1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma;
59 extern bool bpf_global_ma_set;
60
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 const struct seq_operations *seq_ops;
69 bpf_iter_init_seq_priv_t init_seq_private;
70 bpf_iter_fini_seq_priv_t fini_seq_private;
71 u32 seq_priv_size;
72 };
73
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 /* funcs callable from userspace (via syscall) */
77 int (*map_alloc_check)(union bpf_attr *attr);
78 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 void (*map_release)(struct bpf_map *map, struct file *map_file);
80 void (*map_free)(struct bpf_map *map);
81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 void (*map_release_uref)(struct bpf_map *map);
83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 union bpf_attr __user *uattr);
86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 void *value, u64 flags);
88 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 const union bpf_attr *attr,
90 union bpf_attr __user *uattr);
91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 const union bpf_attr *attr,
93 union bpf_attr __user *uattr);
94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 union bpf_attr __user *uattr);
96
97 /* funcs callable from userspace and from eBPF programs */
98 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 long (*map_delete_elem)(struct bpf_map *map, void *key);
101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 long (*map_pop_elem)(struct bpf_map *map, void *value);
103 long (*map_peek_elem)(struct bpf_map *map, void *value);
104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105
106 /* funcs called by prog_array and perf_event_array map */
107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 int fd);
109 /* If need_defer is true, the implementation should guarantee that
110 * the to-be-put element is still alive before the bpf program, which
111 * may manipulate it, exists.
112 */
113 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
114 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
115 u32 (*map_fd_sys_lookup_elem)(void *ptr);
116 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
117 struct seq_file *m);
118 int (*map_check_btf)(const struct bpf_map *map,
119 const struct btf *btf,
120 const struct btf_type *key_type,
121 const struct btf_type *value_type);
122
123 /* Prog poke tracking helpers. */
124 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
125 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
126 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
127 struct bpf_prog *new);
128
129 /* Direct value access helpers. */
130 int (*map_direct_value_addr)(const struct bpf_map *map,
131 u64 *imm, u32 off);
132 int (*map_direct_value_meta)(const struct bpf_map *map,
133 u64 imm, u32 *off);
134 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
135 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
136 struct poll_table_struct *pts);
137
138 /* Functions called by bpf_local_storage maps */
139 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
140 void *owner, u32 size);
141 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
142 void *owner, u32 size);
143 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
144
145 /* Misc helpers.*/
146 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
147
148 /* map_meta_equal must be implemented for maps that can be
149 * used as an inner map. It is a runtime check to ensure
150 * an inner map can be inserted to an outer map.
151 *
152 * Some properties of the inner map has been used during the
153 * verification time. When inserting an inner map at the runtime,
154 * map_meta_equal has to ensure the inserting map has the same
155 * properties that the verifier has used earlier.
156 */
157 bool (*map_meta_equal)(const struct bpf_map *meta0,
158 const struct bpf_map *meta1);
159
160
161 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
162 struct bpf_func_state *caller,
163 struct bpf_func_state *callee);
164 long (*map_for_each_callback)(struct bpf_map *map,
165 bpf_callback_t callback_fn,
166 void *callback_ctx, u64 flags);
167
168 u64 (*map_mem_usage)(const struct bpf_map *map);
169
170 /* BTF id of struct allocated by map_alloc */
171 int *map_btf_id;
172
173 /* bpf_iter info used to open a seq_file */
174 const struct bpf_iter_seq_info *iter_seq_info;
175 };
176
177 enum {
178 /* Support at most 10 fields in a BTF type */
179 BTF_FIELDS_MAX = 10,
180 };
181
182 enum btf_field_type {
183 BPF_SPIN_LOCK = (1 << 0),
184 BPF_TIMER = (1 << 1),
185 BPF_KPTR_UNREF = (1 << 2),
186 BPF_KPTR_REF = (1 << 3),
187 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF,
188 BPF_LIST_HEAD = (1 << 4),
189 BPF_LIST_NODE = (1 << 5),
190 BPF_RB_ROOT = (1 << 6),
191 BPF_RB_NODE = (1 << 7),
192 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
193 BPF_RB_NODE | BPF_RB_ROOT,
194 BPF_REFCOUNT = (1 << 8),
195 };
196
197 typedef void (*btf_dtor_kfunc_t)(void *);
198
199 struct btf_field_kptr {
200 struct btf *btf;
201 struct module *module;
202 /* dtor used if btf_is_kernel(btf), otherwise the type is
203 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
204 */
205 btf_dtor_kfunc_t dtor;
206 u32 btf_id;
207 };
208
209 struct btf_field_graph_root {
210 struct btf *btf;
211 u32 value_btf_id;
212 u32 node_offset;
213 struct btf_record *value_rec;
214 };
215
216 struct btf_field {
217 u32 offset;
218 u32 size;
219 enum btf_field_type type;
220 union {
221 struct btf_field_kptr kptr;
222 struct btf_field_graph_root graph_root;
223 };
224 };
225
226 struct btf_record {
227 u32 cnt;
228 u32 field_mask;
229 int spin_lock_off;
230 int timer_off;
231 int refcount_off;
232 struct btf_field fields[];
233 };
234
235 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
236 struct bpf_rb_node_kern {
237 struct rb_node rb_node;
238 void *owner;
239 } __attribute__((aligned(8)));
240
241 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
242 struct bpf_list_node_kern {
243 struct list_head list_head;
244 void *owner;
245 } __attribute__((aligned(8)));
246
247 struct bpf_map {
248 /* The first two cachelines with read-mostly members of which some
249 * are also accessed in fast-path (e.g. ops, max_entries).
250 */
251 const struct bpf_map_ops *ops ____cacheline_aligned;
252 struct bpf_map *inner_map_meta;
253 #ifdef CONFIG_SECURITY
254 void *security;
255 #endif
256 enum bpf_map_type map_type;
257 u32 key_size;
258 u32 value_size;
259 u32 max_entries;
260 u64 map_extra; /* any per-map-type extra fields */
261 u32 map_flags;
262 u32 id;
263 struct btf_record *record;
264 int numa_node;
265 u32 btf_key_type_id;
266 u32 btf_value_type_id;
267 u32 btf_vmlinux_value_type_id;
268 struct btf *btf;
269 #ifdef CONFIG_MEMCG_KMEM
270 struct obj_cgroup *objcg;
271 #endif
272 char name[BPF_OBJ_NAME_LEN];
273 /* The 3rd and 4th cacheline with misc members to avoid false sharing
274 * particularly with refcounting.
275 */
276 atomic64_t refcnt ____cacheline_aligned;
277 atomic64_t usercnt;
278 /* rcu is used before freeing and work is only used during freeing */
279 union {
280 struct work_struct work;
281 struct rcu_head rcu;
282 };
283 struct mutex freeze_mutex;
284 atomic64_t writecnt;
285 /* 'Ownership' of program-containing map is claimed by the first program
286 * that is going to use this map or by the first program which FD is
287 * stored in the map to make sure that all callers and callees have the
288 * same prog type, JITed flag and xdp_has_frags flag.
289 */
290 struct {
291 const struct btf_type *attach_func_proto;
292 spinlock_t lock;
293 enum bpf_prog_type type;
294 bool jited;
295 bool xdp_has_frags;
296 } owner;
297 bool bypass_spec_v1;
298 bool frozen; /* write-once; write-protected by freeze_mutex */
299 bool free_after_mult_rcu_gp;
300 bool free_after_rcu_gp;
301 atomic64_t sleepable_refcnt;
302 s64 __percpu *elem_count;
303 };
304
btf_field_type_name(enum btf_field_type type)305 static inline const char *btf_field_type_name(enum btf_field_type type)
306 {
307 switch (type) {
308 case BPF_SPIN_LOCK:
309 return "bpf_spin_lock";
310 case BPF_TIMER:
311 return "bpf_timer";
312 case BPF_KPTR_UNREF:
313 case BPF_KPTR_REF:
314 return "kptr";
315 case BPF_LIST_HEAD:
316 return "bpf_list_head";
317 case BPF_LIST_NODE:
318 return "bpf_list_node";
319 case BPF_RB_ROOT:
320 return "bpf_rb_root";
321 case BPF_RB_NODE:
322 return "bpf_rb_node";
323 case BPF_REFCOUNT:
324 return "bpf_refcount";
325 default:
326 WARN_ON_ONCE(1);
327 return "unknown";
328 }
329 }
330
btf_field_type_size(enum btf_field_type type)331 static inline u32 btf_field_type_size(enum btf_field_type type)
332 {
333 switch (type) {
334 case BPF_SPIN_LOCK:
335 return sizeof(struct bpf_spin_lock);
336 case BPF_TIMER:
337 return sizeof(struct bpf_timer);
338 case BPF_KPTR_UNREF:
339 case BPF_KPTR_REF:
340 return sizeof(u64);
341 case BPF_LIST_HEAD:
342 return sizeof(struct bpf_list_head);
343 case BPF_LIST_NODE:
344 return sizeof(struct bpf_list_node);
345 case BPF_RB_ROOT:
346 return sizeof(struct bpf_rb_root);
347 case BPF_RB_NODE:
348 return sizeof(struct bpf_rb_node);
349 case BPF_REFCOUNT:
350 return sizeof(struct bpf_refcount);
351 default:
352 WARN_ON_ONCE(1);
353 return 0;
354 }
355 }
356
btf_field_type_align(enum btf_field_type type)357 static inline u32 btf_field_type_align(enum btf_field_type type)
358 {
359 switch (type) {
360 case BPF_SPIN_LOCK:
361 return __alignof__(struct bpf_spin_lock);
362 case BPF_TIMER:
363 return __alignof__(struct bpf_timer);
364 case BPF_KPTR_UNREF:
365 case BPF_KPTR_REF:
366 return __alignof__(u64);
367 case BPF_LIST_HEAD:
368 return __alignof__(struct bpf_list_head);
369 case BPF_LIST_NODE:
370 return __alignof__(struct bpf_list_node);
371 case BPF_RB_ROOT:
372 return __alignof__(struct bpf_rb_root);
373 case BPF_RB_NODE:
374 return __alignof__(struct bpf_rb_node);
375 case BPF_REFCOUNT:
376 return __alignof__(struct bpf_refcount);
377 default:
378 WARN_ON_ONCE(1);
379 return 0;
380 }
381 }
382
bpf_obj_init_field(const struct btf_field * field,void * addr)383 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
384 {
385 memset(addr, 0, field->size);
386
387 switch (field->type) {
388 case BPF_REFCOUNT:
389 refcount_set((refcount_t *)addr, 1);
390 break;
391 case BPF_RB_NODE:
392 RB_CLEAR_NODE((struct rb_node *)addr);
393 break;
394 case BPF_LIST_HEAD:
395 case BPF_LIST_NODE:
396 INIT_LIST_HEAD((struct list_head *)addr);
397 break;
398 case BPF_RB_ROOT:
399 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
400 case BPF_SPIN_LOCK:
401 case BPF_TIMER:
402 case BPF_KPTR_UNREF:
403 case BPF_KPTR_REF:
404 break;
405 default:
406 WARN_ON_ONCE(1);
407 return;
408 }
409 }
410
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)411 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
412 {
413 if (IS_ERR_OR_NULL(rec))
414 return false;
415 return rec->field_mask & type;
416 }
417
bpf_obj_init(const struct btf_record * rec,void * obj)418 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
419 {
420 int i;
421
422 if (IS_ERR_OR_NULL(rec))
423 return;
424 for (i = 0; i < rec->cnt; i++)
425 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
426 }
427
428 /* 'dst' must be a temporary buffer and should not point to memory that is being
429 * used in parallel by a bpf program or bpf syscall, otherwise the access from
430 * the bpf program or bpf syscall may be corrupted by the reinitialization,
431 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
432 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
433 * program or bpf syscall.
