• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 #include <linux/irq.h>
68 #include <linux/delay.h>
69 #ifdef CONFIG_QOS_CTRL
70 #include <linux/sched/qos_ctrl.h>
71 #endif
72 #ifdef CONFIG_PREEMPT_DYNAMIC
73 # ifdef CONFIG_GENERIC_ENTRY
74 #  include <linux/entry-common.h>
75 # endif
76 #endif
77 
78 #include <uapi/linux/sched/types.h>
79 
80 #include <asm/irq_regs.h>
81 #include <asm/switch_to.h>
82 #include <asm/tlb.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include <linux/sched/rseq_api.h>
86 #include <trace/events/sched.h>
87 #include <trace/events/ipi.h>
88 #undef CREATE_TRACE_POINTS
89 
90 #include "sched.h"
91 #include "stats.h"
92 #include "autogroup.h"
93 
94 #include "autogroup.h"
95 #include "pelt.h"
96 #include "smp.h"
97 #include "stats.h"
98 #include "walt.h"
99 #include "rtg/rtg.h"
100 
101 #include "../workqueue_internal.h"
102 #include "../../io_uring/io-wq.h"
103 #include "../smpboot.h"
104 
105 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
107 
108 /*
109  * Export tracepoints that act as a bare tracehook (ie: have no trace event
110  * associated with them) to allow external modules to probe them.
111  */
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
123 
124 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
125 
126 #ifdef CONFIG_SCHED_DEBUG
127 /*
128  * Debugging: various feature bits
129  *
130  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
131  * sysctl_sched_features, defined in sched.h, to allow constants propagation
132  * at compile time and compiler optimization based on features default.
133  */
134 #define SCHED_FEAT(name, enabled)	\
135 	(1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 #undef SCHED_FEAT
140 
141 /*
142  * Print a warning if need_resched is set for the given duration (if
143  * LATENCY_WARN is enabled).
144  *
145  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
146  * per boot.
147  */
148 __read_mostly int sysctl_resched_latency_warn_ms = 100;
149 __read_mostly int sysctl_resched_latency_warn_once = 1;
150 #endif /* CONFIG_SCHED_DEBUG */
151 
152 /*
153  * Number of tasks to iterate in a single balance run.
154  * Limited because this is done with IRQs disabled.
155  */
156 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
157 
158 __read_mostly int scheduler_running;
159 
160 #ifdef CONFIG_SCHED_CORE
161 
162 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
163 
164 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)165 static inline int __task_prio(const struct task_struct *p)
166 {
167 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
168 		return -2;
169 
170 	if (rt_prio(p->prio)) /* includes deadline */
171 		return p->prio; /* [-1, 99] */
172 
173 	if (p->sched_class == &idle_sched_class)
174 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
175 
176 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
177 }
178 
179 /*
180  * l(a,b)
181  * le(a,b) := !l(b,a)
182  * g(a,b)  := l(b,a)
183  * ge(a,b) := !l(a,b)
184  */
185 
186 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)187 static inline bool prio_less(const struct task_struct *a,
188 			     const struct task_struct *b, bool in_fi)
189 {
190 
191 	int pa = __task_prio(a), pb = __task_prio(b);
192 
193 	if (-pa < -pb)
194 		return true;
195 
196 	if (-pb < -pa)
197 		return false;
198 
199 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
200 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
201 
202 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
203 		return cfs_prio_less(a, b, in_fi);
204 
205 	return false;
206 }
207 
__sched_core_less(const struct task_struct * a,const struct task_struct * b)208 static inline bool __sched_core_less(const struct task_struct *a,
209 				     const struct task_struct *b)
210 {
211 	if (a->core_cookie < b->core_cookie)
212 		return true;
213 
214 	if (a->core_cookie > b->core_cookie)
215 		return false;
216 
217 	/* flip prio, so high prio is leftmost */
218 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
219 		return true;
220 
221 	return false;
222 }
223 
224 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
225 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)226 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
227 {
228 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
229 }
230 
rb_sched_core_cmp(const void * key,const struct rb_node * node)231 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
232 {
233 	const struct task_struct *p = __node_2_sc(node);
234 	unsigned long cookie = (unsigned long)key;
235 
236 	if (cookie < p->core_cookie)
237 		return -1;
238 
239 	if (cookie > p->core_cookie)
240 		return 1;
241 
242 	return 0;
243 }
244 
sched_core_enqueue(struct rq * rq,struct task_struct * p)245 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
246 {
247 	rq->core->core_task_seq++;
248 
249 	if (!p->core_cookie)
250 		return;
251 
252 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
253 }
254 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)255 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
256 {
257 	rq->core->core_task_seq++;
258 
259 	if (sched_core_enqueued(p)) {
260 		rb_erase(&p->core_node, &rq->core_tree);
261 		RB_CLEAR_NODE(&p->core_node);
262 	}
263 
264 	/*
265 	 * Migrating the last task off the cpu, with the cpu in forced idle
266 	 * state. Reschedule to create an accounting edge for forced idle,
267 	 * and re-examine whether the core is still in forced idle state.
268 	 */
269 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
270 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
271 		resched_curr(rq);
272 }
273 
sched_task_is_throttled(struct task_struct * p,int cpu)274 static int sched_task_is_throttled(struct task_struct *p, int cpu)
275 {
276 	if (p->sched_class->task_is_throttled)
277 		return p->sched_class->task_is_throttled(p, cpu);
278 
279 	return 0;
280 }
281 
sched_core_next(struct task_struct * p,unsigned long cookie)282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
283 {
284 	struct rb_node *node = &p->core_node;
285 	int cpu = task_cpu(p);
286 
287 	do {
288 		node = rb_next(node);
289 		if (!node)
290 			return NULL;
291 
292 		p = __node_2_sc(node);
293 		if (p->core_cookie != cookie)
294 			return NULL;
295 
296 	} while (sched_task_is_throttled(p, cpu));
297 
298 	return p;
299 }
300 
301 /*
302  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
303  * If no suitable task is found, NULL will be returned.
304  */
sched_core_find(struct rq * rq,unsigned long cookie)305 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
306 {
307 	struct task_struct *p;
308 	struct rb_node *node;
309 
310 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
311 	if (!node)
312 		return NULL;
313 
314 	p = __node_2_sc(node);
315 	if (!sched_task_is_throttled(p, rq->cpu))
316 		return p;
317 
318 	return sched_core_next(p, cookie);
319 }
320 
321 /*
322  * Magic required such that:
323  *
324  *	raw_spin_rq_lock(rq);
325  *	...
326  *	raw_spin_rq_unlock(rq);
327  *
328  * ends up locking and unlocking the _same_ lock, and all CPUs
329  * always agree on what rq has what lock.
330  *
331  * XXX entirely possible to selectively enable cores, don't bother for now.
332  */
333 
334 static DEFINE_MUTEX(sched_core_mutex);
335 static atomic_t sched_core_count;
336 static struct cpumask sched_core_mask;
337 
sched_core_lock(int cpu,unsigned long * flags)338 static void sched_core_lock(int cpu, unsigned long *flags)
339 {
340 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
341 	int t, i = 0;
342 
343 	local_irq_save(*flags);
344 	for_each_cpu(t, smt_mask)
345 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
346 }
347 
sched_core_unlock(int cpu,unsigned long * flags)348 static void sched_core_unlock(int cpu, unsigned long *flags)
349 {
350 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
351 	int t;
352 
353 	for_each_cpu(t, smt_mask)
354 		raw_spin_unlock(&cpu_rq(t)->__lock);
355 	local_irq_restore(*flags);
356 }
357 
__sched_core_flip(bool enabled)358 static void __sched_core_flip(bool enabled)
359 {
360 	unsigned long flags;
361 	int cpu, t;
362 
363 	cpus_read_lock();
364 
365 	/*
366 	 * Toggle the online cores, one by one.
367 	 */
368 	cpumask_copy(&sched_core_mask, cpu_online_mask);
369 	for_each_cpu(cpu, &sched_core_mask) {
370 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
371 
372 		sched_core_lock(cpu, &flags);
373 
374 		for_each_cpu(t, smt_mask)
375 			cpu_rq(t)->core_enabled = enabled;
376 
377 		cpu_rq(cpu)->core->core_forceidle_start = 0;
378 
379 		sched_core_unlock(cpu, &flags);
380 
381 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
382 	}
383 
384 	/*
385 	 * Toggle the offline CPUs.
386 	 */
387 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
388 		cpu_rq(cpu)->core_enabled = enabled;
389 
390 	cpus_read_unlock();
391 }
392 
sched_core_assert_empty(void)393 static void sched_core_assert_empty(void)
394 {
395 	int cpu;
396 
397 	for_each_possible_cpu(cpu)
398 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
399 }
400 
__sched_core_enable(void)401 static void __sched_core_enable(void)
402 {
403 	static_branch_enable(&__sched_core_enabled);
404 	/*
405 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
406 	 * and future ones will observe !sched_core_disabled().
407 	 */
408 	synchronize_rcu();
409 	__sched_core_flip(true);
410 	sched_core_assert_empty();
411 }
412 
__sched_core_disable(void)413 static void __sched_core_disable(void)
414 {
415 	sched_core_assert_empty();
416 	__sched_core_flip(false);
417 	static_branch_disable(&__sched_core_enabled);
418 }
419 
sched_core_get(void)420 void sched_core_get(void)
421 {
422 	if (atomic_inc_not_zero(&sched_core_count))
423 		return;
424 
425 	mutex_lock(&sched_core_mutex);
426 	if (!atomic_read(&sched_core_count))
427 		__sched_core_enable();
428 
429 	smp_mb__before_atomic();
430 	atomic_inc(&sched_core_count);
431 	mutex_unlock(&sched_core_mutex);
432 }
433 
__sched_core_put(struct work_struct * work)434 static void __sched_core_put(struct work_struct *work)
435 {
436 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
437 		__sched_core_disable();
438 		mutex_unlock(&sched_core_mutex);
439 	}
440 }
441 
sched_core_put(void)442 void sched_core_put(void)
443 {
444 	static DECLARE_WORK(_work, __sched_core_put);
445 
446 	/*
447 	 * "There can be only one"
448 	 *
449 	 * Either this is the last one, or we don't actually need to do any
450 	 * 'work'. If it is the last *again*, we rely on
451 	 * WORK_STRUCT_PENDING_BIT.
452 	 */
453 	if (!atomic_add_unless(&sched_core_count, -1, 1))
454 		schedule_work(&_work);
455 }
456 
457 #else /* !CONFIG_SCHED_CORE */
458 
sched_core_enqueue(struct rq * rq,struct task_struct * p)459 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
460 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)461 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
462 
463 #endif /* CONFIG_SCHED_CORE */
464 
465 /*
466  * Serialization rules:
467  *
468  * Lock order:
469  *
470  *   p->pi_lock
471  *     rq->lock
472  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
473  *
474  *  rq1->lock
475  *    rq2->lock  where: rq1 < rq2
476  *
477  * Regular state:
478  *
479  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
480  * local CPU's rq->lock, it optionally removes the task from the runqueue and
481  * always looks at the local rq data structures to find the most eligible task
482  * to run next.
483  *
484  * Task enqueue is also under rq->lock, possibly taken from another CPU.
485  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
486  * the local CPU to avoid bouncing the runqueue state around [ see
487  * ttwu_queue_wakelist() ]
488  *
489  * Task wakeup, specifically wakeups that involve migration, are horribly
490  * complicated to avoid having to take two rq->locks.
491  *
492  * Special state:
493  *
494  * System-calls and anything external will use task_rq_lock() which acquires
495  * both p->pi_lock and rq->lock. As a consequence the state they change is
496  * stable while holding either lock:
497  *
498  *  - sched_setaffinity()/
499  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
500  *  - set_user_nice():		p->se.load, p->*prio
501  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
502  *				p->se.load, p->rt_priority,
503  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
504  *  - sched_setnuma():		p->numa_preferred_nid
505  *  - sched_move_task():	p->sched_task_group
506  *  - uclamp_update_active()	p->uclamp*
507  *
508  * p->state <- TASK_*:
509  *
510  *   is changed locklessly using set_current_state(), __set_current_state() or
511  *   set_special_state(), see their respective comments, or by
512  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
513  *   concurrent self.
