOENT	- Index out of range
2562  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2563 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2564 {
2565 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2566 }
2567 
2568 /**
2569  * bpf_prog_array_update_at() - Updates the program at the given index
2570  *                              into the program array.
2571  * @array: a bpf_prog_array
2572  * @index: the index of the program to update
2573  * @prog: the program to insert into the array
2574  *
2575  * Skips over dummy programs, by not counting them, when calculating
2576  * the position of the program to update.
2577  *
2578  * Return:
2579  * * 0		- Success
2580  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2581  * * -ENOENT	- Index out of range
2582  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2583 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2584 			     struct bpf_prog *prog)
2585 {
2586 	struct bpf_prog_array_item *item;
2587 
2588 	if (unlikely(index < 0))
2589 		return -EINVAL;
2590 
2591 	for (item = array->items; item->prog; item++) {
2592 		if (item->prog == &dummy_bpf_prog.prog)
2593 			continue;
2594 		if (!index) {
2595 			WRITE_ONCE(item->prog, prog);
2596 			return 0;
2597 		}
2598 		index--;
2599 	}
2600 	return -ENOENT;
2601 }
2602 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2603 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2604 			struct bpf_prog *exclude_prog,
2605 			struct bpf_prog *include_prog,
2606 			u64 bpf_cookie,
2607 			struct bpf_prog_array **new_array)
2608 {
2609 	int new_prog_cnt, carry_prog_cnt = 0;
2610 	struct bpf_prog_array_item *existing, *new;
2611 	struct bpf_prog_array *array;
2612 	bool found_exclude = false;
2613 
2614 	/* Figure out how many existing progs we need to carry over to
2615 	 * the new array.
2616 	 */
2617 	if (old_array) {
2618 		existing = old_array->items;
2619 		for (; existing->prog; existing++) {
2620 			if (existing->prog == exclude_prog) {
2621 				found_exclude = true;
2622 				continue;
2623 			}
2624 			if (existing->prog != &dummy_bpf_prog.prog)
2625 				carry_prog_cnt++;
2626 			if (existing->prog == include_prog)
2627 				return -EEXIST;
2628 		}
2629 	}
2630 
2631 	if (exclude_prog && !found_exclude)
2632 		return -ENOENT;
2633 
2634 	/* How many progs (not NULL) will be in the new array? */
2635 	new_prog_cnt = carry_prog_cnt;
2636 	if (include_prog)
2637 		new_prog_cnt += 1;
2638 
2639 	/* Do we have any prog (not NULL) in the new array? */
2640 	if (!new_prog_cnt) {
2641 		*new_array = NULL;
2642 		return 0;
2643 	}
2644 
2645 	/* +1 as the end of prog_array is marked with NULL */
2646 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2647 	if (!array)
2648 		return -ENOMEM;
2649 	new = array->items;
2650 
2651 	/* Fill in the new prog array */
2652 	if (carry_prog_cnt) {
2653 		existing = old_array->items;
2654 		for (; existing->prog; existing++) {
2655 			if (existing->prog == exclude_prog ||
2656 			    existing->prog == &dummy_bpf_prog.prog)
2657 				continue;
2658 
2659 			new->prog = existing->prog;
2660 			new->bpf_cookie = existing->bpf_cookie;
2661 			new++;
2662 		}
2663 	}
2664 	if (include_prog) {
2665 		new->prog = include_prog;
2666 		new->bpf_cookie = bpf_cookie;
2667 		new++;
2668 	}
2669 	new->prog = NULL;
2670 	*new_array = array;
2671 	return 0;
2672 }
2673 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2674 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2675 			     u32 *prog_ids, u32 request_cnt,
2676 			     u32 *prog_cnt)
2677 {
2678 	u32 cnt = 0;
2679 
2680 	if (array)
2681 		cnt = bpf_prog_array_length(array);
2682 
2683 	*prog_cnt = cnt;
2684 
2685 	/* return early if user requested only program count or nothing to copy */
2686 	if (!request_cnt || !cnt)
2687 		return 0;
2688 
2689 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2690 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2691 								     : 0;
2692 }
2693 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2694 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2695 			  struct bpf_map **used_maps, u32 len)
2696 {
2697 	struct bpf_map *map;
2698 	bool sleepable;
2699 	u32 i;
2700 
2701 	sleepable = aux->sleepable;
2702 	for (i = 0; i < len; i++) {
2703 		map = used_maps[i];
2704 		if (map->ops->map_poke_untrack)
2705 			map->ops->map_poke_untrack(map, aux);
2706 		if (sleepable)
2707 			atomic64_dec(&map->sleepable_refcnt);
2708 		bpf_map_put(map);
2709 	}
2710 }
2711 