434 */
check_and_init_map_value(struct bpf_map * map,void * dst)435 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
436 {
437 bpf_obj_init(map->record, dst);
438 }
439
440 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
441 * forced to use 'long' read/writes to try to atomically copy long counters.
442 * Best-effort only. No barriers here, since it _will_ race with concurrent
443 * updates from BPF programs. Called from bpf syscall and mostly used with
444 * size 8 or 16 bytes, so ask compiler to inline it.
445 */
bpf_long_memcpy(void * dst,const void * src,u32 size)446 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
447 {
448 const long *lsrc = src;
449 long *ldst = dst;
450
451 size /= sizeof(long);
452 while (size--)
453 data_race(*ldst++ = *lsrc++);
454 }
455
456 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)457 static inline void bpf_obj_memcpy(struct btf_record *rec,
458 void *dst, void *src, u32 size,
459 bool long_memcpy)
460 {
461 u32 curr_off = 0;
462 int i;
463
464 if (IS_ERR_OR_NULL(rec)) {
465 if (long_memcpy)
466 bpf_long_memcpy(dst, src, round_up(size, 8));
467 else
468 memcpy(dst, src, size);
469 return;
470 }
471
472 for (i = 0; i < rec->cnt; i++) {
473 u32 next_off = rec->fields[i].offset;
474 u32 sz = next_off - curr_off;
475
476 memcpy(dst + curr_off, src + curr_off, sz);
477 curr_off += rec->fields[i].size + sz;
478 }
479 memcpy(dst + curr_off, src + curr_off, size - curr_off);
480 }
481
copy_map_value(struct bpf_map * map,void * dst,void * src)482 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
483 {
484 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
485 }
486
copy_map_value_long(struct bpf_map * map,void * dst,void * src)487 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
488 {
489 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
490 }
491
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)492 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
493 {
494 u32 curr_off = 0;
495 int i;
496
497 if (IS_ERR_OR_NULL(rec)) {
498 memset(dst, 0, size);
499 return;
500 }
501
502 for (i = 0; i < rec->cnt; i++) {
503 u32 next_off = rec->fields[i].offset;
504 u32 sz = next_off - curr_off;
505
506 memset(dst + curr_off, 0, sz);
507 curr_off += rec->fields[i].size + sz;
508 }
509 memset(dst + curr_off, 0, size - curr_off);
510 }
511
zero_map_value(struct bpf_map * map,void * dst)512 static inline void zero_map_value(struct bpf_map *map, void *dst)
513 {
514 bpf_obj_memzero(map->record, dst, map->value_size);
515 }
516
517 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
518 bool lock_src);
519 void bpf_timer_cancel_and_free(void *timer);
520 void bpf_list_head_free(const struct btf_field *field, void *list_head,
521 struct bpf_spin_lock *spin_lock);
522 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
523 struct bpf_spin_lock *spin_lock);
524
525
526 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
527
528 struct bpf_offload_dev;
529 struct bpf_offloaded_map;
530
531 struct bpf_map_dev_ops {
532 int (*map_get_next_key)(struct bpf_offloaded_map *map,
533 void *key, void *next_key);
534 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
535 void *key, void *value);
536 int (*map_update_elem)(struct bpf_offloaded_map *map,
537 void *key, void *value, u64 flags);
538 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
539 };
540
541 struct bpf_offloaded_map {
542 struct bpf_map map;
543 struct net_device *netdev;
544 const struct bpf_map_dev_ops *dev_ops;
545 void *dev_priv;
546 struct list_head offloads;
547 };
548
map_to_offmap(struct bpf_map * map)549 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
550 {
551 return container_of(map, struct bpf_offloaded_map, map);
552 }
553
bpf_map_offload_neutral(const struct bpf_map * map)554 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
555 {
556 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
557 }
558
bpf_map_support_seq_show(const struct bpf_map * map)559 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
560 {
561 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
562 map->ops->map_seq_show_elem;
563 }
564
565 int map_check_no_btf(const struct bpf_map *map,
566 const struct btf *btf,
567 const struct btf_type *key_type,
568 const struct btf_type *value_type);
569
570 bool bpf_map_meta_equal(const struct bpf_map *meta0,
571 const struct bpf_map *meta1);
572
573 extern const struct bpf_map_ops bpf_map_offload_ops;
574
575 /* bpf_type_flag contains a set of flags that are applicable to the values of
576 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
577 * or a memory is read-only. We classify types into two categories: base types
578 * and extended types. Extended types are base types combined with a type flag.
579 *
580 * Currently there are no more than 32 base types in arg_type, ret_type and
581 * reg_types.
582 */
583 #define BPF_BASE_TYPE_BITS 8
584
585 enum bpf_type_flag {
586 /* PTR may be NULL. */
587 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
588
589 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
590 * compatible with both mutable and immutable memory.
591 */
592 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
593
594 /* MEM points to BPF ring buffer reservation. */
595 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
596
597 /* MEM is in user address space. */
598 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
599
600 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
601 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
602 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
603 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
604 * to the specified cpu.
605 */
606 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
607
608 /* Indicates that the argument will be released. */
609 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
610
611 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
612 * unreferenced and referenced kptr loaded from map value using a load
613 * instruction, so that they can only be dereferenced but not escape the
614 * BPF program into the kernel (i.e. cannot be passed as arguments to
615 * kfunc or bpf helpers).
616 */
617 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
618
619 /* MEM can be uninitialized. */
620 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
621
622 /* DYNPTR points to memory local to the bpf program. */
623 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
624
625 /* DYNPTR points to a kernel-produced ringbuf record. */
626 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
627
628 /* Size is known at compile time. */
629 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
630
631 /* MEM is of an allocated object of type in program BTF. This is used to
632 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
633 */
634 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
635
636 /* PTR was passed from the kernel in a trusted context, and may be
637 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
638 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
639 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
640 * without invoking bpf_kptr_xchg(). What we really need to know is
641 * whether a pointer is safe to pass to a kfunc or BPF helper function.
642 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
643 * helpers, they do not cover all possible instances of unsafe
644 * pointers. For example, a pointer that was obtained from walking a
645 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
646 * fact that it may be NULL, invalid, etc. This is due to backwards
647 * compatibility requirements, as this was the behavior that was first
648 * introduced when kptrs were added. The behavior is now considered
649 * deprecated, and PTR_UNTRUSTED will eventually be removed.
650 *
651 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
652 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
653 * For example, pointers passed to tracepoint arguments are considered
654 * PTR_TRUSTED, as are pointers that are passed to struct_ops
655 * callbacks. As alluded to above, pointers that are obtained from
656 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
657 * struct task_struct *task is PTR_TRUSTED, then accessing
658 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
659 * in a BPF register. Similarly, pointers passed to certain programs
660 * types such as kretprobes are not guaranteed to be valid, as they may
661 * for example contain an object that was recently freed.
662 */
663 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
664
665 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
666 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
667
668 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
669 * Currently only valid for linked-list and rbtree nodes. If the nodes
670 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
671 */
672 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
673
674 /* DYNPTR points to sk_buff */
675 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
676
677 /* DYNPTR points to xdp_buff */
678 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
679
680 /* Memory must be aligned on some architectures, used in combination with
681 * MEM_FIXED_SIZE.
682 */
683 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
684
685 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
686 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
687 * MEM_UNINIT means that memory needs to be initialized since it is also
688 * read.
689 */
690 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
691
692 __BPF_TYPE_FLAG_MAX,
693 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
694 };
695
696 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
697 | DYNPTR_TYPE_XDP)
698
699 /* Max number of base types. */
700 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
701
702 /* Max number of all types. */
703 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
704
705 /* function argument constraints */
706 enum bpf_arg_type {
707 ARG_DONTCARE = 0, /* unused argument in helper function */
708
709 /* the following constraints used to prototype
710 * bpf_map_lookup/update/delete_elem() functions
711 */
712 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
713 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
714 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
715
716 /* Used to prototype bpf_memcmp() and other functions that access data
717 * on eBPF program stack
718 */
719 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
720
721 ARG_CONST_SIZE, /* number of bytes accessed from memory */
722 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
723
724 ARG_PTR_TO_CTX, /* pointer to context */
725 ARG_ANYTHING, /* any (initialized) argument is ok */
726 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
727 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
728 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
729 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
730 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
731 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
732 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
733 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
734 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
735 ARG_PTR_TO_STACK, /* pointer to stack */
736 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
737 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
738 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
739 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
740 __BPF_ARG_TYPE_MAX,
741
742 /* Extended arg_types. */
743 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
744 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
745 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
746 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
747 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
748 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
749 /* Pointer to memory does not need to be initialized, since helper function
750 * fills all bytes or clears them in error case.
751 */
752 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
753 /* Pointer to valid memory of size known at compile time. */
754 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
755
756 /* This must be the last entry. Its purpose is to ensure the enum is
757 * wide enough to hold the higher bits reserved for bpf_type_flag.
758 */
759 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
760 };
761 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
762
763 /* type of values returned from helper functions */
764 enum bpf_return_type {
765 RET_INTEGER, /* function returns integer */
766 RET_VOID, /* function doesn't return anything */
767 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
768 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
769 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
770 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
771 RET_PTR_TO_MEM, /* returns a pointer to memory */
772 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
773 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
774 __BPF_RET_TYPE_MAX,
775
776 /* Extended ret_types. */
777 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
778 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
779 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
780 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
781 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
782 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
783 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
784 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
785
786 /* This must be the last entry. Its purpose is to ensure the enum is
787 * wide enough to hold the higher bits reserved for bpf_type_flag.
788 */
789 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
790 };
791 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
792
793 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
794 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
795 * instructions after verifying
796 */
797 struct bpf_func_proto {
798 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
799 bool gpl_only;
800 bool pkt_access;
801 bool might_sleep;
802 enum bpf_return_type ret_type;
803 union {
804 struct {
805 enum bpf_arg_type arg1_type;
806 enum bpf_arg_type arg2_type;
807 enum bpf_arg_type arg3_type;
808 enum bpf_arg_type arg4_type;
809 enum bpf_arg_type arg5_type;
810 };
811 enum bpf_arg_type arg_type[5];
812 };
813 union {
814 struct {
815 u32 *arg1_btf_id;
816 u32 *arg2_btf_id;
817 u32 *arg3_btf_id;
818 u32 *arg4_btf_id;
819 u32 *arg5_btf_id;
820 };
821 u32 *arg_btf_id[5];
822 struct {
823 size_t arg1_size;
824 size_t arg2_size;
825 size_t arg3_size;
826 size_t arg4_size;
827 size_t arg5_size;
828 };
829 size_t arg_size[5];
830 };
831 int *ret_btf_id; /* return value btf_id */
832 bool (*allowed)(const struct bpf_prog *prog);
833 };
834
835 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
836 * the first argument to eBPF programs.