514  *
515  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
516  *
517  *   is set by activate_task() and cleared by deactivate_task(), under
518  *   rq->lock. Non-zero indicates the task is runnable, the special
519  *   ON_RQ_MIGRATING state is used for migration without holding both
520  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
521  *
522  * p->on_cpu <- { 0, 1 }:
523  *
524  *   is set by prepare_task() and cleared by finish_task() such that it will be
525  *   set before p is scheduled-in and cleared after p is scheduled-out, both
526  *   under rq->lock. Non-zero indicates the task is running on its CPU.
527  *
528  *   [ The astute reader will observe that it is possible for two tasks on one
529  *     CPU to have ->on_cpu = 1 at the same time. ]
530  *
531  * task_cpu(p): is changed by set_task_cpu(), the rules are:
532  *
533  *  - Don't call set_task_cpu() on a blocked task:
534  *
535  *    We don't care what CPU we're not running on, this simplifies hotplug,
536  *    the CPU assignment of blocked tasks isn't required to be valid.
537  *
538  *  - for try_to_wake_up(), called under p->pi_lock:
539  *
540  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
541  *
542  *  - for migration called under rq->lock:
543  *    [ see task_on_rq_migrating() in task_rq_lock() ]
544  *
545  *    o move_queued_task()
546  *    o detach_task()
547  *
548  *  - for migration called under double_rq_lock():
549  *
550  *    o __migrate_swap_task()
551  *    o push_rt_task() / pull_rt_task()
552  *    o push_dl_task() / pull_dl_task()
553  *    o dl_task_offline_migration()
554  *
555  */
556 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)557 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
558 {
559 	raw_spinlock_t *lock;
560 
561 	/* Matches synchronize_rcu() in __sched_core_enable() */
562 	preempt_disable();
563 	if (sched_core_disabled()) {
564 		raw_spin_lock_nested(&rq->__lock, subclass);
565 		/* preempt_count *MUST* be > 1 */
566 		preempt_enable_no_resched();
567 		return;
568 	}
569 
570 	for (;;) {
571 		lock = __rq_lockp(rq);
572 		raw_spin_lock_nested(lock, subclass);
573 		if (likely(lock == __rq_lockp(rq))) {
574 			/* preempt_count *MUST* be > 1 */
575 			preempt_enable_no_resched();
576 			return;
577 		}
578 		raw_spin_unlock(lock);
579 	}
580 }
581 
raw_spin_rq_trylock(struct rq * rq)582 bool raw_spin_rq_trylock(struct rq *rq)
583 {
584 	raw_spinlock_t *lock;
585 	bool ret;
586 
587 	/* Matches synchronize_rcu() in __sched_core_enable() */
588 	preempt_disable();
589 	if (sched_core_disabled()) {
590 		ret = raw_spin_trylock(&rq->__lock);
591 		preempt_enable();
592 		return ret;
593 	}
594 
595 	for (;;) {
596 		lock = __rq_lockp(rq);
597 		ret = raw_spin_trylock(lock);
598 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
599 			preempt_enable();
600 			return ret;
601 		}
602 		raw_spin_unlock(lock);
603 	}
604 }
605 
raw_spin_rq_unlock(struct rq * rq)606 void raw_spin_rq_unlock(struct rq *rq)
607 {
608 	raw_spin_unlock(rq_lockp(rq));
609 }
610 
611 #ifdef CONFIG_SMP
612 /*
613  * double_rq_lock - safely lock two runqueues
614  */
double_rq_lock(struct rq * rq1,struct rq * rq2)615 void double_rq_lock(struct rq *rq1, struct rq *rq2)
616 {
617 	lockdep_assert_irqs_disabled();
618 
619 	if (rq_order_less(rq2, rq1))
620 		swap(rq1, rq2);
621 
622 	raw_spin_rq_lock(rq1);
623 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
624 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
625 
626 	double_rq_clock_clear_update(rq1, rq2);
627 }
628 #endif
629 
630 /*
631  * __task_rq_lock - lock the rq @p resides on.
632  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)633 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
634 	__acquires(rq->lock)
635 {
636 	struct rq *rq;
637 
638 	lockdep_assert_held(&p->pi_lock);
639 
640 	for (;;) {
641 		rq = task_rq(p);
642 		raw_spin_rq_lock(rq);
643 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
644 			rq_pin_lock(rq, rf);
645 			return rq;
646 		}
647 		raw_spin_rq_unlock(rq);
648 
649 		while (unlikely(task_on_rq_migrating(p)))
650 			cpu_relax();
651 	}
652 }
653 
654 /*
655  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
656  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)657 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
658 	__acquires(p->pi_lock)
659 	__acquires(rq->lock)
660 {
661 	struct rq *rq;
662 
663 	for (;;) {
664 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
665 		rq = task_rq(p);
666 		raw_spin_rq_lock(rq);
667 		/*
668 		 *	move_queued_task()		task_rq_lock()
669 		 *
670 		 *	ACQUIRE (rq->lock)
671 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
672 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
673 		 *	[S] ->cpu = new_cpu		[L] task_rq()
674 		 *					[L] ->on_rq
675 		 *	RELEASE (rq->lock)
676 		 *
677 		 * If we observe the old CPU in task_rq_lock(), the acquire of
678 		 * the old rq->lock will fully serialize against the stores.
679 		 *
680 		 * If we observe the new CPU in task_rq_lock(), the address
681 		 * dependency headed by '[L] rq = task_rq()' and the acquire
682 		 * will pair with the WMB to ensure we then also see migrating.
683 		 */
684 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
685 			rq_pin_lock(rq, rf);
686 			return rq;
687 		}
688 		raw_spin_rq_unlock(rq);
689 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
690 
691 		while (unlikely(task_on_rq_migrating(p)))
692 			cpu_relax();
693 	}
694 }
695 
696 /*
697  * RQ-clock updating methods:
698  */
699 
update_rq_clock_task(struct rq * rq,s64 delta)700 static void update_rq_clock_task(struct rq *rq, s64 delta)
701 {
702 /*
703  * In theory, the compile should just see 0 here, and optimize out the call
704  * to sched_rt_avg_update. But I don't trust it...
705  */
706 	s64 __maybe_unused steal = 0, irq_delta = 0;
707 
708 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
709 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
710 
711 	/*
712 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
713 	 * this case when a previous update_rq_clock() happened inside a
714 	 * {soft,}irq region.
715 	 *
716 	 * When this happens, we stop ->clock_task and only update the
717 	 * prev_irq_time stamp to account for the part that fit, so that a next
718 	 * update will consume the rest. This ensures ->clock_task is
719 	 * monotonic.
720 	 *
721 	 * It does however cause some slight miss-attribution of {soft,}irq
722 	 * time, a more accurate solution would be to update the irq_time using
723 	 * the current rq->clock timestamp, except that would require using
724 	 * atomic ops.
725 	 */
726 	if (irq_delta > delta)
727 		irq_delta = delta;
728 
729 	rq->prev_irq_time += irq_delta;
730 	delta -= irq_delta;
731 	delayacct_irq(rq->curr, irq_delta);
732 #endif
733 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
734 	if (static_key_false((&paravirt_steal_rq_enabled))) {
735 		u64 prev_steal;
736 
737 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
738 		steal -= rq->prev_steal_time_rq;
739 
740 		if (unlikely(steal > delta))
741 			steal = delta;
742 
743 		rq->prev_steal_time_rq = prev_steal;
744 		delta -= steal;
745 	}
746 #endif
747 
748 	rq->clock_task += delta;
749 
750 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
751 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
752 		update_irq_load_avg(rq, irq_delta + steal);
753 #endif
754 	update_rq_clock_pelt(rq, delta);
755 }
756 
update_rq_clock(struct rq * rq)757 void update_rq_clock(struct rq *rq)
758 {
759 	s64 delta;
760 
761 	lockdep_assert_rq_held(rq);
762 
763 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
764 		return;
765 
766 #ifdef CONFIG_SCHED_DEBUG
767 	if (sched_feat(WARN_DOUBLE_CLOCK))
768 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
769 	rq->clock_update_flags |= RQCF_UPDATED;
770 #endif
771 
772 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
773 	if (delta < 0)
774 		return;
775 	rq->clock += delta;
776 	update_rq_clock_task(rq, delta);
777 }
778 
779 #ifdef CONFIG_SCHED_HRTICK
780 /*
781  * Use HR-timers to deliver accurate preemption points.
782  */
783 
hrtick_clear(struct rq * rq)784 static void hrtick_clear(struct rq *rq)
785 {
786 	if (hrtimer_active(&rq->hrtick_timer))
787 		hrtimer_cancel(&rq->hrtick_timer);
788 }
789 
790 /*
791  * High-resolution timer tick.
792  * Runs from hardirq context with interrupts disabled.
793  */
hrtick(struct hrtimer * timer)794 static enum hrtimer_restart hrtick(struct hrtimer *timer)
795 {
796 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
797 	struct rq_flags rf;
798 
799 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
800 
801 	rq_lock(rq, &rf);
802 	update_rq_clock(rq);
803 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
804 	rq_unlock(rq, &rf);
805 
806 	return HRTIMER_NORESTART;
807 }
808 
809 #ifdef CONFIG_SMP
810 
__hrtick_restart(struct rq * rq)811 static void __hrtick_restart(struct rq *rq)
812 {
813 	struct hrtimer *timer = &rq->hrtick_timer;
814 	ktime_t time = rq->hrtick_time;
815 
816 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
817 }
818 
819 /*
820  * called from hardirq (IPI) context
821  */
__hrtick_start(void * arg)822 static void __hrtick_start(void *arg)
823 {
824 	struct rq *rq = arg;
825 	struct rq_flags rf;
826 
827 	rq_lock(rq, &rf);
828 	__hrtick_restart(rq);
829 	rq_unlock(rq, &rf);
830 }
831 
832 /*
833  * Called to set the hrtick timer state.
834  *
835  * called with rq->lock held and irqs disabled
836  */
hrtick_start(struct rq * rq,u64 delay)837 void hrtick_start(struct rq *rq, u64 delay)
838 {
839 	struct hrtimer *timer = &rq->hrtick_timer;
840 	s64 delta;
841 
842 	/*
843 	 * Don't schedule slices shorter than 10000ns, that just
844 	 * doesn't make sense and can cause timer DoS.
845 	 */
846 	delta = max_t(s64, delay, 10000LL);
847 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
848 
849 	if (rq == this_rq())
850 		__hrtick_restart(rq);
851 	else
852 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
853 }
854 
855 #else
856 /*
857  * Called to set the hrtick timer state.
858  *
859  * called with rq->lock held and irqs disabled
860  */
hrtick_start(struct rq * rq,u64 delay)861 void hrtick_start(struct rq *rq, u64 delay)
862 {
863 	/*
864 	 * Don't schedule slices shorter than 10000ns, that just
865 	 * doesn't make sense. Rely on vruntime for fairness.
866 	 */
867 	delay = max_t(u64, delay, 10000LL);
868 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
869 		      HRTIMER_MODE_REL_PINNED_HARD);
870 }
871 
872 #endif /* CONFIG_SMP */
873 
hrtick_rq_init(struct rq * rq)874 static void hrtick_rq_init(struct rq *rq)
875 {
876 #ifdef CONFIG_SMP
877 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
878 #endif
879 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
880 	rq->hrtick_timer.function = hrtick;
881 }
882 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)883 static inline void hrtick_clear(struct rq *rq)
884 {
885 }
886 
hrtick_rq_init(struct rq * rq)887 static inline void hrtick_rq_init(struct rq *rq)
888 {
889 }
890 #endif	/* CONFIG_SCHED_HRTICK */
891 
892 /*
893  * cmpxchg based fetch_or, macro so it works for different integer types
894  */
895 #define fetch_or(ptr, mask)						\
896 	({								\
897 		typeof(ptr) _ptr = (ptr);				\
898 		typeof(mask) _mask = (mask);				\
899 		typeof(*_ptr) _val = *_ptr;				\
900 									\
901 		do {							\
902 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
903 	_val;								\
904 })
905 
906 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
907 /*
908  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
909  * this avoids any races wrt polling state changes and thereby avoids
910  * spurious IPIs.
911  */
set_nr_and_not_polling(struct task_struct * p)912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 	struct thread_info *ti = task_thread_info(p);
915 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
916 }
917 
918 /*
919  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
920  *
921  * If this returns true, then the idle task promises to call
922  * sched_ttwu_pending() and reschedule soon.