bpf_free_used_maps(struct bpf_prog_aux * aux)2712 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2713 {
2714 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2715 	kfree(aux->used_maps);
2716 }
2717 
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2718 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2719 			  struct btf_mod_pair *used_btfs, u32 len)
2720 {
2721 #ifdef CONFIG_BPF_SYSCALL
2722 	struct btf_mod_pair *btf_mod;
2723 	u32 i;
2724 
2725 	for (i = 0; i < len; i++) {
2726 		btf_mod = &used_btfs[i];
2727 		if (btf_mod->module)
2728 			module_put(btf_mod->module);
2729 		btf_put(btf_mod->btf);
2730 	}
2731 #endif
2732 }
2733 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2734 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2735 {
2736 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2737 	kfree(aux->used_btfs);
2738 }
2739 
bpf_prog_free_deferred(struct work_struct * work)2740 static void bpf_prog_free_deferred(struct work_struct *work)
2741 {
2742 	struct bpf_prog_aux *aux;
2743 	int i;
2744 
2745 	aux = container_of(work, struct bpf_prog_aux, work);
2746 #ifdef CONFIG_BPF_SYSCALL
2747 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2748 #endif
2749 #ifdef CONFIG_CGROUP_BPF
2750 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2751 		bpf_cgroup_atype_put(aux->cgroup_atype);
2752 #endif
2753 	bpf_free_used_maps(aux);
2754 	bpf_free_used_btfs(aux);
2755 	if (bpf_prog_is_dev_bound(aux))
2756 		bpf_prog_dev_bound_destroy(aux->prog);
2757 #ifdef CONFIG_PERF_EVENTS
2758 	if (aux->prog->has_callchain_buf)
2759 		put_callchain_buffers();
2760 #endif
2761 	if (aux->dst_trampoline)
2762 		bpf_trampoline_put(aux->dst_trampoline);
2763 	for (i = 0; i < aux->func_cnt; i++) {
2764 		/* We can just unlink the subprog poke descriptor table as
2765 		 * it was originally linked to the main program and is also
2766 		 * released along with it.
2767 		 */
2768 		aux->func[i]->aux->poke_tab = NULL;
2769 		bpf_jit_free(aux->func[i]);
2770 	}
2771 	if (aux->func_cnt) {
2772 		kfree(aux->func);
2773 		bpf_prog_unlock_free(aux->prog);
2774 	} else {
2775 		bpf_jit_free(aux->prog);
2776 	}
2777 }
2778 
bpf_prog_free(struct bpf_prog * fp)2779 void bpf_prog_free(struct bpf_prog *fp)
2780 {
2781 	struct bpf_prog_aux *aux = fp->aux;
2782 
2783 	if (aux->dst_prog)
2784 		bpf_prog_put(aux->dst_prog);
2785 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2786 	schedule_work(&aux->work);
2787 }
2788 EXPORT_SYMBOL_GPL(bpf_prog_free);
2789 
2790 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2791 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2792 
bpf_user_rnd_init_once(void)2793 void bpf_user_rnd_init_once(void)
2794 {
2795 	prandom_init_once(&bpf_user_rnd_state);
2796 }
2797 
BPF_CALL_0(bpf_user_rnd_u32)2798 BPF_CALL_0(bpf_user_rnd_u32)
2799 {
2800 	/* Should someone ever have the rather unwise idea to use some
2801 	 * of the registers passed into this function, then note that
2802 	 * this function is called from native eBPF and classic-to-eBPF
2803 	 * transformations. Register assignments from both sides are
2804 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2805 	 */
2806 	struct rnd_state *state;
2807 	u32 res;
2808 
2809 	state = &get_cpu_var(bpf_user_rnd_state);
2810 	res = prandom_u32_state(state);
2811 	put_cpu_var(bpf_user_rnd_state);
2812 
2813 	return res;
2814 }
2815 
BPF_CALL_0(bpf_get_raw_cpu_id)2816 BPF_CALL_0(bpf_get_raw_cpu_id)
2817 {
2818 	return raw_smp_processor_id();
2819 }
2820 
2821 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2822 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2823 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2824 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2825 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2826 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2827 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2828 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2829 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2830 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2831 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2832 
2833 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2834 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2835 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2836 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2837 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2838 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2839 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2840 