837 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
838 */
839 struct bpf_context;
840
841 enum bpf_access_type {
842 BPF_READ = 1,
843 BPF_WRITE = 2
844 };
845
846 /* types of values stored in eBPF registers */
847 /* Pointer types represent:
848 * pointer
849 * pointer + imm
850 * pointer + (u16) var
851 * pointer + (u16) var + imm
852 * if (range > 0) then [ptr, ptr + range - off) is safe to access
853 * if (id > 0) means that some 'var' was added
854 * if (off > 0) means that 'imm' was added
855 */
856 enum bpf_reg_type {
857 NOT_INIT = 0, /* nothing was written into register */
858 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
859 PTR_TO_CTX, /* reg points to bpf_context */
860 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
861 PTR_TO_MAP_VALUE, /* reg points to map element value */
862 PTR_TO_MAP_KEY, /* reg points to a map element key */
863 PTR_TO_STACK, /* reg == frame_pointer + offset */
864 PTR_TO_PACKET_META, /* skb->data - meta_len */
865 PTR_TO_PACKET, /* reg points to skb->data */
866 PTR_TO_PACKET_END, /* skb->data + headlen */
867 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
868 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
869 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
870 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
871 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
872 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
873 /* PTR_TO_BTF_ID points to a kernel struct that does not need
874 * to be null checked by the BPF program. This does not imply the
875 * pointer is _not_ null and in practice this can easily be a null
876 * pointer when reading pointer chains. The assumption is program
877 * context will handle null pointer dereference typically via fault
878 * handling. The verifier must keep this in mind and can make no
879 * assumptions about null or non-null when doing branch analysis.
880 * Further, when passed into helpers the helpers can not, without
881 * additional context, assume the value is non-null.
882 */
883 PTR_TO_BTF_ID,
884 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
885 * been checked for null. Used primarily to inform the verifier
886 * an explicit null check is required for this struct.
887 */
888 PTR_TO_MEM, /* reg points to valid memory region */
889 PTR_TO_BUF, /* reg points to a read/write buffer */
890 PTR_TO_FUNC, /* reg points to a bpf program function */
891 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
892 __BPF_REG_TYPE_MAX,
893
894 /* Extended reg_types. */
895 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
896 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
897 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
898 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
899 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
900
901 /* This must be the last entry. Its purpose is to ensure the enum is
902 * wide enough to hold the higher bits reserved for bpf_type_flag.
903 */
904 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
905 };
906 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
907
908 /* The information passed from prog-specific *_is_valid_access
909 * back to the verifier.
910 */
911 struct bpf_insn_access_aux {
912 enum bpf_reg_type reg_type;
913 union {
914 int ctx_field_size;
915 struct {
916 struct btf *btf;
917 u32 btf_id;
918 };
919 };
920 struct bpf_verifier_log *log; /* for verbose logs */
921 };
922
923 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)924 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
925 {
926 aux->ctx_field_size = size;
927 }
928
bpf_is_ldimm64(const struct bpf_insn * insn)929 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
930 {
931 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
932 }
933
bpf_pseudo_func(const struct bpf_insn * insn)934 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
935 {
936 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
937 }
938
939 struct bpf_prog_ops {
940 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
941 union bpf_attr __user *uattr);
942 };
943
944 struct bpf_reg_state;
945 struct bpf_verifier_ops {
946 /* return eBPF function prototype for verification */
947 const struct bpf_func_proto *
948 (*get_func_proto)(enum bpf_func_id func_id,
949 const struct bpf_prog *prog);
950
951 /* return true if 'size' wide access at offset 'off' within bpf_context
952 * with 'type' (read or write) is allowed
953 */
954 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
955 const struct bpf_prog *prog,
956 struct bpf_insn_access_aux *info);
957 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
958 const struct bpf_prog *prog);
959 int (*gen_ld_abs)(const struct bpf_insn *orig,
960 struct bpf_insn *insn_buf);
961 u32 (*convert_ctx_access)(enum bpf_access_type type,
962 const struct bpf_insn *src,
963 struct bpf_insn *dst,
964 struct bpf_prog *prog, u32 *target_size);
965 int (*btf_struct_access)(struct bpf_verifier_log *log,
966 const struct bpf_reg_state *reg,
967 int off, int size);
968 };
969
970 struct bpf_prog_offload_ops {
971 /* verifier basic callbacks */
972 int (*insn_hook)(struct bpf_verifier_env *env,
973 int insn_idx, int prev_insn_idx);
974 int (*finalize)(struct bpf_verifier_env *env);
975 /* verifier optimization callbacks (called after .finalize) */
976 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
977 struct bpf_insn *insn);
978 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
979 /* program management callbacks */
980 int (*prepare)(struct bpf_prog *prog);
981 int (*translate)(struct bpf_prog *prog);
982 void (*destroy)(struct bpf_prog *prog);
983 };
984
985 struct bpf_prog_offload {
986 struct bpf_prog *prog;
987 struct net_device *netdev;
988 struct bpf_offload_dev *offdev;
989 void *dev_priv;
990 struct list_head offloads;
991 bool dev_state;
992 bool opt_failed;
993 void *jited_image;
994 u32 jited_len;
995 };
996
997 enum bpf_cgroup_storage_type {
998 BPF_CGROUP_STORAGE_SHARED,
999 BPF_CGROUP_STORAGE_PERCPU,
1000 __BPF_CGROUP_STORAGE_MAX
1001 };
1002
1003 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1004
1005 /* The longest tracepoint has 12 args.
1006 * See include/trace/bpf_probe.h
1007 */
1008 #define MAX_BPF_FUNC_ARGS 12
1009
1010 /* The maximum number of arguments passed through registers
1011 * a single function may have.
1012 */
1013 #define MAX_BPF_FUNC_REG_ARGS 5
1014
1015 /* The argument is a structure. */
1016 #define BTF_FMODEL_STRUCT_ARG BIT(0)
1017
1018 /* The argument is signed. */
1019 #define BTF_FMODEL_SIGNED_ARG BIT(1)
1020
1021 struct btf_func_model {
1022 u8 ret_size;
1023 u8 ret_flags;
1024 u8 nr_args;
1025 u8 arg_size[MAX_BPF_FUNC_ARGS];
1026 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1027 };
1028
1029 /* Restore arguments before returning from trampoline to let original function
1030 * continue executing. This flag is used for fentry progs when there are no
1031 * fexit progs.
1032 */
1033 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1034 /* Call original function after fentry progs, but before fexit progs.
1035 * Makes sense for fentry/fexit, normal calls and indirect calls.
1036 */
1037 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
1038 /* Skip current frame and return to parent. Makes sense for fentry/fexit
1039 * programs only. Should not be used with normal calls and indirect calls.
1040 */
1041 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1042 /* Store IP address of the caller on the trampoline stack,
1043 * so it's available for trampoline's programs.
1044 */
1045 #define BPF_TRAMP_F_IP_ARG BIT(3)
1046 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1047 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1048
1049 /* Get original function from stack instead of from provided direct address.
1050 * Makes sense for trampolines with fexit or fmod_ret programs.
1051 */
1052 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
1053
1054 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1055 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1056 */
1057 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1058
1059 /* Indicate that current trampoline is in a tail call context. Then, it has to
1060 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1061 */
1062 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1063
1064 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1065 * bytes on x86.
1066 */
1067 enum {
1068 #if defined(__s390x__)
1069 BPF_MAX_TRAMP_LINKS = 27,
1070 #else
1071 BPF_MAX_TRAMP_LINKS = 38,
1072 #endif
1073 };
1074
1075 struct bpf_tramp_links {
1076 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1077 int nr_links;
1078 };
1079
1080 struct bpf_tramp_run_ctx;
1081
1082 /* Different use cases for BPF trampoline:
1083 * 1. replace nop at the function entry (kprobe equivalent)
1084 * flags = BPF_TRAMP_F_RESTORE_REGS
1085 * fentry = a set of programs to run before returning from trampoline
1086 *
1087 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1088 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1089 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1090 * fentry = a set of program to run before calling original function
1091 * fexit = a set of program to run after original function
1092 *
1093 * 3. replace direct call instruction anywhere in the function body
1094 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1095 * With flags = 0
1096 * fentry = a set of programs to run before returning from trampoline
1097 * With flags = BPF_TRAMP_F_CALL_ORIG
1098 * orig_call = original callback addr or direct function addr
1099 * fentry = a set of program to run before calling original function
1100 * fexit = a set of program to run after original function
1101 */
1102 struct bpf_tramp_image;
1103 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1104 const struct btf_func_model *m, u32 flags,
1105 struct bpf_tramp_links *tlinks,
1106 void *orig_call);
1107 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1108 struct bpf_tramp_run_ctx *run_ctx);
1109 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1110 struct bpf_tramp_run_ctx *run_ctx);
1111 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1112 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1113 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1114 struct bpf_tramp_run_ctx *run_ctx);
1115 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1116 struct bpf_tramp_run_ctx *run_ctx);
1117 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1118 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1119
1120 struct bpf_ksym {
1121 unsigned long start;
1122 unsigned long end;
1123 char name[KSYM_NAME_LEN];
1124 struct list_head lnode;
1125 struct latch_tree_node tnode;
1126 bool prog;
1127 };
1128
1129 enum bpf_tramp_prog_type {
1130 BPF_TRAMP_FENTRY,
1131 BPF_TRAMP_FEXIT,
1132 BPF_TRAMP_MODIFY_RETURN,
1133 BPF_TRAMP_MAX,
1134 BPF_TRAMP_REPLACE, /* more than MAX */
1135 };
1136
1137 struct bpf_tramp_image {
1138 void *image;
1139 struct bpf_ksym ksym;
1140 struct percpu_ref pcref;
1141 void *ip_after_call;
1142 void *ip_epilogue;
1143 union {
1144 struct rcu_head rcu;
1145 struct work_struct work;
1146 };
1147 };
1148
1149 struct bpf_trampoline {
1150 /* hlist for trampoline_table */
1151 struct hlist_node hlist;
1152 struct ftrace_ops *fops;
1153 /* serializes access to fields of this trampoline */
1154 struct mutex mutex;
1155 refcount_t refcnt;
1156 u32 flags;
1157 u64 key;
1158 struct {
1159 struct btf_func_model model;
1160 void *addr;
1161 bool ftrace_managed;
1162 } func;
1163 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1164 * program by replacing one of its functions. func.addr is the address
1165 * of the function it replaced.
1166 */
1167 struct bpf_prog *extension_prog;
1168 /* list of BPF programs using this trampoline */
1169 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1170 /* Number of attached programs. A counter per kind. */
1171 int progs_cnt[BPF_TRAMP_MAX];
1172 /* Executable image of trampoline */
1173 struct bpf_tramp_image *cur_image;
1174 struct module *mod;
1175 };
1176
1177 struct bpf_attach_target_info {
1178 struct btf_func_model fmodel;
1179 long tgt_addr;
1180 struct module *tgt_mod;
1181 const char *tgt_name;
1182 const struct btf_type *tgt_type;
1183 };
1184
1185 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1186
1187 struct bpf_dispatcher_prog {
1188 struct bpf_prog *prog;
1189 refcount_t users;
1190 };
1191
1192 struct bpf_dispatcher {
1193 /* dispatcher mutex */
1194 struct mutex mutex;
1195 void *func;
1196 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1197 int num_progs;
1198 void *image;
1199 void *rw_image;
1200 u32 image_off;
1201 struct bpf_ksym ksym;
1202 #ifdef CONFIG_HAVE_STATIC_CALL
1203 struct static_call_key *sc_key;
1204 void *sc_tramp;
1205 #endif
1206 };
1207
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1208 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1209 const void *ctx,
1210 const struct bpf_insn *insnsi,
1211 bpf_func_t bpf_func)
1212 {
1213 return bpf_func(ctx, insnsi);
1214 }
1215
1216 /* the implementation of the opaque uapi struct bpf_dynptr */
1217 struct bpf_dynptr_kern {
1218 void *data;
1219 /* Size represents the number of usable bytes of dynptr data.
1220 * If for example the offset is at 4 for a local dynptr whose data is
1221 * of type u64, the number of usable bytes is 4.