923  */
set_nr_if_polling(struct task_struct * p)924 static bool set_nr_if_polling(struct task_struct *p)
925 {
926 	struct thread_info *ti = task_thread_info(p);
927 	typeof(ti->flags) val = READ_ONCE(ti->flags);
928 
929 	for (;;) {
930 		if (!(val & _TIF_POLLING_NRFLAG))
931 			return false;
932 		if (val & _TIF_NEED_RESCHED)
933 			return true;
934 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
935 			break;
936 	}
937 	return true;
938 }
939 
940 #else
set_nr_and_not_polling(struct task_struct * p)941 static inline bool set_nr_and_not_polling(struct task_struct *p)
942 {
943 	set_tsk_need_resched(p);
944 	return true;
945 }
946 
947 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)948 static inline bool set_nr_if_polling(struct task_struct *p)
949 {
950 	return false;
951 }
952 #endif
953 #endif
954 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)955 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
956 {
957 	struct wake_q_node *node = &task->wake_q;
958 
959 	/*
960 	 * Atomically grab the task, if ->wake_q is !nil already it means
961 	 * it's already queued (either by us or someone else) and will get the
962 	 * wakeup due to that.
963 	 *
964 	 * In order to ensure that a pending wakeup will observe our pending
965 	 * state, even in the failed case, an explicit smp_mb() must be used.
966 	 */
967 	smp_mb__before_atomic();
968 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
969 		return false;
970 
971 	/*
972 	 * The head is context local, there can be no concurrency.
973 	 */
974 	*head->lastp = node;
975 	head->lastp = &node->next;
976 	return true;
977 }
978 
979 /**
980  * wake_q_add() - queue a wakeup for 'later' waking.
981  * @head: the wake_q_head to add @task to
982  * @task: the task to queue for 'later' wakeup
983  *
984  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
985  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
986  * instantly.
987  *
988  * This function must be used as-if it were wake_up_process(); IOW the task
989  * must be ready to be woken at this location.
990  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)991 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
992 {
993 	if (__wake_q_add(head, task))
994 		get_task_struct(task);
995 }
996 
997 /**
998  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
999  * @head: the wake_q_head to add @task to
1000  * @task: the task to queue for 'later' wakeup
1001  *
1002  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1003  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1004  * instantly.
1005  *
1006  * This function must be used as-if it were wake_up_process(); IOW the task
1007  * must be ready to be woken at this location.
1008  *
1009  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1010  * that already hold reference to @task can call the 'safe' version and trust
1011  * wake_q to do the right thing depending whether or not the @task is already
1012  * queued for wakeup.
1013  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1014 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1015 {
1016 	if (!__wake_q_add(head, task))
1017 		put_task_struct(task);
1018 }
1019 
wake_up_q(struct wake_q_head * head)1020 void wake_up_q(struct wake_q_head *head)
1021 {
1022 	struct wake_q_node *node = head->first;
1023 
1024 	while (node != WAKE_Q_TAIL) {
1025 		struct task_struct *task;
1026 
1027 		task = container_of(node, struct task_struct, wake_q);
1028 		node = node->next;
1029 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1030 		WRITE_ONCE(task->wake_q.next, NULL);
1031 		/* Task can safely be re-inserted now. */
1032 
1033 		/*
1034 		 * wake_up_process() executes a full barrier, which pairs with
1035 		 * the queueing in wake_q_add() so as not to miss wakeups.
1036 		 */
1037 		wake_up_process(task);
1038 		put_task_struct(task);
1039 	}
1040 }
1041 
1042 /*
1043  * resched_curr - mark rq's current task 'to be rescheduled now'.
1044  *
1045  * On UP this means the setting of the need_resched flag, on SMP it
1046  * might also involve a cross-CPU call to trigger the scheduler on
1047  * the target CPU.
1048  */
resched_curr(struct rq * rq)1049 void resched_curr(struct rq *rq)
1050 {
1051 	struct task_struct *curr = rq->curr;
1052 	int cpu;
1053 
1054 	lockdep_assert_rq_held(rq);
1055 
1056 	if (test_tsk_need_resched(curr))
1057 		return;
1058 
1059 	cpu = cpu_of(rq);
1060 
1061 	if (cpu == smp_processor_id()) {
1062 		set_tsk_need_resched(curr);
1063 		set_preempt_need_resched();
1064 		return;
1065 	}
1066 
1067 	if (set_nr_and_not_polling(curr))
1068 		smp_send_reschedule(cpu);
1069 	else
1070 		trace_sched_wake_idle_without_ipi(cpu);
1071 }
1072 
resched_cpu(int cpu)1073 void resched_cpu(int cpu)
1074 {
1075 	struct rq *rq = cpu_rq(cpu);
1076 	unsigned long flags;
1077 
1078 	raw_spin_rq_lock_irqsave(rq, flags);
1079 	if (cpu_online(cpu) || cpu == smp_processor_id())
1080 		resched_curr(rq);
1081 	raw_spin_rq_unlock_irqrestore(rq, flags);
1082 }
1083 
1084 #ifdef CONFIG_SMP
1085 #ifdef CONFIG_NO_HZ_COMMON
1086 /*
1087  * In the semi idle case, use the nearest busy CPU for migrating timers
1088  * from an idle CPU.  This is good for power-savings.
1089  *
1090  * We don't do similar optimization for completely idle system, as
1091  * selecting an idle CPU will add more delays to the timers than intended
1092  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1093  */
get_nohz_timer_target(void)1094 int get_nohz_timer_target(void)
1095 {
1096 	int i, cpu = smp_processor_id(), default_cpu = -1;
1097 	struct sched_domain *sd;
1098 	const struct cpumask *hk_mask;
1099 
1100 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1101 		if (!idle_cpu(cpu))
1102 			return cpu;
1103 		default_cpu = cpu;
1104 	}
1105 
1106 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1107 
1108 	guard(rcu)();
1109 
1110 	for_each_domain(cpu, sd) {
1111 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1112 			if (cpu == i)
1113 				continue;
1114 
1115 			if (!idle_cpu(i))
1116 				return i;
1117 		}
1118 	}
1119 
1120 	if (default_cpu == -1)
1121 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1122 
1123 	return default_cpu;
1124 }
1125 
1126 /*
1127  * When add_timer_on() enqueues a timer into the timer wheel of an
1128  * idle CPU then this timer might expire before the next timer event
1129  * which is scheduled to wake up that CPU. In case of a completely
1130  * idle system the next event might even be infinite time into the
1131  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1132  * leaves the inner idle loop so the newly added timer is taken into
1133  * account when the CPU goes back to idle and evaluates the timer
1134  * wheel for the next timer event.
1135  */
wake_up_idle_cpu(int cpu)1136 static void wake_up_idle_cpu(int cpu)
1137 {
1138 	struct rq *rq = cpu_rq(cpu);
1139 
1140 	if (cpu == smp_processor_id())
1141 		return;
1142 
1143 	if (set_nr_and_not_polling(rq->idle))
1144 		smp_send_reschedule(cpu);
1145 	else
1146 		trace_sched_wake_idle_without_ipi(cpu);
1147 }
1148 
wake_up_full_nohz_cpu(int cpu)1149 static bool wake_up_full_nohz_cpu(int cpu)
1150 {
1151 	/*
1152 	 * We just need the target to call irq_exit() and re-evaluate
1153 	 * the next tick. The nohz full kick at least implies that.
1154 	 * If needed we can still optimize that later with an
1155 	 * empty IRQ.
1156 	 */
1157 	if (cpu_is_offline(cpu))
1158 		return true;  /* Don't try to wake offline CPUs. */
1159 	if (tick_nohz_full_cpu(cpu)) {
1160 		if (cpu != smp_processor_id() ||
1161 		    tick_nohz_tick_stopped())
1162 			tick_nohz_full_kick_cpu(cpu);
1163 		return true;
1164 	}
1165 
1166 	return false;
1167 }
1168 
1169 /*
1170  * Wake up the specified CPU.  If the CPU is going offline, it is the
1171  * caller's responsibility to deal with the lost wakeup, for example,
1172  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1173  */
wake_up_nohz_cpu(int cpu)1174 void wake_up_nohz_cpu(int cpu)
1175 {
1176 	if (!wake_up_full_nohz_cpu(cpu))
1177 		wake_up_idle_cpu(cpu);
1178 }
1179 
nohz_csd_func(void * info)1180 static void nohz_csd_func(void *info)
1181 {
1182 	struct rq *rq = info;
1183 	int cpu = cpu_of(rq);
1184 	unsigned int flags;
1185 
1186 	/*
1187 	 * Release the rq::nohz_csd.
1188 	 */
1189 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1190 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1191 
1192 	rq->idle_balance = idle_cpu(cpu);
1193 	if (rq->idle_balance) {
1194 		rq->nohz_idle_balance = flags;
1195 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1196 	}
1197 }
1198 
1199 #endif /* CONFIG_NO_HZ_COMMON */
1200 
1201 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1202 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1203 {
1204 	if (rq->nr_running != 1)
1205 		return false;
1206 
1207 	if (p->sched_class != &fair_sched_class)
1208 		return false;
1209 
1210 	if (!task_on_rq_queued(p))
1211 		return false;
1212 
1213 	return true;
1214 }
1215 
sched_can_stop_tick(struct rq * rq)1216 bool sched_can_stop_tick(struct rq *rq)
1217 {
1218 	int fifo_nr_running;
1219 
1220 	/* Deadline tasks, even if single, need the tick */
1221 	if (rq->dl.dl_nr_running)
1222 		return false;
1223 
1224 	/*
1225 	 * If there are more than one RR tasks, we need the tick to affect the
1226 	 * actual RR behaviour.
1227 	 */
1228 	if (rq->rt.rr_nr_running) {
1229 		if (rq->rt.rr_nr_running == 1)
1230 			return true;
1231 		else
1232 			return false;
1233 	}
1234 
1235 	/*
1236 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1237 	 * forced preemption between FIFO tasks.
1238 	 */
1239 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1240 	if (fifo_nr_running)
1241 		return true;
1242 
1243 	/*
1244 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1245 	 * if there's more than one we need the tick for involuntary
1246 	 * preemption.
1247 	 */
1248 	if (rq->nr_running > 1)
1249 		return false;
1250 
1251 	/*
1252 	 * If there is one task and it has CFS runtime bandwidth constraints
1253 	 * and it's on the cpu now we don't want to stop the tick.
1254 	 * This check prevents clearing the bit if a newly enqueued task here is
1255 	 * dequeued by migrating while the constrained task continues to run.
1256 	 * E.g. going from 2->1 without going through pick_next_task().
1257 	 */
1258 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1259 		if (cfs_task_bw_constrained(rq->curr))
1260 			return false;
1261 	}
1262 
1263 	return true;
1264 }
1265 #endif /* CONFIG_NO_HZ_FULL */
1266 #endif /* CONFIG_SMP */
1267 
1268 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1269 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1270 /*
1271  * Iterate task_group tree rooted at *from, calling @down when first entering a
1272  * node and @up when leaving it for the final time.
1273  *
1274  * Caller must hold rcu_lock or sufficient equivalent.
1275  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1276 int walk_tg_tree_from(struct task_group *from,
1277 			     tg_visitor down, tg_visitor up, void *data)
1278 {
1279 	struct task_group *parent, *child;
1280 	int ret;
1281 
1282 	parent = from;
1283 
1284 down:
1285 	ret = (*down)(parent, data);
1286 	if (ret)
1287 		goto out;
1288 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1289 		parent = child;
1290 		goto down;
1291 
1292 up:
1293 		continue;
1294 	}
1295 	ret = (*up)(parent, data);
1296 	if (ret || parent == from)
1297 		goto out;
1298 
1299 	child = parent;
1300 	parent = parent->parent;
1301 	if (parent)
1302 		goto up;
1303 out:
1304 	return ret;
1305 }
1306 
tg_nop(struct task_group * tg,void * data)1307 int tg_nop(struct task_group *tg, void *data)
1308 {
1309 	return 0;
1310 }
1311 #endif
1312 
set_load_weight(struct task_struct * p,bool update_load)1313 static void set_load_weight(struct task_struct *p, bool update_load)
1314 {
1315 	int prio = p->static_prio - MAX_RT_PRIO;
1316 	struct load_weight lw;
1317 
1318 	if (task_has_idle_policy(p)) {
1319 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1320 		lw.inv_weight = WMULT_IDLEPRIO;
1321 	} else {
1322 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1323 		lw.inv_weight = sched_prio_to_wmult[prio];
1324 	}
1325 
1326 	/*
1327 	 * SCHED_OTHER tasks have to update their load when changing their
1328 	 * weight
1329 	 */
1330 	if (update_load && p->sched_class == &fair_sched_class)
1331 		reweight_task(p, &lw);
1332 	else
1333 		p->se.load = lw;
1334 }
1335 
1336 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)1337 static void set_latency_weight(struct task_struct *p)
1338 {
1339 	p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
1340 }
1341 
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1342 static void __setscheduler_latency(struct task_struct *p,
1343 		const struct sched_attr *attr)
1344 {
1345 	if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
1346 		p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
1347 		set_latency_weight(p);
1348 	}
1349 }
1350 
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1351 static int latency_nice_validate(struct task_struct *p, bool user,
1352 				 const struct sched_attr *attr)
1353 {
1354 	if (attr->sched_latency_nice > MAX_LATENCY_NICE)
1355 		return -EINVAL;
1356 	if (attr->sched_latency_nice < MIN_LATENCY_NICE)
1357 		return -EINVAL;
1358 	/* Use the same security checks as NICE */
1359 	if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
1360 	    && !capable(CAP_SYS_NICE))
1361 		return -EPERM;
1362 
1363 	return 0;
1364 }
1365 #else
1366 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1367 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
1368 {
1369 }
1370 
1371 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1372 int latency_nice_validate(struct task_struct *p, bool user,
1373 			  const struct sched_attr *attr)
1374 {
1375 	return -EOPNOTSUPP;
1376 }
1377 #endif
1378 
1379 #ifdef CONFIG_UCLAMP_TASK
1380 /*
1381  * Serializes updates of utilization clamp values
1382  *
1383  * The (slow-path) user-space triggers utilization clamp value updates which
1384  * can require updates on (fast-path) scheduler's data structures used to
1385  * support enqueue/dequeue operations.