2841 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2842 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2843 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2844 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2845 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2846 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2847 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2848 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2849 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2850 const struct bpf_func_proto bpf_set_retval_proto __weak;
2851 const struct bpf_func_proto bpf_get_retval_proto __weak;
2852 
bpf_get_trace_printk_proto(void)2853 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2854 {
2855 	return NULL;
2856 }
2857 
bpf_get_trace_vprintk_proto(void)2858 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2859 {
2860 	return NULL;
2861 }
2862 
2863 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2864 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2865 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2866 {
2867 	return -ENOTSUPP;
2868 }
2869 EXPORT_SYMBOL_GPL(bpf_event_output);
2870 
2871 /* Always built-in helper functions. */
2872 const struct bpf_func_proto bpf_tail_call_proto = {
2873 	.func		= NULL,
2874 	.gpl_only	= false,
2875 	.ret_type	= RET_VOID,
2876 	.arg1_type	= ARG_PTR_TO_CTX,
2877 	.arg2_type	= ARG_CONST_MAP_PTR,
2878 	.arg3_type	= ARG_ANYTHING,
2879 };
2880 
2881 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2882  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2883  * eBPF and implicitly also cBPF can get JITed!
2884  */
bpf_int_jit_compile(struct bpf_prog * prog)2885 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2886 {
2887 	return prog;
2888 }
2889 
2890 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2891  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2892  */
bpf_jit_compile(struct bpf_prog * prog)2893 void __weak bpf_jit_compile(struct bpf_prog *prog)
2894 {
2895 }
2896 
bpf_helper_changes_pkt_data(void * func)2897 bool __weak bpf_helper_changes_pkt_data(void *func)
2898 {
2899 	return false;
2900 }
2901 
2902 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2903  * analysis code and wants explicit zero extension inserted by verifier.
2904  * Otherwise, return FALSE.
2905  *
2906  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2907  * you don't override this. JITs that don't want these extra insns can detect
2908  * them using insn_is_zext.
2909  */
bpf_jit_needs_zext(void)2910 bool __weak bpf_jit_needs_zext(void)
2911 {
2912 	return false;
2913 }
2914 
2915 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2916 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2917 {
2918 	return false;
2919 }
2920 
bpf_jit_supports_kfunc_call(void)2921 bool __weak bpf_jit_supports_kfunc_call(void)
2922 {
2923 	return false;
2924 }
2925 
bpf_jit_supports_far_kfunc_call(void)2926 bool __weak bpf_jit_supports_far_kfunc_call(void)
2927 {
2928 	return false;
2929 }
2930 
2931 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2932  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2933  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2934 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2935 			 int len)
2936 {
2937 	return -EFAULT;
2938 }
2939 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2940 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2941 			      void *addr1, void *addr2)
2942 {
2943 	return -ENOTSUPP;
2944 }
2945 
bpf_arch_text_copy(void * dst,void * src,size_t len)2946 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2947 {
2948 	return ERR_PTR(-ENOTSUPP);
2949 }
2950 
bpf_arch_text_invalidate(void * dst,size_t len)2951 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2952 {
2953 	return -ENOTSUPP;
2954 }
2955 
2956 #ifdef CONFIG_BPF_SYSCALL
bpf_global_ma_init(void)2957 static int __init bpf_global_ma_init(void)
2958 {
2959 	int ret;
2960 
2961 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2962 	bpf_global_ma_set = !ret;
2963 	return ret;
2964 }
2965 late_initcall(bpf_global_ma_init);
2966 #endif
2967 
2968 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2969 EXPORT_SYMBOL(bpf_stats_enabled_key);
2970 
2971 /* All definitions of tracepoints related to BPF. */
2972 #define CREATE_TRACE_POINTS
2973 #include <linux/bpf_trace.h>
2974 
2975 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2976 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2977