1222 *
1223 * The upper 8 bits are reserved. It is as follows:
1224 * Bits 0 - 23 = size
1225 * Bits 24 - 30 = dynptr type
1226 * Bit 31 = whether dynptr is read-only
1227 */
1228 u32 size;
1229 u32 offset;
1230 } __aligned(8);
1231
1232 enum bpf_dynptr_type {
1233 BPF_DYNPTR_TYPE_INVALID,
1234 /* Points to memory that is local to the bpf program */
1235 BPF_DYNPTR_TYPE_LOCAL,
1236 /* Underlying data is a ringbuf record */
1237 BPF_DYNPTR_TYPE_RINGBUF,
1238 /* Underlying data is a sk_buff */
1239 BPF_DYNPTR_TYPE_SKB,
1240 /* Underlying data is a xdp_buff */
1241 BPF_DYNPTR_TYPE_XDP,
1242 };
1243
1244 int bpf_dynptr_check_size(u32 size);
1245 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1246
1247 #ifdef CONFIG_BPF_JIT
1248 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1249 struct bpf_trampoline *tr,
1250 struct bpf_prog *tgt_prog);
1251 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1252 struct bpf_trampoline *tr,
1253 struct bpf_prog *tgt_prog);
1254 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1255 struct bpf_attach_target_info *tgt_info);
1256 void bpf_trampoline_put(struct bpf_trampoline *tr);
1257 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1258
1259 /*
1260 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1261 * indirection with a direct call to the bpf program. If the architecture does
1262 * not have STATIC_CALL, avoid a double-indirection.
1263 */
1264 #ifdef CONFIG_HAVE_STATIC_CALL
1265
1266 #define __BPF_DISPATCHER_SC_INIT(_name) \
1267 .sc_key = &STATIC_CALL_KEY(_name), \
1268 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1269
1270 #define __BPF_DISPATCHER_SC(name) \
1271 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1272
1273 #define __BPF_DISPATCHER_CALL(name) \
1274 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1275
1276 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
1277 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1278
1279 #else
1280 #define __BPF_DISPATCHER_SC_INIT(name)
1281 #define __BPF_DISPATCHER_SC(name)
1282 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1283 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1284 #endif
1285
1286 #define BPF_DISPATCHER_INIT(_name) { \
1287 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1288 .func = &_name##_func, \
1289 .progs = {}, \
1290 .num_progs = 0, \
1291 .image = NULL, \
1292 .image_off = 0, \
1293 .ksym = { \
1294 .name = #_name, \
1295 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1296 }, \
1297 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1298 }
1299
1300 #define DEFINE_BPF_DISPATCHER(name) \
1301 __BPF_DISPATCHER_SC(name); \
1302 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1303 const void *ctx, \
1304 const struct bpf_insn *insnsi, \
1305 bpf_func_t bpf_func) \
1306 { \
1307 return __BPF_DISPATCHER_CALL(name); \
1308 } \
1309 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1310 struct bpf_dispatcher bpf_dispatcher_##name = \
1311 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1312
1313 #define DECLARE_BPF_DISPATCHER(name) \
1314 unsigned int bpf_dispatcher_##name##_func( \
1315 const void *ctx, \
1316 const struct bpf_insn *insnsi, \
1317 bpf_func_t bpf_func); \
1318 extern struct bpf_dispatcher bpf_dispatcher_##name;
1319
1320 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1321 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1322 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1323 struct bpf_prog *to);
1324 /* Called only from JIT-enabled code, so there's no need for stubs. */
1325 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1326 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1327 void bpf_ksym_add(struct bpf_ksym *ksym);
1328 void bpf_ksym_del(struct bpf_ksym *ksym);
1329 int bpf_jit_charge_modmem(u32 size);
1330 void bpf_jit_uncharge_modmem(u32 size);
1331 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1332 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1333 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1334 struct bpf_trampoline *tr,
1335 struct bpf_prog *tgt_prog)
1336 {
1337 return -ENOTSUPP;
1338 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1339 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1340 struct bpf_trampoline *tr,
1341 struct bpf_prog *tgt_prog)
1342 {
1343 return -ENOTSUPP;
1344 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1345 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1346 struct bpf_attach_target_info *tgt_info)
1347 {
1348 return NULL;
1349 }
bpf_trampoline_put(struct bpf_trampoline * tr)1350 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1351 #define DEFINE_BPF_DISPATCHER(name)
1352 #define DECLARE_BPF_DISPATCHER(name)
1353 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1354 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1355 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1356 struct bpf_prog *from,
1357 struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1358 static inline bool is_bpf_image_address(unsigned long address)
1359 {
1360 return false;
1361 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1362 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1363 {
1364 return false;
1365 }
1366 #endif
1367
1368 struct bpf_func_info_aux {
1369 u16 linkage;
1370 bool unreliable;
1371 };
1372
1373 enum bpf_jit_poke_reason {
1374 BPF_POKE_REASON_TAIL_CALL,
1375 };
1376
1377 /* Descriptor of pokes pointing /into/ the JITed image. */
1378 struct bpf_jit_poke_descriptor {
1379 void *tailcall_target;
1380 void *tailcall_bypass;
1381 void *bypass_addr;
1382 void *aux;
1383 union {
1384 struct {
1385 struct bpf_map *map;
1386 u32 key;
1387 } tail_call;
1388 };
1389 bool tailcall_target_stable;
1390 u8 adj_off;
1391 u16 reason;
1392 u32 insn_idx;
1393 };
1394
1395 /* reg_type info for ctx arguments */
1396 struct bpf_ctx_arg_aux {
1397 u32 offset;
1398 enum bpf_reg_type reg_type;
1399 u32 btf_id;
1400 };
1401
1402 struct btf_mod_pair {
1403 struct btf *btf;
1404 struct module *module;
1405 };
1406
1407 struct bpf_kfunc_desc_tab;
1408
1409 struct bpf_prog_aux {
1410 atomic64_t refcnt;
1411 u32 used_map_cnt;
1412 u32 used_btf_cnt;
1413 u32 max_ctx_offset;
1414 u32 max_pkt_offset;
1415 u32 max_tp_access;
1416 u32 stack_depth;
1417 u32 id;
1418 u32 func_cnt; /* used by non-func prog as the number of func progs */
1419 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1420 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1421 u32 ctx_arg_info_size;
1422 u32 max_rdonly_access;
1423 u32 max_rdwr_access;
1424 struct btf *attach_btf;
1425 const struct bpf_ctx_arg_aux *ctx_arg_info;
1426 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1427 struct bpf_prog *dst_prog;
1428 struct bpf_trampoline *dst_trampoline;
1429 enum bpf_prog_type saved_dst_prog_type;
1430 enum bpf_attach_type saved_dst_attach_type;
1431 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1432 bool dev_bound; /* Program is bound to the netdev. */
1433 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1434 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1435 bool func_proto_unreliable;
1436 bool sleepable;
1437 bool tail_call_reachable;
1438 bool xdp_has_frags;
1439 bool is_extended; /* true if extended by freplace program */
1440 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1441 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1442 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1443 const struct btf_type *attach_func_proto;
1444 /* function name for valid attach_btf_id */
1445 const char *attach_func_name;
1446 struct bpf_prog **func;
1447 void *jit_data; /* JIT specific data. arch dependent */
1448 struct bpf_jit_poke_descriptor *poke_tab;
1449 struct bpf_kfunc_desc_tab *kfunc_tab;
1450 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1451 u32 size_poke_tab;
1452 struct bpf_ksym ksym;
1453 const struct bpf_prog_ops *ops;
1454 struct bpf_map **used_maps;
1455 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1456 struct btf_mod_pair *used_btfs;
1457 struct bpf_prog *prog;
1458 struct user_struct *user;
1459 u64 load_time; /* ns since boottime */
1460 u32 verified_insns;
1461 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1462 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1463 char name[BPF_OBJ_NAME_LEN];
1464 #ifdef CONFIG_SECURITY
1465 void *security;
1466 #endif
1467 struct bpf_prog_offload *offload;
1468 struct btf *btf;
1469 struct bpf_func_info *func_info;
1470 struct bpf_func_info_aux *func_info_aux;
1471 /* bpf_line_info loaded from userspace. linfo->insn_off
1472 * has the xlated insn offset.
1473 * Both the main and sub prog share the same linfo.
1474 * The subprog can access its first linfo by
1475 * using the linfo_idx.
1476 */
1477 struct bpf_line_info *linfo;
1478 /* jited_linfo is the jited addr of the linfo. It has a
1479 * one to one mapping to linfo:
1480 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1481 * Both the main and sub prog share the same jited_linfo.
1482 * The subprog can access its first jited_linfo by
1483 * using the linfo_idx.
1484 */
1485 void **jited_linfo;
1486 u32 func_info_cnt;
1487 u32 nr_linfo;
1488 /* subprog can use linfo_idx to access its first linfo and
1489 * jited_linfo.
1490 * main prog always has linfo_idx == 0
1491 */
1492 u32 linfo_idx;
1493 struct module *mod;
1494 u32 num_exentries;
1495 struct exception_table_entry *extable;
1496 union {
1497 struct work_struct work;
1498 struct rcu_head rcu;
1499 };
1500 };
1501
1502 struct bpf_prog {
1503 u16 pages; /* Number of allocated pages */
1504 u16 jited:1, /* Is our filter JIT'ed? */
1505 jit_requested:1,/* archs need to JIT the prog */
1506 gpl_compatible:1, /* Is filter GPL compatible? */
1507 cb_access:1, /* Is control block accessed? */
1508 dst_needed:1, /* Do we need dst entry? */
1509 blinding_requested:1, /* needs constant blinding */
1510 blinded:1, /* Was blinded */
1511 is_func:1, /* program is a bpf function */
1512 kprobe_override:1, /* Do we override a kprobe? */
1513 has_callchain_buf:1, /* callchain buffer allocated? */
1514 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1515 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1516 call_get_func_ip:1, /* Do we call get_func_ip() */
1517 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1518 enum bpf_prog_type type; /* Type of BPF program */
1519 enum bpf_attach_type expected_attach_type; /* For some prog types */
1520 u32 len; /* Number of filter blocks */
1521 u32 jited_len; /* Size of jited insns in bytes */
1522 u8 tag[BPF_TAG_SIZE];
1523 struct bpf_prog_stats __percpu *stats;
1524 int __percpu *active;
1525 unsigned int (*bpf_func)(const void *ctx,
1526 const struct bpf_insn *insn);
1527 struct bpf_prog_aux *aux; /* Auxiliary fields */
1528 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1529 /* Instructions for interpreter */
1530 union {
1531 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1532 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1533 };
1534 };
1535
1536 struct bpf_array_aux {
1537 /* Programs with direct jumps into programs part of this array. */
1538 struct list_head poke_progs;
1539 struct bpf_map *map;
1540 struct mutex poke_mutex;
1541 struct work_struct work;
1542 };
1543
1544 struct bpf_link {
1545 atomic64_t refcnt;
1546 u32 id;
1547 enum bpf_link_type type;
1548 const struct bpf_link_ops *ops;
1549 struct bpf_prog *prog;
1550 /* rcu is used before freeing, work can be used to schedule that
1551 * RCU-based freeing before that, so they never overlap
1552 */
1553 union {
1554 struct rcu_head rcu;
1555 struct work_struct work;
1556 };
1557 };
1558
1559 struct bpf_link_ops {
1560 void (*release)(struct bpf_link *link);
1561 /* deallocate link resources callback, called without RCU grace period
1562 * waiting
1563 */
1564 void (*dealloc)(struct bpf_link *link);
1565 /* deallocate link resources callback, called after RCU grace period;
1566 * if underlying BPF program is sleepable we go through tasks trace
1567 * RCU GP and then "classic" RCU GP
1568 */
1569 void (*dealloc_deferred)(struct bpf_link *link);
1570 int (*detach)(struct bpf_link *link);
1571 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1572 struct bpf_prog *old_prog);
1573 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1574 int (*fill_link_info)(const struct bpf_link *link,
1575 struct bpf_link_info *info);
1576 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1577 struct bpf_map *old_map);
1578 };
1579
1580 struct bpf_tramp_link {
1581 struct bpf_link link;
1582 struct hlist_node tramp_hlist;
1583 u64 cookie;
1584 };
1585
1586 struct bpf_shim_tramp_link {
1587 struct bpf_tramp_link link;
1588 struct bpf_trampoline *trampoline;
1589 };
1590
1591 struct bpf_tracing_link {
1592 struct bpf_tramp_link link;
1593 enum bpf_attach_type attach_type;
1594 struct bpf_trampoline *trampoline;
1595 struct bpf_prog *tgt_prog;
1596 };
1597
1598 struct bpf_link_primer {
1599 struct bpf_link *link;
1600 struct file *file;
1601 int fd;
1602 u32 id;
1603 };
1604
1605 struct bpf_struct_ops_value;
1606 struct btf_member;
1607
1608 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1609 /**
1610 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1611 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1612 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1613 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1614 * when determining whether the struct_ops progs in the
1615 * struct_ops map are valid.