1386  * While the per-CPU rq lock protects fast-path update operations, user-space
1387  * requests are serialized using a mutex to reduce the risk of conflicting
1388  * updates or API abuses.
1389  */
1390 static DEFINE_MUTEX(uclamp_mutex);
1391 
1392 /* Max allowed minimum utilization */
1393 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1394 
1395 /* Max allowed maximum utilization */
1396 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1397 
1398 /*
1399  * By default RT tasks run at the maximum performance point/capacity of the
1400  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1401  * SCHED_CAPACITY_SCALE.
1402  *
1403  * This knob allows admins to change the default behavior when uclamp is being
1404  * used. In battery powered devices, particularly, running at the maximum
1405  * capacity and frequency will increase energy consumption and shorten the
1406  * battery life.
1407  *
1408  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1409  *
1410  * This knob will not override the system default sched_util_clamp_min defined
1411  * above.
1412  */
1413 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1414 
1415 /* All clamps are required to be less or equal than these values */
1416 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1417 
1418 /*
1419  * This static key is used to reduce the uclamp overhead in the fast path. It
1420  * primarily disables the call to uclamp_rq_{inc, dec}() in
1421  * enqueue/dequeue_task().
1422  *
1423  * This allows users to continue to enable uclamp in their kernel config with
1424  * minimum uclamp overhead in the fast path.
1425  *
1426  * As soon as userspace modifies any of the uclamp knobs, the static key is
1427  * enabled, since we have an actual users that make use of uclamp
1428  * functionality.
1429  *
1430  * The knobs that would enable this static key are:
1431  *
1432  *   * A task modifying its uclamp value with sched_setattr().
1433  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1434  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1435  */
1436 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1437 
1438 /* Integer rounded range for each bucket */
1439 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1440 
1441 #define for_each_clamp_id(clamp_id) \
1442 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1443 
uclamp_bucket_id(unsigned int clamp_value)1444 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1445 {
1446 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1447 }
1448 
uclamp_none(enum uclamp_id clamp_id)1449 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1450 {
1451 	if (clamp_id == UCLAMP_MIN)
1452 		return 0;
1453 	return SCHED_CAPACITY_SCALE;
1454 }
1455 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1456 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1457 				 unsigned int value, bool user_defined)
1458 {
1459 	uc_se->value = value;
1460 	uc_se->bucket_id = uclamp_bucket_id(value);
1461 	uc_se->user_defined = user_defined;
1462 }
1463 
1464 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1465 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1466 		  unsigned int clamp_value)
1467 {
1468 	/*
1469 	 * Avoid blocked utilization pushing up the frequency when we go
1470 	 * idle (which drops the max-clamp) by retaining the last known
1471 	 * max-clamp.
1472 	 */
1473 	if (clamp_id == UCLAMP_MAX) {
1474 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1475 		return clamp_value;
1476 	}
1477 
1478 	return uclamp_none(UCLAMP_MIN);
1479 }
1480 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1481 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1482 				     unsigned int clamp_value)
1483 {
1484 	/* Reset max-clamp retention only on idle exit */
1485 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1486 		return;
1487 
1488 	uclamp_rq_set(rq, clamp_id, clamp_value);
1489 }
1490 
1491 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1492 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1493 				   unsigned int clamp_value)
1494 {
1495 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1496 	int bucket_id = UCLAMP_BUCKETS - 1;
1497 
1498 	/*
1499 	 * Since both min and max clamps are max aggregated, find the
1500 	 * top most bucket with tasks in.
1501 	 */
1502 	for ( ; bucket_id >= 0; bucket_id--) {
1503 		if (!bucket[bucket_id].tasks)
1504 			continue;
1505 		return bucket[bucket_id].value;
1506 	}
1507 
1508 	/* No tasks -- default clamp values */
1509 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1510 }
1511 
__uclamp_update_util_min_rt_default(struct task_struct * p)1512 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1513 {
1514 	unsigned int default_util_min;
1515 	struct uclamp_se *uc_se;
1516 
1517 	lockdep_assert_held(&p->pi_lock);
1518 
1519 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1520 
1521 	/* Only sync if user didn't override the default */
1522 	if (uc_se->user_defined)
1523 		return;
1524 
1525 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1526 	uclamp_se_set(uc_se, default_util_min, false);
1527 }
1528 
uclamp_update_util_min_rt_default(struct task_struct * p)1529 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1530 {
1531 	struct rq_flags rf;
1532 	struct rq *rq;
1533 
1534 	if (!rt_task(p))
1535 		return;
1536 
1537 	/* Protect updates to p->uclamp_* */
1538 	rq = task_rq_lock(p, &rf);
1539 	__uclamp_update_util_min_rt_default(p);
1540 	task_rq_unlock(rq, p, &rf);
1541 }
1542 
1543 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1544 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1545 {
1546 	/* Copy by value as we could modify it */
1547 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1548 #ifdef CONFIG_UCLAMP_TASK_GROUP
1549 	unsigned int tg_min, tg_max, value;
1550 
1551 	/*
1552 	 * Tasks in autogroups or root task group will be
1553 	 * restricted by system defaults.
1554 	 */
1555 	if (task_group_is_autogroup(task_group(p)))
1556 		return uc_req;
1557 	if (task_group(p) == &root_task_group)
1558 		return uc_req;
1559 
1560 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1561 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1562 	value = uc_req.value;
1563 	value = clamp(value, tg_min, tg_max);
1564 	uclamp_se_set(&uc_req, value, false);
1565 #endif
1566 
1567 	return uc_req;
1568 }
1569 
1570 /*
1571  * The effective clamp bucket index of a task depends on, by increasing
1572  * priority:
1573  * - the task specific clamp value, when explicitly requested from userspace
1574  * - the task group effective clamp value, for tasks not either in the root
1575  *   group or in an autogroup
1576  * - the system default clamp value, defined by the sysadmin
1577  */
1578 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1579 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1580 {
1581 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1582 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1583 
1584 	/* System default restrictions always apply */
1585 	if (unlikely(uc_req.value > uc_max.value))
1586 		return uc_max;
1587 
1588 	return uc_req;
1589 }
1590 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1591 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1592 {
1593 	struct uclamp_se uc_eff;
1594 
1595 	/* Task currently refcounted: use back-annotated (effective) value */
1596 	if (p->uclamp[clamp_id].active)
1597 		return (unsigned long)p->uclamp[clamp_id].value;
1598 
1599 	uc_eff = uclamp_eff_get(p, clamp_id);
1600 
1601 	return (unsigned long)uc_eff.value;
1602 }
1603 
1604 /*
1605  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1606  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1607  * updates the rq's clamp value if required.
1608  *
1609  * Tasks can have a task-specific value requested from user-space, track
1610  * within each bucket the maximum value for tasks refcounted in it.
1611  * This "local max aggregation" allows to track the exact "requested" value
1612  * for each bucket when all its RUNNABLE tasks require the same clamp.
1613  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1614 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1615 				    enum uclamp_id clamp_id)
1616 {
1617 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1618 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1619 	struct uclamp_bucket *bucket;
1620 
1621 	lockdep_assert_rq_held(rq);
1622 
1623 	/* Update task effective clamp */
1624 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1625 
1626 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1627 	bucket->tasks++;
1628 	uc_se->active = true;
1629 
1630 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1631 
1632 	/*
1633 	 * Local max aggregation: rq buckets always track the max
1634 	 * "requested" clamp value of its RUNNABLE tasks.
1635 	 */
1636 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1637 		bucket->value = uc_se->value;
1638 
1639 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1640 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1641 }
1642 
1643 /*
1644  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1645  * is released. If this is the last task reference counting the rq's max
1646  * active clamp value, then the rq's clamp value is updated.
1647  *
1648  * Both refcounted tasks and rq's cached clamp values are expected to be
1649  * always valid. If it's detected they are not, as defensive programming,
1650  * enforce the expected state and warn.
1651  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1652 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1653 				    enum uclamp_id clamp_id)
1654 {
1655 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1656 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1657 	struct uclamp_bucket *bucket;
1658 	unsigned int bkt_clamp;
1659 	unsigned int rq_clamp;
1660 
1661 	lockdep_assert_rq_held(rq);
1662 
1663 	/*
1664 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1665 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1666 	 *
1667 	 * In this case the uc_se->active flag should be false since no uclamp
1668 	 * accounting was performed at enqueue time and we can just return
1669 	 * here.
1670 	 *
1671 	 * Need to be careful of the following enqueue/dequeue ordering
1672 	 * problem too
1673 	 *
1674 	 *	enqueue(taskA)
1675 	 *	// sched_uclamp_used gets enabled
1676 	 *	enqueue(taskB)
1677 	 *	dequeue(taskA)
1678 	 *	// Must not decrement bucket->tasks here
1679 	 *	dequeue(taskB)
1680 	 *
1681 	 * where we could end up with stale data in uc_se and
1682 	 * bucket[uc_se->bucket_id].
1683 	 *
1684 	 * The following check here eliminates the possibility of such race.
1685 	 */
1686 	if (unlikely(!uc_se->active))
1687 		return;
1688 
1689 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1690 
1691 	SCHED_WARN_ON(!bucket->tasks);
1692 	if (likely(bucket->tasks))
1693 		bucket->tasks--;
1694 
1695 	uc_se->active = false;
1696 
1697 	/*
1698 	 * Keep "local max aggregation" simple and accept to (possibly)
1699 	 * overboost some RUNNABLE tasks in the same bucket.
1700 	 * The rq clamp bucket value is reset to its base value whenever
1701 	 * there are no more RUNNABLE tasks refcounting it.
1702 	 */
1703 	if (likely(bucket->tasks))
1704 		return;
1705 
1706 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1707 	/*
1708 	 * Defensive programming: this should never happen. If it happens,
1709 	 * e.g. due to future modification, warn and fixup the expected value.
1710 	 */
1711 	SCHED_WARN_ON(bucket->value > rq_clamp);
1712 	if (bucket->value >= rq_clamp) {
1713 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1714 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1715 	}
1716 }
1717 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1718 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1719 {
1720 	enum uclamp_id clamp_id;
1721 
1722 	/*
1723 	 * Avoid any overhead until uclamp is actually used by the userspace.
1724 	 *
1725 	 * The condition is constructed such that a NOP is generated when
1726 	 * sched_uclamp_used is disabled.
1727 	 */
1728 	if (!static_branch_unlikely(&sched_uclamp_used))
1729 		return;
1730 
1731 	if (unlikely(!p->sched_class->uclamp_enabled))
1732 		return;
1733 
1734 	for_each_clamp_id(clamp_id)
1735 		uclamp_rq_inc_id(rq, p, clamp_id);
1736 
1737 	/* Reset clamp idle holding when there is one RUNNABLE task */
1738 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1739 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1740 }
1741 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1742 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1743 {
1744 	enum uclamp_id clamp_id;
1745 
1746 	/*
1747 	 * Avoid any overhead until uclamp is actually used by the userspace.
1748 	 *
1749 	 * The condition is constructed such that a NOP is generated when
1750 	 * sched_uclamp_used is disabled.
1751 	 */
1752 	if (!static_branch_unlikely(&sched_uclamp_used))
1753 		return;
1754 
1755 	if (unlikely(!p->sched_class->uclamp_enabled))
1756 		return;
1757 
1758 	for_each_clamp_id(clamp_id)
1759 		uclamp_rq_dec_id(rq, p, clamp_id);
1760 }
1761 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1762 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1763 				      enum uclamp_id clamp_id)
1764 {
1765 	if (!p->uclamp[clamp_id].active)
1766 		return;
1767 
1768 	uclamp_rq_dec_id(rq, p, clamp_id);
1769 	uclamp_rq_inc_id(rq, p, clamp_id);
1770 
1771 	/*
1772 	 * Make sure to clear the idle flag if we've transiently reached 0
1773 	 * active tasks on rq.
1774 	 */
1775 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1776 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1777 }
1778 
1779 static inline void
uclamp_update_active(struct task_struct * p)1780 uclamp_update_active(struct task_struct *p)
1781 {
1782 	enum uclamp_id clamp_id;
1783 	struct rq_flags rf;
1784 	struct rq *rq;
1785 
1786 	/*
1787 	 * Lock the task and the rq where the task is (or was) queued.
1788 	 *
1789 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1790 	 * price to pay to safely serialize util_{min,max} updates with
1791 	 * enqueues, dequeues and migration operations.
1792 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1793 	 */
1794 	rq = task_rq_lock(p, &rf);
1795 
1796 	/*
1797 	 * Setting the clamp bucket is serialized by task_rq_lock().
1798 	 * If the task is not yet RUNNABLE and its task_struct is not
1799 	 * affecting a valid clamp bucket, the next time it's enqueued,
1800 	 * it will already see the updated clamp bucket value.
1801 	 */
1802 	for_each_clamp_id(clamp_id)
1803 		uclamp_rq_reinc_id(rq, p, clamp_id);
1804 
1805 	task_rq_unlock(rq, p, &rf);
1806 }
1807 
1808 #ifdef CONFIG_UCLAMP_TASK_GROUP
1809 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1810 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1811 {
1812 	struct css_task_iter it;
1813 	struct task_struct *p;
1814 
1815 	css_task_iter_start(css, 0, &it);
1816 	while ((p = css_task_iter_next(&it)))
1817 		uclamp_update_active(p);
1818 	css_task_iter_end(&it);
1819 }
1820 
1821 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1822 #endif
1823 
1824 #ifdef CONFIG_SYSCTL
1825 #ifdef CONFIG_UCLAMP_TASK
1826 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1827 static void uclamp_update_root_tg(void)
1828 {
1829 	struct task_group *tg = &root_task_group;
1830 
1831 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1832 		      sysctl_sched_uclamp_util_min, false);
1833 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1834 		      sysctl_sched_uclamp_util_max, false);
1835 
1836 	rcu_read_lock();
1837 	cpu_util_update_eff(&root_task_group.css);
1838 	rcu_read_unlock();
1839 }
1840 #else
uclamp_update_root_tg(void)1841 static void uclamp_update_root_tg(void) { }
1842 #endif
1843 
uclamp_sync_util_min_rt_default(void)1844 static void uclamp_sync_util_min_rt_default(void)
1845 {
1846 	struct task_struct *g, *p;
1847 
1848 	/*
1849 	 * copy_process()			sysctl_uclamp
1850 	 *					  uclamp_min_rt = X;
1851 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1852 	 *   // link thread			  smp_mb__after_spinlock()
1853 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1854 	 *   sched_post_fork()			  for_each_process_thread()
1855 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1856 	 *
1857 	 * Ensures that either sched_post_fork() will observe the new
1858 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1859 	 * task.
1860 	 */
1861 	read_lock(&tasklist_lock);
1862 	smp_mb__after_spinlock();
1863 	read_unlock(&tasklist_lock);
1864 
1865 	rcu_read_lock();
1866 	for_each_process_thread(g, p)
1867 		uclamp_update_util_min_rt_default(p);
1868 	rcu_read_unlock();
1869 }
1870 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1871 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1872 				void *buffer, size_t *lenp, loff_t *ppos)
1873 {
1874 	bool update_root_tg = false;
1875 	int old_min, old_max, old_min_rt;
1876 	int result;
1877 
1878 	guard(mutex)(&uclamp_mutex);
1879 
1880 	old_min = sysctl_sched_uclamp_util_min;
1881 	old_max = sysctl_sched_uclamp_util_max;
1882 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1883 
1884 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1885 	if (result)
1886 		goto undo;
1887 	if (!write)
1888 		return 0;
1889 
1890 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1891 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1892 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1893 
1894 		result = -EINVAL;
1895 		goto undo;
1896 	}
1897 
1898 	if (old_min != sysctl_sched_uclamp_util_min) {
1899 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1900 			      sysctl_sched_uclamp_util_min, false);
1901 		update_root_tg = true;
1902 	}
1903 	if (old_max != sysctl_sched_uclamp_util_max) {
1904 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1905 			      sysctl_sched_uclamp_util_max, false);
1906 		update_root_tg = true;
1907 	}
1908 
1909 	if (update_root_tg) {
1910 		static_branch_enable(&sched_uclamp_used);
1911 		uclamp_update_root_tg();
1912 	}
1913 
1914 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1915 		static_branch_enable(&sched_uclamp_used);
1916 		uclamp_sync_util_min_rt_default();
1917 	}
1918 
1919 	/*
1920 	 * We update all RUNNABLE tasks only when task groups are in use.
1921 	 * Otherwise, keep it simple and do just a lazy update at each next
1922 	 * task enqueue time.
1923 	 */
1924 	return 0;
1925 
1926 undo:
1927 	sysctl_sched_uclamp_util_min = old_min;
1928 	sysctl_sched_uclamp_util_max = old_max;
1929 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1930 	return result;
1931 }
1932 #endif
1933 #endif
1934 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1935 static int uclamp_validate(struct task_struct *p,
1936 			   const struct sched_attr *attr)
1937 {
1938 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1939 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1940 
1941 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1942 		util_min = attr->sched_util_min;
1943 
1944 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1945 			return -EINVAL;
1946 	}
1947 
1948 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1949 		util_max = attr->sched_util_max;
1950 
1951 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1952 			return -EINVAL;
1953 	}
1954 
1955 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1956 		return -EINVAL;
1957 
1958 	/*
1959 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1960 	 *
1961 	 * We need to do that here, because enabling static branches is a
1962 	 * blocking operation which obviously cannot be done while holding
1963 	 * scheduler locks.
1964 	 */
1965 	static_branch_enable(&sched_uclamp_used);
1966 
1967 	return 0;
1968 }
1969 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1970 static bool uclamp_reset(const struct sched_attr *attr,
1971 			 enum uclamp_id clamp_id,
1972 			 struct uclamp_se *uc_se)
1973 {
1974 	/* Reset on sched class change for a non user-defined clamp value. */
1975 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1976 	    !uc_se->user_defined)
1977 		return true;
1978 
1979 	/* Reset on sched_util_{min,max} == -1. */
1980 	if (clamp_id == UCLAMP_MIN &&
1981 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1982 	    attr->sched_util_min == -1) {
1983 		return true;
1984 	}
1985 
1986 	if (clamp_id == UCLAMP_MAX &&
1987 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1988 	    attr->sched_util_max == -1) {
1989 		return true;
1990 	}
1991 
1992 	return false;
1993 }
1994 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1995 static void __setscheduler_uclamp(struct task_struct *p,
1996 				  const struct sched_attr *attr)
1997 {
1998 	enum uclamp_id clamp_id;
1999 
2000 	for_each_clamp_id(clamp_id) {
2001 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
2002 		unsigned int value;
2003 
2004 		if (!uclamp_reset(attr, clamp_id, uc_se))
2005 			continue;
2006 
2007 		/*
2008 		 * RT by default have a 100% boost value that could be modified
2009 		 * at runtime.
2010 		 */
2011 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
2012 			value = sysctl_sched_uclamp_util_min_rt_default;
2013 		else
2014 			value = uclamp_none(clamp_id);
2015 
2016 		uclamp_se_set(uc_se, value, false);
2017 
2018 	}
2019 
2020 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
2021 		return;
2022 
2023 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
2024 	    attr->sched_util_min != -1) {
2025 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
2026 			      attr->sched_util_min, true);
2027 	}
2028 
2029 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
2030 	    attr->sched_util_max != -1) {
2031 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2032 			      attr->sched_util_max, true);
2033 	}
2034 }
2035 
uclamp_fork(struct task_struct * p)2036 static void uclamp_fork(struct task_struct *p)
2037 {
2038 	enum uclamp_id clamp_id;
2039 
2040 	/*
2041 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2042 	 * as the task is still at its early fork stages.
2043 	 */
2044 	for_each_clamp_id(clamp_id)
2045 		p->uclamp[clamp_id].active = false;
2046 
2047 	if (likely(!p->sched_reset_on_fork))
2048 		return;
2049 
2050 	for_each_clamp_id(clamp_id) {
2051 		uclamp_se_set(&p->uclamp_req[clamp_id],
2052 			      uclamp_none(clamp_id), false);
2053 	}
2054 }
2055 
uclamp_post_fork(struct task_struct * p)2056 static void uclamp_post_fork(struct task_struct *p)
2057 {
2058 	uclamp_update_util_min_rt_default(p);
2059 }
2060 
init_uclamp_rq(struct rq * rq)2061 static void __init init_uclamp_rq(struct rq *rq)
2062 {
2063 	enum uclamp_id clamp_id;
2064 	struct uclamp_rq *uc_rq = rq->uclamp;
2065 
2066 	for_each_clamp_id(clamp_id) {
2067 		uc_rq[clamp_id] = (struct uclamp_rq) {
2068 			.value = uclamp_none(clamp_id)
2069 		};
2070 	}
2071 
2072 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2073 }
2074 
init_uclamp(void)2075 static void __init init_uclamp(void)
2076 {
2077 	struct uclamp_se uc_max = {};
2078 	enum uclamp_id clamp_id;
2079 	int cpu;
2080 
2081 	for_each_possible_cpu(cpu)
2082 		init_uclamp_rq(cpu_rq(cpu));
2083 
2084 	for_each_clamp_id(clamp_id) {
2085 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2086 			      uclamp_none(clamp_id), false);
2087 	}
2088 
2089 	/* System defaults allow max clamp values for both indexes */
2090 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2091 	for_each_clamp_id(clamp_id) {
2092 		uclamp_default[clamp_id] = uc_max;
2093 #ifdef CONFIG_UCLAMP_TASK_GROUP
2094 		root_task_group.uclamp_req[clamp_id] = uc_max;
2095 		root_task_group.uclamp[clamp_id] = uc_max;
2096 #endif
2097 	}
2098 }
2099 
2100 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2101 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2102 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2103 static inline int uclamp_validate(struct task_struct *p,
2104 				  const struct sched_attr *attr)
2105 {
2106 	return -EOPNOTSUPP;
2107 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2108 static void __setscheduler_uclamp(struct task_struct *p,
2109 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2110 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2111 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2112 static inline void init_uclamp(void) { }
2113 #endif /* CONFIG_UCLAMP_TASK */
2114 
sched_task_on_rq(struct task_struct * p)2115 bool sched_task_on_rq(struct task_struct *p)
2116 {
2117 	return task_on_rq_queued(p);
2118 }
2119 
get_wchan(struct task_struct * p)2120 unsigned long get_wchan(struct task_struct *p)
2121 {
2122 	unsigned long ip = 0;
2123 	unsigned int state;
2124 
2125 	if (!p || p == current)
2126 		return 0;
2127 
2128 	/* Only get wchan if task is blocked and we can keep it that way. */
2129 	raw_spin_lock_irq(&p->pi_lock);
2130 	state = READ_ONCE(p->__state);
2131 	smp_rmb(); /* see try_to_wake_up() */
2132 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2133 		ip = __get_wchan(p);
2134 	raw_spin_unlock_irq(&p->pi_lock);
2135 
2136 	return ip;
2137 }
2138 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2139 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2140 {
2141 	if (!(flags & ENQUEUE_NOCLOCK))
2142 		update_rq_clock(rq);
2143 
2144 	if (!(flags & ENQUEUE_RESTORE)) {
2145 		sched_info_enqueue(rq, p);
2146 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2147 	}
2148 
2149 	uclamp_rq_inc(rq, p);
2150 	p->sched_class->enqueue_task(rq, p, flags);
2151 
2152 	if (sched_core_enabled(rq))
2153 		sched_core_enqueue(rq, p);
2154 }
2155 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2156 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2157 {
2158 	if (sched_core_enabled(rq))
2159 		sched_core_dequeue(rq, p, flags);
2160 
2161 	if (!(flags & DEQUEUE_NOCLOCK))
2162 		update_rq_clock(rq);
2163 
2164 	if (!(flags & DEQUEUE_SAVE)) {
2165 		sched_info_dequeue(rq, p);
2166 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2167 	}
2168 
2169 	uclamp_rq_dec(rq, p);
2170 	p->sched_class->dequeue_task(rq, p, flags);
2171 }
2172 
activate_task(struct rq * rq,struct task_struct * p,int flags)2173 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 	if (task_on_rq_migrating(p))
2176 		flags |= ENQUEUE_MIGRATED;
2177 	if (flags & ENQUEUE_MIGRATED)
2178 		sched_mm_cid_migrate_to(rq, p);
2179 
2180 	enqueue_task(rq, p, flags);
2181 
2182 	p->on_rq = TASK_ON_RQ_QUEUED;
2183 }
2184 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2185 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2186 {
2187 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2188 
2189 	dequeue_task(rq, p, flags);
2190 }
2191 
__normal_prio(int policy,int rt_prio,int nice)2192 static inline int __normal_prio(int policy, int rt_prio, int nice)
2193 {
2194 	int prio;
2195 
2196 	if (dl_policy(policy))
2197 		prio = MAX_DL_PRIO - 1;
2198 	else if (rt_policy(policy))
2199 		prio = MAX_RT_PRIO - 1 - rt_prio;
2200 	else
2201 		prio = NICE_TO_PRIO(nice);
2202 
2203 	return prio;
2204 }
2205 
2206 /*
2207  * Calculate the expected normal priority: i.e. priority
2208  * without taking RT-inheritance into account. Might be
2209  * boosted by interactivity modifiers. Changes upon fork,
2210  * setprio syscalls, and whenever the interactivity
2211  * estimator recalculates.