1616 * @init: A callback that is invoked a single time, and before any other
1617 * callback, to initialize the structure. A nonzero return value means
1618 * the subsystem could not be initialized.
1619 * @check_member: When defined, a callback invoked by the verifier to allow
1620 * the subsystem to determine if an entry in the struct_ops map
1621 * is valid. A nonzero return value means that the map is
1622 * invalid and should be rejected by the verifier.
1623 * @init_member: A callback that is invoked for each member of the struct_ops
1624 * map to allow the subsystem to initialize the member. A nonzero
1625 * value means the member could not be initialized. This callback
1626 * is exclusive with the @type, @type_id, @value_type, and
1627 * @value_id fields.
1628 * @reg: A callback that is invoked when the struct_ops map has been
1629 * initialized and is being attached to. Zero means the struct_ops map
1630 * has been successfully registered and is live. A nonzero return value
1631 * means the struct_ops map could not be registered.
1632 * @unreg: A callback that is invoked when the struct_ops map should be
1633 * unregistered.
1634 * @update: A callback that is invoked when the live struct_ops map is being
1635 * updated to contain new values. This callback is only invoked when
1636 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1637 * it is assumed that the struct_ops map cannot be updated.
1638 * @validate: A callback that is invoked after all of the members have been
1639 * initialized. This callback should perform static checks on the
1640 * map, meaning that it should either fail or succeed
1641 * deterministically. A struct_ops map that has been validated may
1642 * not necessarily succeed in being registered if the call to @reg
1643 * fails. For example, a valid struct_ops map may be loaded, but
1644 * then fail to be registered due to there being another active
1645 * struct_ops map on the system in the subsystem already. For this
1646 * reason, if this callback is not defined, the check is skipped as
1647 * the struct_ops map will have final verification performed in
1648 * @reg.
1649 * @type: BTF type.
1650 * @value_type: Value type.
1651 * @name: The name of the struct bpf_struct_ops object.
1652 * @func_models: Func models
1653 * @type_id: BTF type id.
1654 * @value_id: BTF value id.
1655 */
1656 struct bpf_struct_ops {
1657 const struct bpf_verifier_ops *verifier_ops;
1658 int (*init)(struct btf *btf);
1659 int (*check_member)(const struct btf_type *t,
1660 const struct btf_member *member,
1661 const struct bpf_prog *prog);
1662 int (*init_member)(const struct btf_type *t,
1663 const struct btf_member *member,
1664 void *kdata, const void *udata);
1665 int (*reg)(void *kdata);
1666 void (*unreg)(void *kdata);
1667 int (*update)(void *kdata, void *old_kdata);
1668 int (*validate)(void *kdata);
1669 const struct btf_type *type;
1670 const struct btf_type *value_type;
1671 const char *name;
1672 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1673 u32 type_id;
1674 u32 value_id;
1675 };
1676
1677 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1678 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1679 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1680 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1681 bool bpf_struct_ops_get(const void *kdata);
1682 void bpf_struct_ops_put(const void *kdata);
1683 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1684 void *value);
1685 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1686 struct bpf_tramp_link *link,
1687 const struct btf_func_model *model,
1688 void *image, void *image_end);
bpf_try_module_get(const void * data,struct module * owner)1689 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1690 {
1691 if (owner == BPF_MODULE_OWNER)
1692 return bpf_struct_ops_get(data);
1693 else
1694 return try_module_get(owner);
1695 }
bpf_module_put(const void * data,struct module * owner)1696 static inline void bpf_module_put(const void *data, struct module *owner)
1697 {
1698 if (owner == BPF_MODULE_OWNER)
1699 bpf_struct_ops_put(data);
1700 else
1701 module_put(owner);
1702 }
1703 int bpf_struct_ops_link_create(union bpf_attr *attr);
1704
1705 #ifdef CONFIG_NET
1706 /* Define it here to avoid the use of forward declaration */
1707 struct bpf_dummy_ops_state {
1708 int val;
1709 };
1710
1711 struct bpf_dummy_ops {
1712 int (*test_1)(struct bpf_dummy_ops_state *cb);
1713 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1714 char a3, unsigned long a4);
1715 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1716 };
1717
1718 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1719 union bpf_attr __user *uattr);
1720 #endif
1721 #else
bpf_struct_ops_find(u32 type_id)1722 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1723 {
1724 return NULL;
1725 }
bpf_struct_ops_init(struct btf * btf,struct bpf_verifier_log * log)1726 static inline void bpf_struct_ops_init(struct btf *btf,
1727 struct bpf_verifier_log *log)
1728 {
1729 }
bpf_try_module_get(const void * data,struct module * owner)1730 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1731 {
1732 return try_module_get(owner);
1733 }
bpf_module_put(const void * data,struct module * owner)1734 static inline void bpf_module_put(const void *data, struct module *owner)
1735 {
1736 module_put(owner);
1737 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1738 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1739 void *key,
1740 void *value)
1741 {
1742 return -EINVAL;
1743 }
bpf_struct_ops_link_create(union bpf_attr * attr)1744 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1745 {
1746 return -EOPNOTSUPP;
1747 }
1748
1749 #endif
1750
1751 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1752 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1753 int cgroup_atype);
1754 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1755 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1756 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1757 int cgroup_atype)
1758 {
1759 return -EOPNOTSUPP;
1760 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1761 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1762 {
1763 }
1764 #endif
1765
1766 struct bpf_array {
1767 struct bpf_map map;
1768 u32 elem_size;
1769 u32 index_mask;
1770 struct bpf_array_aux *aux;
1771 union {
1772 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1773 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1774 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1775 };
1776 };
1777
1778 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1779 #define MAX_TAIL_CALL_CNT 33
1780
1781 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1782 * It's enum to expose it (and thus make it discoverable) through BTF.
1783 */
1784 enum {
1785 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1786 };
1787
1788 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1789 BPF_F_RDONLY_PROG | \
1790 BPF_F_WRONLY | \
1791 BPF_F_WRONLY_PROG)
1792
1793 #define BPF_MAP_CAN_READ BIT(0)
1794 #define BPF_MAP_CAN_WRITE BIT(1)
1795
1796 /* Maximum number of user-producer ring buffer samples that can be drained in
1797 * a call to bpf_user_ringbuf_drain().
1798 */
1799 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1800
bpf_map_flags_to_cap(struct bpf_map * map)1801 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1802 {
1803 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1804
1805 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1806 * not possible.
1807 */
1808 if (access_flags & BPF_F_RDONLY_PROG)
1809 return BPF_MAP_CAN_READ;
1810 else if (access_flags & BPF_F_WRONLY_PROG)
1811 return BPF_MAP_CAN_WRITE;
1812 else
1813 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1814 }
1815
bpf_map_flags_access_ok(u32 access_flags)1816 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1817 {
1818 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1819 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1820 }
1821
1822 struct bpf_event_entry {
1823 struct perf_event *event;
1824 struct file *perf_file;
1825 struct file *map_file;
1826 struct rcu_head rcu;
1827 };
1828
map_type_contains_progs(struct bpf_map * map)1829 static inline bool map_type_contains_progs(struct bpf_map *map)
1830 {
1831 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1832 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1833 map->map_type == BPF_MAP_TYPE_CPUMAP;
1834 }
1835
1836 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1837 int bpf_prog_calc_tag(struct bpf_prog *fp);
1838
1839 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1840 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1841
1842 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1843 unsigned long off, unsigned long len);
1844 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1845 const struct bpf_insn *src,
1846 struct bpf_insn *dst,
1847 struct bpf_prog *prog,
1848 u32 *target_size);
1849
1850 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1851 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1852
1853 /* an array of programs to be executed under rcu_lock.
1854 *
1855 * Typical usage:
1856 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1857 *
1858 * the structure returned by bpf_prog_array_alloc() should be populated
1859 * with program pointers and the last pointer must be NULL.
1860 * The user has to keep refcnt on the program and make sure the program
1861 * is removed from the array before bpf_prog_put().
1862 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1863 * since other cpus are walking the array of pointers in parallel.
1864 */
1865 struct bpf_prog_array_item {
1866 struct bpf_prog *prog;
1867 union {
1868 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1869 u64 bpf_cookie;
1870 };
1871 };
1872
1873 struct bpf_prog_array {
1874 struct rcu_head rcu;
1875 struct bpf_prog_array_item items[];
1876 };
1877
1878 struct bpf_empty_prog_array {
1879 struct bpf_prog_array hdr;
1880 struct bpf_prog *null_prog;
1881 };
1882
1883 /* to avoid allocating empty bpf_prog_array for cgroups that
1884 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1885 * It will not be modified the caller of bpf_prog_array_alloc()
1886 * (since caller requested prog_cnt == 0)
1887 * that pointer should be 'freed' by bpf_prog_array_free()
1888 */
1889 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1890
1891 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1892 void bpf_prog_array_free(struct bpf_prog_array *progs);
1893 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1894 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1895 int bpf_prog_array_length(struct bpf_prog_array *progs);
1896 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1897 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1898 __u32 __user *prog_ids, u32 cnt);
1899
1900 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1901 struct bpf_prog *old_prog);
1902 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1903 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1904 struct bpf_prog *prog);
1905 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1906 u32 *prog_ids, u32 request_cnt,
1907 u32 *prog_cnt);
1908 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1909 struct bpf_prog *exclude_prog,
1910 struct bpf_prog *include_prog,
1911 u64 bpf_cookie,
1912 struct bpf_prog_array **new_array);
1913
1914 struct bpf_run_ctx {};
1915
1916 struct bpf_cg_run_ctx {
1917 struct bpf_run_ctx run_ctx;
1918 const struct bpf_prog_array_item *prog_item;
1919 int retval;
1920 };
1921
1922 struct bpf_trace_run_ctx {
1923 struct bpf_run_ctx run_ctx;
1924 u64 bpf_cookie;
1925 bool is_uprobe;
1926 };
1927
1928 struct bpf_tramp_run_ctx {
1929 struct bpf_run_ctx run_ctx;
1930 u64 bpf_cookie;
1931 struct bpf_run_ctx *saved_run_ctx;
1932 };
1933
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)1934 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1935 {
1936 struct bpf_run_ctx *old_ctx = NULL;
1937
1938 #ifdef CONFIG_BPF_SYSCALL
1939 old_ctx = current->bpf_ctx;
1940 current->bpf_ctx = new_ctx;
1941 #endif
1942 return old_ctx;
1943 }
1944
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)1945 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1946 {
1947 #ifdef CONFIG_BPF_SYSCALL
1948 current->bpf_ctx = old_ctx;
1949 #endif
1950 }
1951
1952 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1953 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1954 /* BPF program asks to set CN on the packet. */
1955 #define BPF_RET_SET_CN (1 << 0)
1956
1957 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1958
1959 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)1960 bpf_prog_run_array(const struct bpf_prog_array *array,
1961 const void *ctx, bpf_prog_run_fn run_prog)
1962 {
1963 const struct bpf_prog_array_item *item;
1964 const struct bpf_prog *prog;
1965 struct bpf_run_ctx *old_run_ctx;
1966 struct bpf_trace_run_ctx run_ctx;
1967 u32 ret = 1;
1968
1969 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1970
1971 if (unlikely(!array))
1972 return ret;
1973
1974 run_ctx.is_uprobe = false;
1975
1976 migrate_disable();
1977 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1978 item = &array->items[0];
1979 while ((prog = READ_ONCE(item->prog))) {
1980 run_ctx.bpf_cookie = item->bpf_cookie;
1981 ret &= run_prog(prog, ctx);
1982 item++;
1983 }
1984 bpf_reset_run_ctx(old_run_ctx);
1985 migrate_enable();
1986 return ret;
1987 }
1988
1989 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1990 *
1991 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1992 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1993 * in order to use the tasks_trace rcu grace period.