2212  */
normal_prio(struct task_struct * p)2213 static inline int normal_prio(struct task_struct *p)
2214 {
2215 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2216 }
2217 
2218 /*
2219  * Calculate the current priority, i.e. the priority
2220  * taken into account by the scheduler. This value might
2221  * be boosted by RT tasks, or might be boosted by
2222  * interactivity modifiers. Will be RT if the task got
2223  * RT-boosted. If not then it returns p->normal_prio.
2224  */
effective_prio(struct task_struct * p)2225 static int effective_prio(struct task_struct *p)
2226 {
2227 	p->normal_prio = normal_prio(p);
2228 	/*
2229 	 * If we are RT tasks or we were boosted to RT priority,
2230 	 * keep the priority unchanged. Otherwise, update priority
2231 	 * to the normal priority:
2232 	 */
2233 	if (!rt_prio(p->prio))
2234 		return p->normal_prio;
2235 	return p->prio;
2236 }
2237 
2238 /**
2239  * task_curr - is this task currently executing on a CPU?
2240  * @p: the task in question.
2241  *
2242  * Return: 1 if the task is currently executing. 0 otherwise.
2243  */
task_curr(const struct task_struct * p)2244 inline int task_curr(const struct task_struct *p)
2245 {
2246 	return cpu_curr(task_cpu(p)) == p;
2247 }
2248 
2249 /*
2250  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2251  * use the balance_callback list if you want balancing.
2252  *
2253  * this means any call to check_class_changed() must be followed by a call to
2254  * balance_callback().
2255  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2256 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2257 				       const struct sched_class *prev_class,
2258 				       int oldprio)
2259 {
2260 	if (prev_class != p->sched_class) {
2261 		if (prev_class->switched_from)
2262 			prev_class->switched_from(rq, p);
2263 
2264 		p->sched_class->switched_to(rq, p);
2265 	} else if (oldprio != p->prio || dl_task(p))
2266 		p->sched_class->prio_changed(rq, p, oldprio);
2267 }
2268 
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2269 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2270 {
2271 	if (p->sched_class == rq->curr->sched_class)
2272 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2273 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2274 		resched_curr(rq);
2275 
2276 	/*
2277 	 * A queue event has occurred, and we're going to schedule.  In
2278 	 * this case, we can save a useless back to back clock update.
2279 	 */
2280 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2281 		rq_clock_skip_update(rq);
2282 }
2283 
2284 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2285 int __task_state_match(struct task_struct *p, unsigned int state)
2286 {
2287 	if (READ_ONCE(p->__state) & state)
2288 		return 1;
2289 
2290 #ifdef CONFIG_PREEMPT_RT
2291 	if (READ_ONCE(p->saved_state) & state)
2292 		return -1;
2293 #endif
2294 	return 0;
2295 }
2296 
2297 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2298 int task_state_match(struct task_struct *p, unsigned int state)
2299 {
2300 #ifdef CONFIG_PREEMPT_RT
2301 	int match;
2302 
2303 	/*
2304 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2305 	 * current_restore_rtlock_saved_state().
2306 	 */
2307 	raw_spin_lock_irq(&p->pi_lock);
2308 	match = __task_state_match(p, state);
2309 	raw_spin_unlock_irq(&p->pi_lock);
2310 
2311 	return match;
2312 #else
2313 	return __task_state_match(p, state);
2314 #endif
2315 }
2316 
2317 /*
2318  * wait_task_inactive - wait for a thread to unschedule.
2319  *
2320  * Wait for the thread to block in any of the states set in @match_state.
2321  * If it changes, i.e. @p might have woken up, then return zero.  When we
2322  * succeed in waiting for @p to be off its CPU, we return a positive number
2323  * (its total switch count).  If a second call a short while later returns the
2324  * same number, the caller can be sure that @p has remained unscheduled the
2325  * whole time.
2326  *
2327  * The caller must ensure that the task *will* unschedule sometime soon,
2328  * else this function might spin for a *long* time. This function can't
2329  * be called with interrupts off, or it may introduce deadlock with
2330  * smp_call_function() if an IPI is sent by the same process we are
2331  * waiting to become inactive.
2332  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2333 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2334 {
2335 	int running, queued, match;
2336 	struct rq_flags rf;
2337 	unsigned long ncsw;
2338 	struct rq *rq;
2339 
2340 	for (;;) {
2341 		/*
2342 		 * We do the initial early heuristics without holding
2343 		 * any task-queue locks at all. We'll only try to get
2344 		 * the runqueue lock when things look like they will
2345 		 * work out!
2346 		 */
2347 		rq = task_rq(p);
2348 
2349 		/*
2350 		 * If the task is actively running on another CPU
2351 		 * still, just relax and busy-wait without holding
2352 		 * any locks.
2353 		 *
2354 		 * NOTE! Since we don't hold any locks, it's not
2355 		 * even sure that "rq" stays as the right runqueue!
2356 		 * But we don't care, since "task_on_cpu()" will
2357 		 * return false if the runqueue has changed and p
2358 		 * is actually now running somewhere else!
2359 		 */
2360 		while (task_on_cpu(rq, p)) {
2361 			if (!task_state_match(p, match_state))
2362 				return 0;
2363 			cpu_relax();
2364 		}
2365 
2366 		/*
2367 		 * Ok, time to look more closely! We need the rq
2368 		 * lock now, to be *sure*. If we're wrong, we'll
2369 		 * just go back and repeat.
2370 		 */
2371 		rq = task_rq_lock(p, &rf);
2372 		trace_sched_wait_task(p);
2373 		running = task_on_cpu(rq, p);
2374 		queued = task_on_rq_queued(p);
2375 		ncsw = 0;
2376 		if ((match = __task_state_match(p, match_state))) {
2377 			/*
2378 			 * When matching on p->saved_state, consider this task
2379 			 * still queued so it will wait.
2380 			 */
2381 			if (match < 0)
2382 				queued = 1;
2383 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2384 		}
2385 		task_rq_unlock(rq, p, &rf);
2386 
2387 		/*
2388 		 * If it changed from the expected state, bail out now.
2389 		 */
2390 		if (unlikely(!ncsw))
2391 			break;
2392 
2393 		/*
2394 		 * Was it really running after all now that we
2395 		 * checked with the proper locks actually held?
2396 		 *
2397 		 * Oops. Go back and try again..
2398 		 */
2399 		if (unlikely(running)) {
2400 			cpu_relax();
2401 			continue;
2402 		}
2403 
2404 		/*
2405 		 * It's not enough that it's not actively running,
2406 		 * it must be off the runqueue _entirely_, and not
2407 		 * preempted!
2408 		 *
2409 		 * So if it was still runnable (but just not actively
2410 		 * running right now), it's preempted, and we should
2411 		 * yield - it could be a while.
2412 		 */
2413 		if (unlikely(queued)) {
2414 			ktime_t to = NSEC_PER_SEC / HZ;
2415 
2416 			set_current_state(TASK_UNINTERRUPTIBLE);
2417 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2418 			continue;
2419 		}
2420 
2421 		/*
2422 		 * Ahh, all good. It wasn't running, and it wasn't
2423 		 * runnable, which means that it will never become
2424 		 * running in the future either. We're all done!
2425 		 */
2426 		break;
2427 	}
2428 
2429 	return ncsw;
2430 }
2431 
2432 #ifdef CONFIG_SMP
2433 
2434 static void
2435 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2436 
2437 static int __set_cpus_allowed_ptr(struct task_struct *p,
2438 				  struct affinity_context *ctx);
2439 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2440 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2441 {
2442 	struct affinity_context ac = {
2443 		.new_mask  = cpumask_of(rq->cpu),
2444 		.flags     = SCA_MIGRATE_DISABLE,
2445 	};
2446 
2447 	if (likely(!p->migration_disabled))
2448 		return;
2449 
2450 	if (p->cpus_ptr != &p->cpus_mask)
2451 		return;
2452 
2453 	/*
2454 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2455 	 */
2456 	__do_set_cpus_allowed(p, &ac);
2457 }
2458 
migrate_disable(void)2459 void migrate_disable(void)
2460 {
2461 	struct task_struct *p = current;
2462 
2463 	if (p->migration_disabled) {
2464 		p->migration_disabled++;
2465 		return;
2466 	}
2467 
2468 	preempt_disable();
2469 	this_rq()->nr_pinned++;
2470 	p->migration_disabled = 1;
2471 	preempt_enable();
2472 }
2473 EXPORT_SYMBOL_GPL(migrate_disable);
2474 
migrate_enable(void)2475 void migrate_enable(void)
2476 {
2477 	struct task_struct *p = current;
2478 	struct affinity_context ac = {
2479 		.new_mask  = &p->cpus_mask,
2480 		.flags     = SCA_MIGRATE_ENABLE,
2481 	};
2482 
2483 	if (p->migration_disabled > 1) {
2484 		p->migration_disabled--;
2485 		return;
2486 	}
2487 
2488 	if (WARN_ON_ONCE(!p->migration_disabled))
2489 		return;
2490 
2491 	/*
2492 	 * Ensure stop_task runs either before or after this, and that
2493 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2494 	 */
2495 	preempt_disable();
2496 	if (p->cpus_ptr != &p->cpus_mask)
2497 		__set_cpus_allowed_ptr(p, &ac);
2498 	/*
2499 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2500 	 * regular cpus_mask, otherwise things that race (eg.
2501 	 * select_fallback_rq) get confused.
2502 	 */
2503 	barrier();
2504 	p->migration_disabled = 0;
2505 	this_rq()->nr_pinned--;
2506 	preempt_enable();
2507 }
2508 EXPORT_SYMBOL_GPL(migrate_enable);
2509 
rq_has_pinned_tasks(struct rq * rq)2510 static inline bool rq_has_pinned_tasks(struct rq *rq)
2511 {
2512 	return rq->nr_pinned;
2513 }
2514 
2515 /*
2516  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2517  * __set_cpus_allowed_ptr() and select_fallback_rq().