1994 *
1995 * When a non-sleepable program is inside the array, we take the rcu read
1996 * section and disable preemption for that program alone, so it can access
1997 * rcu-protected dynamically sized maps.
1998 */
1999 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2000 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2001 const void *ctx, bpf_prog_run_fn run_prog)
2002 {
2003 const struct bpf_prog_array_item *item;
2004 const struct bpf_prog *prog;
2005 struct bpf_run_ctx *old_run_ctx;
2006 struct bpf_trace_run_ctx run_ctx;
2007 u32 ret = 1;
2008
2009 might_fault();
2010 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2011
2012 if (unlikely(!array))
2013 return ret;
2014
2015 migrate_disable();
2016
2017 run_ctx.is_uprobe = true;
2018
2019 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2020 item = &array->items[0];
2021 while ((prog = READ_ONCE(item->prog))) {
2022 if (!prog->aux->sleepable)
2023 rcu_read_lock();
2024
2025 run_ctx.bpf_cookie = item->bpf_cookie;
2026 ret &= run_prog(prog, ctx);
2027 item++;
2028
2029 if (!prog->aux->sleepable)
2030 rcu_read_unlock();
2031 }
2032 bpf_reset_run_ctx(old_run_ctx);
2033 migrate_enable();
2034 return ret;
2035 }
2036
2037 #ifdef CONFIG_BPF_SYSCALL
2038 DECLARE_PER_CPU(int, bpf_prog_active);
2039 extern struct mutex bpf_stats_enabled_mutex;
2040
2041 /*
2042 * Block execution of BPF programs attached to instrumentation (perf,
2043 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2044 * these events can happen inside a region which holds a map bucket lock
2045 * and can deadlock on it.
2046 */
bpf_disable_instrumentation(void)2047 static inline void bpf_disable_instrumentation(void)
2048 {
2049 migrate_disable();
2050 this_cpu_inc(bpf_prog_active);
2051 }
2052
bpf_enable_instrumentation(void)2053 static inline void bpf_enable_instrumentation(void)
2054 {
2055 this_cpu_dec(bpf_prog_active);
2056 migrate_enable();
2057 }
2058
2059 extern const struct file_operations bpf_map_fops;
2060 extern const struct file_operations bpf_prog_fops;
2061 extern const struct file_operations bpf_iter_fops;
2062
2063 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2064 extern const struct bpf_prog_ops _name ## _prog_ops; \
2065 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2066 #define BPF_MAP_TYPE(_id, _ops) \
2067 extern const struct bpf_map_ops _ops;
2068 #define BPF_LINK_TYPE(_id, _name)
2069 #include <linux/bpf_types.h>
2070 #undef BPF_PROG_TYPE
2071 #undef BPF_MAP_TYPE
2072 #undef BPF_LINK_TYPE
2073
2074 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2075 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2076 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2077
2078 struct bpf_prog *bpf_prog_get(u32 ufd);
2079 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2080 bool attach_drv);
2081 void bpf_prog_add(struct bpf_prog *prog, int i);
2082 void bpf_prog_sub(struct bpf_prog *prog, int i);
2083 void bpf_prog_inc(struct bpf_prog *prog);
2084 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2085 void bpf_prog_put(struct bpf_prog *prog);
2086
2087 void bpf_prog_free_id(struct bpf_prog *prog);
2088 void bpf_map_free_id(struct bpf_map *map);
2089
2090 struct btf_field *btf_record_find(const struct btf_record *rec,
2091 u32 offset, u32 field_mask);
2092 void btf_record_free(struct btf_record *rec);
2093 void bpf_map_free_record(struct bpf_map *map);
2094 struct btf_record *btf_record_dup(const struct btf_record *rec);
2095 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2096 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2097 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2098
2099 struct bpf_map *bpf_map_get(u32 ufd);
2100 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2101 struct bpf_map *__bpf_map_get(struct fd f);
2102 void bpf_map_inc(struct bpf_map *map);
2103 void bpf_map_inc_with_uref(struct bpf_map *map);
2104 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2105 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2106 void bpf_map_put_with_uref(struct bpf_map *map);
2107 void bpf_map_put(struct bpf_map *map);
2108 void *bpf_map_area_alloc(u64 size, int numa_node);
2109 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2110 void bpf_map_area_free(void *base);
2111 bool bpf_map_write_active(const struct bpf_map *map);
2112 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2113 int generic_map_lookup_batch(struct bpf_map *map,
2114 const union bpf_attr *attr,
2115 union bpf_attr __user *uattr);
2116 int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2117 const union bpf_attr *attr,
2118 union bpf_attr __user *uattr);
2119 int generic_map_delete_batch(struct bpf_map *map,
2120 const union bpf_attr *attr,
2121 union bpf_attr __user *uattr);
2122 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2123 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2124
2125 #ifdef CONFIG_MEMCG_KMEM
2126 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2127 int node);
2128 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2129 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2130 gfp_t flags);
2131 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2132 size_t align, gfp_t flags);
2133 #else
2134 static inline void *
bpf_map_kmalloc_node(const struct bpf_map * map,size_t size,gfp_t flags,int node)2135 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2136 int node)
2137 {
2138 return kmalloc_node(size, flags, node);
2139 }
2140
2141 static inline void *
bpf_map_kzalloc(const struct bpf_map * map,size_t size,gfp_t flags)2142 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2143 {
2144 return kzalloc(size, flags);
2145 }
2146
2147 static inline void *
bpf_map_kvcalloc(struct bpf_map * map,size_t n,size_t size,gfp_t flags)2148 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2149 {
2150 return kvcalloc(n, size, flags);
2151 }
2152
2153 static inline void __percpu *
bpf_map_alloc_percpu(const struct bpf_map * map,size_t size,size_t align,gfp_t flags)2154 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2155 gfp_t flags)
2156 {
2157 return __alloc_percpu_gfp(size, align, flags);
2158 }
2159 #endif
2160
2161 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2162 bpf_map_init_elem_count(struct bpf_map *map)
2163 {
2164 size_t size = sizeof(*map->elem_count), align = size;
2165 gfp_t flags = GFP_USER | __GFP_NOWARN;
2166
2167 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2168 if (!map->elem_count)
2169 return -ENOMEM;
2170
2171 return 0;
2172 }
2173
2174 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2175 bpf_map_free_elem_count(struct bpf_map *map)
2176 {
2177 free_percpu(map->elem_count);
2178 }
2179
bpf_map_inc_elem_count(struct bpf_map * map)2180 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2181 {
2182 this_cpu_inc(*map->elem_count);
2183 }
2184
bpf_map_dec_elem_count(struct bpf_map * map)2185 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2186 {
2187 this_cpu_dec(*map->elem_count);
2188 }
2189
2190 extern int sysctl_unprivileged_bpf_disabled;
2191
bpf_allow_ptr_leaks(void)2192 static inline bool bpf_allow_ptr_leaks(void)
2193 {
2194 return perfmon_capable();
2195 }
2196
bpf_allow_uninit_stack(void)2197 static inline bool bpf_allow_uninit_stack(void)
2198 {
2199 return perfmon_capable();
2200 }
2201
bpf_bypass_spec_v1(void)2202 static inline bool bpf_bypass_spec_v1(void)
2203 {
2204 return perfmon_capable();
2205 }
2206
bpf_bypass_spec_v4(void)2207 static inline bool bpf_bypass_spec_v4(void)
2208 {
2209 return perfmon_capable();
2210 }
2211
2212 int bpf_map_new_fd(struct bpf_map *map, int flags);
2213 int bpf_prog_new_fd(struct bpf_prog *prog);
2214
2215 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2216 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2217 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2218 int bpf_link_settle(struct bpf_link_primer *primer);
2219 void bpf_link_cleanup(struct bpf_link_primer *primer);
2220 void bpf_link_inc(struct bpf_link *link);
2221 void bpf_link_put(struct bpf_link *link);
2222 int bpf_link_new_fd(struct bpf_link *link);
2223 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2224 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2225
2226 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2227 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2228
2229 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2230 #define DEFINE_BPF_ITER_FUNC(target, args...) \
2231 extern int bpf_iter_ ## target(args); \
2232 int __init bpf_iter_ ## target(args) { return 0; }
2233
2234 /*
2235 * The task type of iterators.
2236 *
2237 * For BPF task iterators, they can be parameterized with various
2238 * parameters to visit only some of tasks.
2239 *
2240 * BPF_TASK_ITER_ALL (default)
2241 * Iterate over resources of every task.
2242 *
2243 * BPF_TASK_ITER_TID
2244 * Iterate over resources of a task/tid.
2245 *
2246 * BPF_TASK_ITER_TGID
2247 * Iterate over resources of every task of a process / task group.