2518  */
is_cpu_allowed(struct task_struct * p,int cpu)2519 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2520 {
2521 	/* When not in the task's cpumask, no point in looking further. */
2522 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2523 		return false;
2524 
2525 	/* migrate_disabled() must be allowed to finish. */
2526 	if (is_migration_disabled(p))
2527 		return cpu_online(cpu);
2528 
2529 	/* Non kernel threads are not allowed during either online or offline. */
2530 	if (!(p->flags & PF_KTHREAD))
2531 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2532 
2533 	/* KTHREAD_IS_PER_CPU is always allowed. */
2534 	if (kthread_is_per_cpu(p))
2535 		return cpu_online(cpu);
2536 
2537 	/* Regular kernel threads don't get to stay during offline. */
2538 	if (cpu_dying(cpu))
2539 		return false;
2540 
2541 	/* But are allowed during online. */
2542 	return cpu_online(cpu);
2543 }
2544 
2545 /*
2546  * This is how migration works:
2547  *
2548  * 1) we invoke migration_cpu_stop() on the target CPU using
2549  *    stop_one_cpu().
2550  * 2) stopper starts to run (implicitly forcing the migrated thread
2551  *    off the CPU)
2552  * 3) it checks whether the migrated task is still in the wrong runqueue.
2553  * 4) if it's in the wrong runqueue then the migration thread removes
2554  *    it and puts it into the right queue.
2555  * 5) stopper completes and stop_one_cpu() returns and the migration
2556  *    is done.
2557  */
2558 
2559 /*
2560  * move_queued_task - move a queued task to new rq.
2561  *
2562  * Returns (locked) new rq. Old rq's lock is released.
2563  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2564 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2565 				   struct task_struct *p, int new_cpu)
2566 {
2567 	lockdep_assert_rq_held(rq);
2568 
2569 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2570 #ifdef CONFIG_SCHED_WALT
2571 	double_lock_balance(rq, cpu_rq(new_cpu));
2572 	if (!(rq->clock_update_flags & RQCF_UPDATED))
2573 		update_rq_clock(rq);
2574 #endif
2575 	set_task_cpu(p, new_cpu);
2576 #ifdef CONFIG_SCHED_WALT
2577 	double_rq_unlock(cpu_rq(new_cpu), rq);
2578 #else
2579 	rq_unlock(rq, rf);
2580 #endif
2581 
2582 	rq = cpu_rq(new_cpu);
2583 
2584 	rq_lock(rq, rf);
2585 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2586 	activate_task(rq, p, 0);
2587 	wakeup_preempt(rq, p, 0);
2588 
2589 	return rq;
2590 }
2591 
2592 struct migration_arg {
2593 	struct task_struct		*task;
2594 	int				dest_cpu;
2595 	struct set_affinity_pending	*pending;
2596 };
2597 
2598 /*
2599  * @refs: number of wait_for_completion()
2600  * @stop_pending: is @stop_work in use
2601  */
2602 struct set_affinity_pending {
2603 	refcount_t		refs;
2604 	unsigned int		stop_pending;
2605 	struct completion	done;
2606 	struct cpu_stop_work	stop_work;
2607 	struct migration_arg	arg;
2608 };
2609 
2610 /*
2611  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2612  * this because either it can't run here any more (set_cpus_allowed()
2613  * away from this CPU, or CPU going down), or because we're
2614  * attempting to rebalance this task on exec (sched_exec).
2615  *
2616  * So we race with normal scheduler movements, but that's OK, as long
2617  * as the task is no longer on this CPU.
2618  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2619 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2620 				 struct task_struct *p, int dest_cpu)
2621 {
2622 	/* Affinity changed (again). */
2623 	if (!is_cpu_allowed(p, dest_cpu))
2624 		return rq;
2625 
2626 	rq = move_queued_task(rq, rf, p, dest_cpu);
2627 
2628 	return rq;
2629 }
2630 
2631 /*
2632  * migration_cpu_stop - this will be executed by a highprio stopper thread
2633  * and performs thread migration by bumping thread off CPU then
2634  * 'pushing' onto another runqueue.
2635  */
migration_cpu_stop(void * data)2636 static int migration_cpu_stop(void *data)
2637 {
2638 	struct migration_arg *arg = data;
2639 	struct set_affinity_pending *pending = arg->pending;
2640 	struct task_struct *p = arg->task;
2641 	struct rq *rq = this_rq();
2642 	bool complete = false;
2643 	struct rq_flags rf;
2644 
2645 	/*
2646 	 * The original target CPU might have gone down and we might
2647 	 * be on another CPU but it doesn't matter.
2648 	 */
2649 	local_irq_save(rf.flags);
2650 	/*
2651 	 * We need to explicitly wake pending tasks before running
2652 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2653 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2654 	 */
2655 	flush_smp_call_function_queue();
2656 
2657 	raw_spin_lock(&p->pi_lock);
2658 	rq_lock(rq, &rf);
2659 
2660 	/*
2661 	 * If we were passed a pending, then ->stop_pending was set, thus
2662 	 * p->migration_pending must have remained stable.
2663 	 */
2664 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2665 
2666 	/*
2667 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2668 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2669 	 * we're holding p->pi_lock.
2670 	 */
2671 	if (task_rq(p) == rq) {
2672 		if (is_migration_disabled(p))
2673 			goto out;
2674 
2675 		if (pending) {
2676 			p->migration_pending = NULL;
2677 			complete = true;
2678 
2679 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2680 				goto out;
2681 		}
2682 
2683 		if (task_on_rq_queued(p)) {
2684 			update_rq_clock(rq);
2685 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2686 		} else {
2687 			p->wake_cpu = arg->dest_cpu;
2688 		}
2689 
2690 		/*
2691 		 * XXX __migrate_task() can fail, at which point we might end
2692 		 * up running on a dodgy CPU, AFAICT this can only happen
2693 		 * during CPU hotplug, at which point we'll get pushed out
2694 		 * anyway, so it's probably not a big deal.
2695 		 */
2696 
2697 	} else if (pending) {
2698 		/*
2699 		 * This happens when we get migrated between migrate_enable()'s
2700 		 * preempt_enable() and scheduling the stopper task. At that
2701 		 * point we're a regular task again and not current anymore.
2702 		 *
2703 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2704 		 * more likely.
2705 		 */
2706 
2707 		/*
2708 		 * The task moved before the stopper got to run. We're holding
2709 		 * ->pi_lock, so the allowed mask is stable - if it got
2710 		 * somewhere allowed, we're done.
2711 		 */
2712 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2713 			p->migration_pending = NULL;
2714 			complete = true;
2715 			goto out;
2716 		}
2717 
2718 		/*
2719 		 * When migrate_enable() hits a rq mis-match we can't reliably
2720 		 * determine is_migration_disabled() and so have to chase after
2721 		 * it.
2722 		 */
2723 		WARN_ON_ONCE(!pending->stop_pending);
2724 		preempt_disable();
2725 		task_rq_unlock(rq, p, &rf);
2726 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2727 				    &pending->arg, &pending->stop_work);
2728 		preempt_enable();
2729 		return 0;
2730 	}
2731 out:
2732 	if (pending)
2733 		pending->stop_pending = false;
2734 	task_rq_unlock(rq, p, &rf);
2735 
2736 	if (complete)
2737 		complete_all(&pending->done);
2738 
2739 	return 0;
2740 }
2741 
push_cpu_stop(void * arg)2742 int push_cpu_stop(void *arg)
2743 {
2744 	struct rq *lowest_rq = NULL, *rq = this_rq();
2745 	struct task_struct *p = arg;
2746 
2747 	raw_spin_lock_irq(&p->pi_lock);
2748 	raw_spin_rq_lock(rq);
2749 
2750 	if (task_rq(p) != rq)
2751 		goto out_unlock;
2752 
2753 	if (is_migration_disabled(p)) {
2754 		p->migration_flags |= MDF_PUSH;
2755 		goto out_unlock;
2756 	}
2757 
2758 	p->migration_flags &= ~MDF_PUSH;
2759 
2760 	if (p->sched_class->find_lock_rq)
2761 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2762 
2763 	if (!lowest_rq)
2764 		goto out_unlock;
2765 
2766 	// XXX validate p is still the highest prio task
2767 	if (task_rq(p) == rq) {
2768 		deactivate_task(rq, p, 0);
2769 		set_task_cpu(p, lowest_rq->cpu);
2770 		activate_task(lowest_rq, p, 0);
2771 		resched_curr(lowest_rq);
2772 	}
2773 
2774 	double_unlock_balance(rq, lowest_rq);
2775 
2776 out_unlock:
2777 	rq->push_busy = false;
2778 	raw_spin_rq_unlock(rq);
2779 	raw_spin_unlock_irq(&p->pi_lock);
2780 
2781 	put_task_struct(p);
2782 	return 0;
2783 }
2784 
2785 /*
2786  * sched_class::set_cpus_allowed must do the below, but is not required to
2787  * actually call this function.
2788  */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2789 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2790 {
2791 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2792 		p->cpus_ptr = ctx->new_mask;
2793 		return;
2794 	}
2795 
2796 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2797 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2798 
2799 	/*
2800 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2801 	 */
2802 	if (ctx->flags & SCA_USER)
2803 		swap(p->user_cpus_ptr, ctx->user_mask);
2804 }
2805 
2806 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2807 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2808 {
2809 	struct rq *rq = task_rq(p);
2810 	bool queued, running;
2811 
2812 	/*
2813 	 * This here violates the locking rules for affinity, since we're only
2814 	 * supposed to change these variables while holding both rq->lock and
2815 	 * p->pi_lock.
2816 	 *
2817 	 * HOWEVER, it magically works, because ttwu() is the only code that
2818 	 * accesses these variables under p->pi_lock and only does so after
2819 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2820 	 * before finish_task().
2821 	 *
2822 	 * XXX do further audits, this smells like something putrid.
2823 	 */
2824 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2825 		SCHED_WARN_ON(!p->on_cpu);
2826 	else
2827 		lockdep_assert_held(&p->pi_lock);
2828 
2829 	queued = task_on_rq_queued(p);
2830 	running = task_current(rq, p);
2831 
2832 	if (queued) {
2833 		/*
2834 		 * Because __kthread_bind() calls this on blocked tasks without
2835 		 * holding rq->lock.
2836 		 */
2837 		lockdep_assert_rq_held(rq);
2838 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2839 	}
2840 	if (running)
2841 		put_prev_task(rq, p);
2842 
2843 	p->sched_class->set_cpus_allowed(p, ctx);
2844 
2845 	if (queued)
2846 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2847 	if (running)
2848 		set_next_task(rq, p);
2849 }
2850 
2851 /*
2852  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2853  * affinity (if any) should be destroyed too.
2854  */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2855 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2856 {
2857 	struct affinity_context ac = {
2858 		.new_mask  = new_mask,
2859 		.user_mask = NULL,
2860 		.flags     = SCA_USER,	/* clear the user requested mask */
2861 	};
2862 	union cpumask_rcuhead {
2863 		cpumask_t cpumask;
2864 		struct rcu_head rcu;
2865 	};
2866 
2867 	__do_set_cpus_allowed(p, &ac);
2868 
2869 	/*
2870 	 * Because this is called with p->pi_lock held, it is not possible
2871 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2872 	 * kfree_rcu().
2873 	 */
2874 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2875 }
2876 
alloc_user_cpus_ptr(int node)2877 static cpumask_t *alloc_user_cpus_ptr(int node)
2878 {
2879 	/*
2880 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2881 	 */
2882 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2883 
2884 	return kmalloc_node(size, GFP_KERNEL, node);
2885 }
2886 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2887 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2888 		      int node)
2889 {
2890 	cpumask_t *user_mask;
2891 	unsigned long flags;
2892 
2893 	/*
2894 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2895 	 * may differ by now due to racing.
2896 	 */
2897 	dst->user_cpus_ptr = NULL;
2898 
2899 	/*
2900 	 * This check is racy and losing the race is a valid situation.
2901 	 * It is not worth the extra overhead of taking the pi_lock on
2902 	 * every fork/clone.
2903 	 */
2904 	if (data_race(!src->user_cpus_ptr))
2905 		return 0;
2906 
2907 	user_mask = alloc_user_cpus_ptr(node);
2908 	if (!user_mask)
2909 		return -ENOMEM;
2910 
2911 	/*
2912 	 * Use pi_lock to protect content of user_cpus_ptr
2913 	 *
2914 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2915 	 * do_set_cpus_allowed().