2248 */
2249 enum bpf_iter_task_type {
2250 BPF_TASK_ITER_ALL = 0,
2251 BPF_TASK_ITER_TID,
2252 BPF_TASK_ITER_TGID,
2253 };
2254
2255 struct bpf_iter_aux_info {
2256 /* for map_elem iter */
2257 struct bpf_map *map;
2258
2259 /* for cgroup iter */
2260 struct {
2261 struct cgroup *start; /* starting cgroup */
2262 enum bpf_cgroup_iter_order order;
2263 } cgroup;
2264 struct {
2265 enum bpf_iter_task_type type;
2266 u32 pid;
2267 } task;
2268 };
2269
2270 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2271 union bpf_iter_link_info *linfo,
2272 struct bpf_iter_aux_info *aux);
2273 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2274 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2275 struct seq_file *seq);
2276 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2277 struct bpf_link_info *info);
2278 typedef const struct bpf_func_proto *
2279 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2280 const struct bpf_prog *prog);
2281
2282 enum bpf_iter_feature {
2283 BPF_ITER_RESCHED = BIT(0),
2284 };
2285
2286 #define BPF_ITER_CTX_ARG_MAX 2
2287 struct bpf_iter_reg {
2288 const char *target;
2289 bpf_iter_attach_target_t attach_target;
2290 bpf_iter_detach_target_t detach_target;
2291 bpf_iter_show_fdinfo_t show_fdinfo;
2292 bpf_iter_fill_link_info_t fill_link_info;
2293 bpf_iter_get_func_proto_t get_func_proto;
2294 u32 ctx_arg_info_size;
2295 u32 feature;
2296 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2297 const struct bpf_iter_seq_info *seq_info;
2298 };
2299
2300 struct bpf_iter_meta {
2301 __bpf_md_ptr(struct seq_file *, seq);
2302 u64 session_id;
2303 u64 seq_num;
2304 };
2305
2306 struct bpf_iter__bpf_map_elem {
2307 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2308 __bpf_md_ptr(struct bpf_map *, map);
2309 __bpf_md_ptr(void *, key);
2310 __bpf_md_ptr(void *, value);
2311 };
2312
2313 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2314 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2315 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2316 const struct bpf_func_proto *
2317 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2318 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2319 int bpf_iter_new_fd(struct bpf_link *link);
2320 bool bpf_link_is_iter(struct bpf_link *link);
2321 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2322 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2323 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2324 struct seq_file *seq);
2325 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2326 struct bpf_link_info *info);
2327
2328 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2329 struct bpf_func_state *caller,
2330 struct bpf_func_state *callee);
2331
2332 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2333 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2334 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2335 u64 flags);
2336 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2337 u64 flags);
2338
2339 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2340
2341 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2342 void *key, void *value, u64 map_flags);
2343 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2344 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2345 void *key, void *value, u64 map_flags);
2346 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2347
2348 int bpf_get_file_flag(int flags);
2349 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2350 size_t actual_size);
2351
2352 /* verify correctness of eBPF program */
2353 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2354
2355 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2356 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2357 #endif
2358
2359 struct btf *bpf_get_btf_vmlinux(void);
2360
2361 /* Map specifics */
2362 struct xdp_frame;
2363 struct sk_buff;
2364 struct bpf_dtab_netdev;
2365 struct bpf_cpu_map_entry;
2366
2367 void __dev_flush(void);
2368 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2369 struct net_device *dev_rx);
2370 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2371 struct net_device *dev_rx);
2372 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2373 struct bpf_map *map, bool exclude_ingress);
2374 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2375 struct bpf_prog *xdp_prog);
2376 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2377 struct bpf_prog *xdp_prog, struct bpf_map *map,
2378 bool exclude_ingress);
2379
2380 void __cpu_map_flush(void);
2381 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2382 struct net_device *dev_rx);
2383 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2384 struct sk_buff *skb);
2385
2386 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2387 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2388 {
2389 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2390 attr->numa_node : NUMA_NO_NODE;
2391 }
2392
2393 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2394 int array_map_alloc_check(union bpf_attr *attr);
2395
2396 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2397 union bpf_attr __user *uattr);
2398 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2399 union bpf_attr __user *uattr);
2400 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2401 const union bpf_attr *kattr,
2402 union bpf_attr __user *uattr);
2403 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2404 const union bpf_attr *kattr,
2405 union bpf_attr __user *uattr);
2406 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2407 const union bpf_attr *kattr,
2408 union bpf_attr __user *uattr);
2409 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2410 const union bpf_attr *kattr,
2411 union bpf_attr __user *uattr);
2412 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2413 const union bpf_attr *kattr,
2414 union bpf_attr __user *uattr);
2415 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2416 const struct bpf_prog *prog,
2417 struct bpf_insn_access_aux *info);
2418
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2419 static inline bool bpf_tracing_ctx_access(int off, int size,
2420 enum bpf_access_type type)
2421 {
2422 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2423 return false;
2424 if (type != BPF_READ)
2425 return false;
2426 if (off % size != 0)
2427 return false;
2428 return true;
2429 }
2430
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2431 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2432 enum bpf_access_type type,
2433 const struct bpf_prog *prog,
2434 struct bpf_insn_access_aux *info)
2435 {
2436 if (!bpf_tracing_ctx_access(off, size, type))
2437 return false;
2438 return btf_ctx_access(off, size, type, prog, info);
2439 }
2440
2441 int btf_struct_access(struct bpf_verifier_log *log,
2442 const struct bpf_reg_state *reg,
2443 int off, int size, enum bpf_access_type atype,
2444 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2445 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2446 const struct btf *btf, u32 id, int off,
2447 const struct btf *need_btf, u32 need_type_id,
2448 bool strict);
2449
2450 int btf_distill_func_proto(struct bpf_verifier_log *log,
2451 struct btf *btf,
2452 const struct btf_type *func_proto,
2453 const char *func_name,
2454 struct btf_func_model *m);
2455
2456 struct bpf_reg_state;
2457 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2458 struct bpf_reg_state *regs);
2459 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2460 struct bpf_reg_state *regs);
2461 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2462 struct bpf_reg_state *reg);
2463 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2464 struct btf *btf, const struct btf_type *t);
2465
2466 struct bpf_prog *bpf_prog_by_id(u32 id);
2467 struct bpf_link *bpf_link_by_id(u32 id);
2468
2469 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2470 void bpf_task_storage_free(struct task_struct *task);
2471 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2472 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2473 const struct btf_func_model *
2474 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2475 const struct bpf_insn *insn);
2476 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2477 u16 btf_fd_idx, u8 **func_addr);
2478
2479 struct bpf_core_ctx {
2480 struct bpf_verifier_log *log;
2481 const struct btf *btf;
2482 };
2483
2484 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2485 const struct bpf_reg_state *reg,
2486 const char *field_name, u32 btf_id, const char *suffix);
2487
2488 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2489 const struct btf *reg_btf, u32 reg_id,
2490 const struct btf *arg_btf, u32 arg_id);
2491
2492 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2493 int relo_idx, void *insn);
2494
unprivileged_ebpf_enabled(void)2495 static inline bool unprivileged_ebpf_enabled(void)
2496 {
2497 return !sysctl_unprivileged_bpf_disabled;
2498 }
2499
2500 /* Not all bpf prog type has the bpf_ctx.
2501 * For the bpf prog type that has initialized the bpf_ctx,
2502 * this function can be used to decide if a kernel function
2503 * is called by a bpf program.
2504 */
has_current_bpf_ctx(void)2505 static inline bool has_current_bpf_ctx(void)
2506 {
2507 return !!current->bpf_ctx;
2508 }
2509
2510 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2511
2512 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2513 enum bpf_dynptr_type type, u32 offset, u32 size);
2514 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2515 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2516 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2517 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2518 {
2519 return ERR_PTR(-EOPNOTSUPP);
2520 }
2521
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2522 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2523 enum bpf_prog_type type,
2524 bool attach_drv)
2525 {
2526 return ERR_PTR(-EOPNOTSUPP);
2527 }
2528
bpf_prog_add(struct bpf_prog * prog,int i)2529 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2530 {
2531 }
2532
bpf_prog_sub(struct bpf_prog * prog,int i)2533 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2534 {
2535 }
2536
bpf_prog_put(struct bpf_prog * prog)2537 static inline void bpf_prog_put(struct bpf_prog *prog)
2538 {
2539 }
2540
bpf_prog_inc(struct bpf_prog * prog)2541 static inline void bpf_prog_inc(struct bpf_prog *prog)
2542 {
2543 }
2544
2545 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2546 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2547 {
2548 return ERR_PTR(-EOPNOTSUPP);
2549 }
2550
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2551 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2552 const struct bpf_link_ops *ops,
2553 struct bpf_prog *prog)
2554 {
2555 }
2556
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2557 static inline int bpf_link_prime(struct bpf_link *link,
2558 struct bpf_link_primer *primer)
2559 {
2560 return -EOPNOTSUPP;
2561 }
2562
bpf_link_settle(struct bpf_link_primer * primer)2563 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2564 {
2565 return -EOPNOTSUPP;
2566 }
2567
bpf_link_cleanup(struct bpf_link_primer * primer)2568 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2569 {
2570 }
2571
bpf_link_inc(struct bpf_link * link)2572 static inline void bpf_link_inc(struct bpf_link *link)
2573 {
2574 }
2575
bpf_link_put(struct bpf_link * link)2576 static inline void bpf_link_put(struct bpf_link *link)
2577 {
2578 }
2579
bpf_obj_get_user(const char __user * pathname,int flags)2580 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2581 {
2582 return -EOPNOTSUPP;
2583 }
2584
__dev_flush(void)2585 static inline void __dev_flush(void)
2586 {
2587 }
2588
2589 struct xdp_frame;
2590 struct bpf_dtab_netdev;
2591 struct bpf_cpu_map_entry;
2592
2593 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2594 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2595 struct net_device *dev_rx)
2596 {
2597 return 0;
2598 }
2599
2600 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2601 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2602 struct net_device *dev_rx)
2603 {
2604 return 0;
2605 }
2606
2607 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2608 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2609 struct bpf_map *map, bool exclude_ingress)
2610 {
2611 return 0;
2612 }
2613
2614 struct sk_buff;
2615
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)2616 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2617 struct sk_buff *skb,
2618 struct bpf_prog *xdp_prog)
2619 {
2620 return 0;
2621 }
2622
2623 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2624 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2625 struct bpf_prog *xdp_prog, struct bpf_map *map,
2626 bool exclude_ingress)
2627 {
2628 return 0;
2629 }
2630
__cpu_map_flush(void)2631 static inline void __cpu_map_flush(void)
2632 {
2633 }
2634
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2635 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2636 struct xdp_frame *xdpf,
2637 struct net_device *dev_rx)
2638 {
2639 return 0;
2640 }
2641
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2642 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2643 struct sk_buff *skb)
2644 {
2645 return -EOPNOTSUPP;
2646 }
2647
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2648 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2649 enum bpf_prog_type type)
2650 {
2651 return ERR_PTR(-EOPNOTSUPP);
2652 }
2653
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2654 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2655 const union bpf_attr *kattr,
2656 union bpf_attr __user *uattr)
2657 {
2658 return -ENOTSUPP;
2659 }
2660
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2661 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2662 const union bpf_attr *kattr,
2663 union bpf_attr __user *uattr)
2664 {
2665 return -ENOTSUPP;
2666 }
2667
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2668 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2669 const union bpf_attr *kattr,
2670 union bpf_attr __user *uattr)
2671 {
2672 return -ENOTSUPP;
2673 }
2674
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2675 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2676 const union bpf_attr *kattr,
2677 union bpf_attr __user *uattr)
2678 {
2679 return -ENOTSUPP;
2680 }
2681
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2682 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2683 const union bpf_attr *kattr,
2684 union bpf_attr __user *uattr)
2685 {
2686 return -ENOTSUPP;
2687 }
2688
bpf_map_put(struct bpf_map * map)2689 static inline void bpf_map_put(struct bpf_map *map)
2690 {
2691 }
2692
bpf_prog_by_id(u32 id)2693 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2694 {
2695 return ERR_PTR(-ENOTSUPP);
2696 }
2697
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)2698 static inline int btf_struct_access(struct bpf_verifier_log *log,
2699 const struct bpf_reg_state *reg,
2700 int off, int size, enum bpf_access_type atype,
2701 u32 *next_btf_id, enum bpf_type_flag *flag,
2702 const char **field_name)
2703 {
2704 return -EACCES;
2705 }
2706
2707 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)2708 bpf_base_func_proto(enum bpf_func_id func_id)
2709 {
2710 return NULL;
2711 }
2712
bpf_task_storage_free(struct task_struct * task)2713 static inline void bpf_task_storage_free(struct task_struct *task)
2714 {
2715 }
2716
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2717 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2718 {
2719 return false;
2720 }
2721
2722 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2723 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2724 const struct bpf_insn *insn)
2725 {
2726 return NULL;
2727 }
2728
2729 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2730 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2731 u16 btf_fd_idx, u8 **func_addr)
2732 {
2733 return -ENOTSUPP;
2734 }
2735
unprivileged_ebpf_enabled(void)2736 static inline bool unprivileged_ebpf_enabled(void)
2737 {
2738 return false;
2739 }
2740
has_current_bpf_ctx(void)2741 static inline bool has_current_bpf_ctx(void)
2742 {
2743 return false;
2744 }
2745
bpf_prog_inc_misses_counter(struct bpf_prog * prog)2746 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2747 {
2748 }
2749
bpf_cgrp_storage_free(struct cgroup * cgroup)2750 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2751 {
2752 }
2753
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)2754 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2755 enum bpf_dynptr_type type, u32 offset, u32 size)
2756 {
2757 }
2758
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)2759 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2760 {
2761 }
2762
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)2763 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2764 {
2765 }
2766 #endif /* CONFIG_BPF_SYSCALL */
2767
2768 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)2769 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2770 {
2771 int ret = -EFAULT;
2772
2773 if (IS_ENABLED(CONFIG_BPF_EVENTS))
2774 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2775 if (unlikely(ret < 0))
2776 memset(dst, 0, size);
2777 return ret;
2778 }
2779
2780 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2781 struct btf_mod_pair *used_btfs, u32 len);
2782
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)2783 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2784 enum bpf_prog_type type)
2785 {
2786 return bpf_prog_get_type_dev(ufd, type, false);
2787 }
2788
2789 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2790 struct bpf_map **used_maps, u32 len);
2791
2792 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2793
2794 int bpf_prog_offload_compile(struct bpf_prog *prog);
2795 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2796 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2797 struct bpf_prog *prog);
2798
2799 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2800
2801 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2802 int bpf_map_offload_update_elem(struct bpf_map *map,
2803 void *key, void *value, u64 flags);
2804 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2805 int bpf_map_offload_get_next_key(struct bpf_map *map,
2806 void *key, void *next_key);
2807
2808 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2809
2810 struct bpf_offload_dev *
2811 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2812 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2813 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2814 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2815 struct net_device *netdev);
2816 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2817 struct net_device *netdev);
2818 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2819
2820 void unpriv_ebpf_notify(int new_state);
2821
2822 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2823 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2824 struct bpf_prog_aux *prog_aux);
2825 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2826 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2827 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2828 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2829
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2830 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2831 {
2832 return aux->dev_bound;
2833 }
2834
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)2835 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2836 {
2837 return aux->offload_requested;
2838 }
2839
2840 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2841
bpf_map_is_offloaded(struct bpf_map * map)2842 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2843 {
2844 return unlikely(map->ops == &bpf_map_offload_ops);
2845 }
2846
2847 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2848 void bpf_map_offload_map_free(struct bpf_map *map);
2849 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2850 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2851 const union bpf_attr *kattr,
2852 union bpf_attr __user *uattr);
2853
2854 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2855 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2856 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2857 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2858 union bpf_attr __user *uattr);
2859
2860 void sock_map_unhash(struct sock *sk);
2861 void sock_map_destroy(struct sock *sk);
2862 void sock_map_close(struct sock *sk, long timeout);
2863 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)2864 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2865 struct bpf_prog_aux *prog_aux)
2866 {
2867 return -EOPNOTSUPP;
2868 }
2869
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)2870 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2871 u32 func_id)
2872 {
2873 return NULL;
2874 }
2875
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)2876 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2877 union bpf_attr *attr)
2878 {
2879 return -EOPNOTSUPP;
2880 }
2881
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)2882 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2883 struct bpf_prog *old_prog)
2884 {
2885 return -EOPNOTSUPP;
2886 }
2887
bpf_dev_bound_netdev_unregister(struct net_device * dev)2888 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2889 {
2890 }
2891
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)2892 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2893 {
2894 return false;
2895 }
2896
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)2897 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2898 {
2899 return false;
2900 }
2901
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)2902 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2903 {
2904 return false;
2905 }
2906
bpf_map_is_offloaded(struct bpf_map * map)2907 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2908 {
2909 return false;
2910 }
2911
bpf_map_offload_map_alloc(union bpf_attr * attr)2912 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2913 {
2914 return ERR_PTR(-EOPNOTSUPP);
2915 }
2916
bpf_map_offload_map_free(struct bpf_map * map)2917 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2918 {
2919 }
2920
bpf_map_offload_map_mem_usage(const struct bpf_map * map)2921 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2922 {
2923 return 0;
2924 }
2925
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2926 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2927 const union bpf_attr *kattr,
2928 union bpf_attr __user *uattr)
2929 {
2930 return -ENOTSUPP;
2931 }
2932
2933 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)2934 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2935 struct bpf_prog *prog)
2936 {
2937 return -EINVAL;
2938 }
2939
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)2940 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2941 enum bpf_prog_type ptype)
2942 {
2943 return -EOPNOTSUPP;
2944 }
2945
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)2946 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2947 u64 flags)
2948 {
2949 return -EOPNOTSUPP;
2950 }
2951
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)2952 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2953 union bpf_attr __user *uattr)
2954 {
2955 return -EINVAL;
2956 }
2957 #endif /* CONFIG_BPF_SYSCALL */
2958 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2959
2960 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2961 void bpf_sk_reuseport_detach(struct sock *sk);
2962 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2963 void *value);
2964 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2965 void *value, u64 map_flags);
2966 #else
bpf_sk_reuseport_detach(struct sock * sk)2967 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2968 {
2969 }
2970
2971 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)2972 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2973 void *key, void *value)
2974 {
2975 return -EOPNOTSUPP;
2976 }
2977
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)2978 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2979 void *key, void *value,
2980 u64 map_flags)
2981 {
2982 return -EOPNOTSUPP;
2983 }
2984 #endif /* CONFIG_BPF_SYSCALL */
2985 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2986
2987 /* verifier prototypes for helper functions called from eBPF programs */
2988 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2989 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2990 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2991 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2992 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2993 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2994 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2995
2996 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2997 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2998 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2999 extern const struct bpf_func_proto bpf_tail_call_proto;
3000 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3001 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3002 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3003 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3004 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3005 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3006 extern const struct bpf_func_proto bpf_get_stackid_proto;
3007 extern const struct bpf_func_proto bpf_get_stack_proto;
3008 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3009 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3010 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3011 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3012 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3013 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3014 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3015 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3016 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3017 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3018 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3019 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3020 extern const struct bpf_func_proto bpf_spin_lock_proto;
3021 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3022 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3023 extern const struct bpf_func_proto bpf_strtol_proto;
3024 extern const struct bpf_func_proto bpf_strtoul_proto;
3025 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3026 extern const struct bpf_func_proto bpf_jiffies64_proto;
3027 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3028 extern const struct bpf_func_proto bpf_event_output_data_proto;
3029 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3030 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3031 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3032 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3033 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3034 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3035 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3036 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3037 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3038 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3039 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3040 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3041 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3042 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3043 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3044 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3045 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3046 extern const struct bpf_func_proto bpf_snprintf_proto;
3047 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3048 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3049 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3050 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3051 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3052 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3053 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3054 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3055 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3056 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3057 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3058 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3059 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3060 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3061 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3062 extern const struct bpf_func_proto bpf_find_vma_proto;
3063 extern const struct bpf_func_proto bpf_loop_proto;
3064 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3065 extern const struct bpf_func_proto bpf_set_retval_proto;
3066 extern const struct bpf_func_proto bpf_get_retval_proto;
3067 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3068 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3069 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3070
3071 const struct bpf_func_proto *tracing_prog_func_proto(
3072 enum bpf_func_id func_id, const struct bpf_prog *prog);
3073
3074 /* Shared helpers among cBPF and eBPF. */
3075 void bpf_user_rnd_init_once(void);
3076 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3077 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3078
3079 #if defined(CONFIG_NET)
3080 bool bpf_sock_common_is_valid_access(int off, int size,
3081 enum bpf_access_type type,
3082 struct bpf_insn_access_aux *info);
3083 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3084 struct bpf_insn_access_aux *info);
3085 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3086 const struct bpf_insn *si,
3087 struct bpf_insn *insn_buf,
3088 struct bpf_prog *prog,
3089 u32 *target_size);
3090 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3091 struct bpf_dynptr_kern *ptr);
3092 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3093 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3094 enum bpf_access_type type,
3095 struct bpf_insn_access_aux *info)
3096 {
3097 return false;
3098 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3099 static inline bool bpf_sock_is_valid_access(int off, int size,
3100 enum bpf_access_type type,
3101 struct bpf_insn_access_aux *info)
3102 {
3103 return false;
3104 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3105 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3106 const struct bpf_insn *si,
3107 struct bpf_insn *insn_buf,
3108 struct bpf_prog *prog,
3109 u32 *target_size)
3110 {
3111 return 0;
3112 }
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr)3113 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3114 struct bpf_dynptr_kern *ptr)
3115 {
3116 return -EOPNOTSUPP;
3117 }
3118 #endif
3119
3120 #ifdef CONFIG_INET
3121 struct sk_reuseport_kern {
3122 struct sk_buff *skb;
3123 struct sock *sk;
3124 struct sock *selected_sk;
3125 struct sock *migrating_sk;
3126 void *data_end;
3127 u32 hash;
3128 u32 reuseport_id;
3129 bool bind_inany;
3130 };
3131 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3132 struct bpf_insn_access_aux *info);
3133
3134 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3135 const struct bpf_insn *si,
3136 struct bpf_insn *insn_buf,
3137 struct bpf_prog *prog,
3138 u32 *target_size);
3139
3140 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3141 struct bpf_insn_access_aux *info);
3142
3143 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3144 const struct bpf_insn *si,
3145 struct bpf_insn *insn_buf,
3146 struct bpf_prog *prog,
3147 u32 *target_size);
3148 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3149 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3150 enum bpf_access_type type,
3151 struct bpf_insn_access_aux *info)
3152 {
3153 return false;
3154 }
3155
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3156 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3157 const struct bpf_insn *si,
3158 struct bpf_insn *insn_buf,
3159 struct bpf_prog *prog,
3160 u32 *target_size)
3161 {
3162 return 0;
3163 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3164 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3165 enum bpf_access_type type,
3166 struct bpf_insn_access_aux *info)
3167 {
3168 return false;
3169 }
3170
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3171 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3172 const struct bpf_insn *si,
3173 struct bpf_insn *insn_buf,
3174 struct bpf_prog *prog,
3175 u32 *target_size)
3176 {
3177 return 0;
3178 }
3179 #endif /* CONFIG_INET */
3180
3181 enum bpf_text_poke_type {
3182 BPF_MOD_CALL,
3183 BPF_MOD_JUMP,
3184 };
3185
3186 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3187 void *addr1, void *addr2);
3188
3189 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3190 struct bpf_prog *new, struct bpf_prog *old);
3191
3192 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3193 int bpf_arch_text_invalidate(void *dst, size_t len);
3194
3195 struct btf_id_set;
3196 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3197
3198 #define MAX_BPRINTF_VARARGS 12
3199 #define MAX_BPRINTF_BUF 1024
3200
3201 struct bpf_bprintf_data {
3202 u32 *bin_args;
3203 char *buf;
3204 bool get_bin_args;
3205 bool get_buf;
3206 };
3207
3208 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3209 u32 num_args, struct bpf_bprintf_data *data);
3210 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3211
3212 #ifdef CONFIG_BPF_LSM
3213 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3214 void bpf_cgroup_atype_put(int cgroup_atype);
3215 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3216 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3217 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3218 #endif /* CONFIG_BPF_LSM */
3219
3220 struct key;
3221
3222 #ifdef CONFIG_KEYS
3223 struct bpf_key {
3224 struct key *key;
3225 bool has_ref;
3226 };
3227 #endif /* CONFIG_KEYS */
3228
type_is_alloc(u32 type)3229 static inline bool type_is_alloc(u32 type)
3230 {
3231 return type & MEM_ALLOC;
3232 }
3233
bpf_memcg_flags(gfp_t flags)3234 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3235 {
3236 if (memcg_bpf_enabled())
3237 return flags | __GFP_ACCOUNT;
3238 return flags;
3239 }
3240
3241 #endif /* _LINUX_BPF_H */
3242