2916 	 */
2917 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2918 	if (src->user_cpus_ptr) {
2919 		swap(dst->user_cpus_ptr, user_mask);
2920 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2921 	}
2922 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2923 
2924 	if (unlikely(user_mask))
2925 		kfree(user_mask);
2926 
2927 	return 0;
2928 }
2929 
clear_user_cpus_ptr(struct task_struct * p)2930 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2931 {
2932 	struct cpumask *user_mask = NULL;
2933 
2934 	swap(p->user_cpus_ptr, user_mask);
2935 
2936 	return user_mask;
2937 }
2938 
release_user_cpus_ptr(struct task_struct * p)2939 void release_user_cpus_ptr(struct task_struct *p)
2940 {
2941 	kfree(clear_user_cpus_ptr(p));
2942 }
2943 
2944 /*
2945  * This function is wildly self concurrent; here be dragons.
2946  *
2947  *
2948  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2949  * designated task is enqueued on an allowed CPU. If that task is currently
2950  * running, we have to kick it out using the CPU stopper.
2951  *
2952  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2953  * Consider:
2954  *
2955  *     Initial conditions: P0->cpus_mask = [0, 1]
2956  *
2957  *     P0@CPU0                  P1
2958  *
2959  *     migrate_disable();
2960  *     <preempted>
2961  *                              set_cpus_allowed_ptr(P0, [1]);
2962  *
2963  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2964  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2965  * This means we need the following scheme:
2966  *
2967  *     P0@CPU0                  P1
2968  *
2969  *     migrate_disable();
2970  *     <preempted>
2971  *                              set_cpus_allowed_ptr(P0, [1]);
2972  *                                <blocks>
2973  *     <resumes>
2974  *     migrate_enable();
2975  *       __set_cpus_allowed_ptr();
2976  *       <wakes local stopper>
2977  *                         `--> <woken on migration completion>
2978  *
2979  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2980  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2981  * task p are serialized by p->pi_lock, which we can leverage: the one that
2982  * should come into effect at the end of the Migrate-Disable region is the last
2983  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2984  * but we still need to properly signal those waiting tasks at the appropriate
2985  * moment.
2986  *
2987  * This is implemented using struct set_affinity_pending. The first
2988  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2989  * setup an instance of that struct and install it on the targeted task_struct.
2990  * Any and all further callers will reuse that instance. Those then wait for
2991  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2992  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2993  *
2994  *
2995  * (1) In the cases covered above. There is one more where the completion is
2996  * signaled within affine_move_task() itself: when a subsequent affinity request
2997  * occurs after the stopper bailed out due to the targeted task still being
2998  * Migrate-Disable. Consider:
2999  *
3000  *     Initial conditions: P0->cpus_mask = [0, 1]
3001  *
3002  *     CPU0		  P1				P2
3003  *     <P0>
3004  *       migrate_disable();
3005  *       <preempted>
3006  *                        set_cpus_allowed_ptr(P0, [1]);
3007  *                          <blocks>
3008  *     <migration/0>
3009  *       migration_cpu_stop()
3010  *         is_migration_disabled()
3011  *           <bails>
3012  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
3013  *                                                         <signal completion>
3014  *                          <awakes>
3015  *
3016  * Note that the above is safe vs a concurrent migrate_enable(), as any
3017  * pending affinity completion is preceded by an uninstallation of
3018  * p->migration_pending done with p->pi_lock held.
3019  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)3020 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
3021 			    int dest_cpu, unsigned int flags)
3022 	__releases(rq->lock)
3023 	__releases(p->pi_lock)
3024 {
3025 	struct set_affinity_pending my_pending = { }, *pending = NULL;
3026 	bool stop_pending, complete = false;
3027 
3028 	/* Can the task run on the task's current CPU? If so, we're done */
3029 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
3030 		struct task_struct *push_task = NULL;
3031 
3032 		if ((flags & SCA_MIGRATE_ENABLE) &&
3033 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
3034 			rq->push_busy = true;
3035 			push_task = get_task_struct(p);
3036 		}
3037 
3038 		/*
3039 		 * If there are pending waiters, but no pending stop_work,
3040 		 * then complete now.
3041 		 */
3042 		pending = p->migration_pending;
3043 		if (pending && !pending->stop_pending) {
3044 			p->migration_pending = NULL;
3045 			complete = true;
3046 		}
3047 
3048 		preempt_disable();
3049 		task_rq_unlock(rq, p, rf);
3050 		if (push_task) {
3051 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3052 					    p, &rq->push_work);
3053 		}
3054 		preempt_enable();
3055 
3056 		if (complete)
3057 			complete_all(&pending->done);
3058 
3059 		return 0;
3060 	}
3061 
3062 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3063 		/* serialized by p->pi_lock */
3064 		if (!p->migration_pending) {
3065 			/* Install the request */
3066 			refcount_set(&my_pending.refs, 1);
3067 			init_completion(&my_pending.done);
3068 			my_pending.arg = (struct migration_arg) {
3069 				.task = p,
3070 				.dest_cpu = dest_cpu,
3071 				.pending = &my_pending,
3072 			};
3073 
3074 			p->migration_pending = &my_pending;
3075 		} else {
3076 			pending = p->migration_pending;
3077 			refcount_inc(&pending->refs);
3078 			/*
3079 			 * Affinity has changed, but we've already installed a
3080 			 * pending. migration_cpu_stop() *must* see this, else
3081 			 * we risk a completion of the pending despite having a
3082 			 * task on a disallowed CPU.
3083 			 *
3084 			 * Serialized by p->pi_lock, so this is safe.
3085 			 */
3086 			pending->arg.dest_cpu = dest_cpu;
3087 		}
3088 	}
3089 	pending = p->migration_pending;
3090 	/*
3091 	 * - !MIGRATE_ENABLE:
3092 	 *   we'll have installed a pending if there wasn't one already.
3093 	 *
3094 	 * - MIGRATE_ENABLE:
3095 	 *   we're here because the current CPU isn't matching anymore,
3096 	 *   the only way that can happen is because of a concurrent
3097 	 *   set_cpus_allowed_ptr() call, which should then still be
3098 	 *   pending completion.
3099 	 *
3100 	 * Either way, we really should have a @pending here.
3101 	 */
3102 	if (WARN_ON_ONCE(!pending)) {
3103 		task_rq_unlock(rq, p, rf);
3104 		return -EINVAL;
3105 	}
3106 
3107 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3108 		/*
3109 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3110 		 * anything else we cannot do is_migration_disabled(), punt
3111 		 * and have the stopper function handle it all race-free.
3112 		 */
3113 		stop_pending = pending->stop_pending;
3114 		if (!stop_pending)
3115 			pending->stop_pending = true;
3116 
3117 		if (flags & SCA_MIGRATE_ENABLE)
3118 			p->migration_flags &= ~MDF_PUSH;
3119 
3120 		preempt_disable();
3121 		task_rq_unlock(rq, p, rf);
3122 		if (!stop_pending) {
3123 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3124 					    &pending->arg, &pending->stop_work);
3125 		}
3126 		preempt_enable();
3127 
3128 		if (flags & SCA_MIGRATE_ENABLE)
3129 			return 0;
3130 	} else {
3131 
3132 		if (!is_migration_disabled(p)) {
3133 			if (task_on_rq_queued(p))
3134 				rq = move_queued_task(rq, rf, p, dest_cpu);
3135 
3136 			if (!pending->stop_pending) {
3137 				p->migration_pending = NULL;
3138 				complete = true;
3139 			}
3140 		}
3141 		task_rq_unlock(rq, p, rf);
3142 
3143 		if (complete)
3144 			complete_all(&pending->done);
3145 	}
3146 
3147 	wait_for_completion(&pending->done);
3148 
3149 	if (refcount_dec_and_test(&pending->refs))
3150 		wake_up_var(&pending->refs); /* No UaF, just an address */
3151 
3152 	/*
3153 	 * Block the original owner of &pending until all subsequent callers
3154 	 * have seen the completion and decremented the refcount
3155 	 */
3156 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3157 
3158 	/* ARGH */
3159 	WARN_ON_ONCE(my_pending.stop_pending);
3160 
3161 	return 0;
3162 }
3163 
3164 /*
3165  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3166  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3167 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3168 					 struct affinity_context *ctx,
3169 					 struct rq *rq,
3170 					 struct rq_flags *rf)
3171 	__releases(rq->lock)
3172 	__releases(p->pi_lock)
3173 {
3174 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3175 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3176 	bool kthread = p->flags & PF_KTHREAD;
3177 	unsigned int dest_cpu;
3178 	int ret = 0;
3179 #ifdef CONFIG_CPU_ISOLATION_OPT
3180 	cpumask_t allowed_mask;
3181 #endif
3182 
3183 	update_rq_clock(rq);
3184 
3185 	if (kthread || is_migration_disabled(p)) {
3186 		/*
3187 		 * Kernel threads are allowed on online && !active CPUs,
3188 		 * however, during cpu-hot-unplug, even these might get pushed
3189 		 * away if not KTHREAD_IS_PER_CPU.
3190 		 *
3191 		 * Specifically, migration_disabled() tasks must not fail the
3192 		 * cpumask_any_and_distribute() pick below, esp. so on
3193 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3194 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3195 		 */
3196 		cpu_valid_mask = cpu_online_mask;
3197 	}
3198 
3199 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3200 		ret = -EINVAL;
3201 		goto out;
3202 	}
3203 
3204 	/*
3205 	 * Must re-check here, to close a race against __kthread_bind(),
3206 	 * sched_setaffinity() is not guaranteed to observe the flag.
3207 	 */
3208 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3209 		ret = -EINVAL;
3210 		goto out;
3211 	}
3212 
3213 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3214 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3215 			if (ctx->flags & SCA_USER)
3216 				swap(p->user_cpus_ptr, ctx->user_mask);
3217 			goto out;
3218 		}
3219 
3220 		if (WARN_ON_ONCE(p == current &&
3221 				 is_migration_disabled(p) &&
3222 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3223 			ret = -EBUSY;
3224 			goto out;
3225 		}
3226 	}
3227 #ifdef CONFIG_CPU_ISOLATION_OPT
3228 	cpumask_andnot(&allowed_mask, ctx->new_mask, cpu_isolated_mask);
3229 	cpumask_and(&allowed_mask, &allowed_mask, cpu_valid_mask);
3230 
3231 	dest_cpu = cpumask_any(&allowed_mask);
3232 	if (dest_cpu >= nr_cpu_ids) {
3233 		cpumask_and(&allowed_mask, cpu_valid_mask, ctx->new_mask);
3234 		dest_cpu = cpumask_any(&allowed_mask);
3235 		if (!cpumask_intersects(ctx->new_mask, cpu_valid_mask)) {
3236 			ret = -EINVAL;
3237 			goto out;
3238 		}
3239 	}
3240 #else
3241 	/*
3242 	 * Picking a ~random cpu helps in cases where we are changing affinity
3243 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3244 	 * immediately required to distribute the tasks within their new mask.
3245 	 */
3246 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3247 	if (dest_cpu >= nr_cpu_ids) {
3248 		ret = -EINVAL;
3249 		goto out;
3250 	}
3251 #endif
3252 
3253 	__do_set_cpus_allowed(p, ctx);
3254 
3255 #ifdef CONFIG_CPU_ISOLATION_OPT
3256 	if (cpumask_test_cpu(task_cpu(p), &allowed_mask))
3257 		goto out;
3258 #else
3259 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3260 #endif
3261 
3262 out:
3263 	task_rq_unlock(rq, p, rf);
3264 
3265 	return ret;
3266 }
3267 
3268 /*
3269  * Change a given task's CPU affinity. Migrate the thread to a
3270  * proper CPU and schedule it away if the CPU it's executing on
3271  * is removed from the allowed bitmask.
3272  *
3273  * NOTE: the caller must have a valid reference to the task, the
3274  * task must not exit() & deallocate itself prematurely. The
3275  * call is not atomic; no spinlocks may be held.
3276  */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3277 static int __set_cpus_allowed_ptr(struct task_struct *p,
3278 				  struct affinity_context *ctx)
3279 {
3280 	struct rq_flags rf;
3281 	struct rq *rq;
3282 
3283 	rq = task_rq_lock(p, &rf);
3284 	/*
3285 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3286 	 * flags are set.
3287 	 */
3288 	if (p->user_cpus_ptr &&
3289 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3290 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3291 		ctx->new_mask = rq->scratch_mask;
3292 
3293 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3294 }
3295 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3296 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3297 {
3298 	struct affinity_context ac = {
3299 		.new_mask  = new_mask,
3300 		.flags     = 0,
3301 	};
3302 
3303 	return __set_cpus_allowed_ptr(p, &ac);
3304 }
3305 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3306 
3307 /*
3308  * Change a given task's CPU affinity to the intersection of its current
3309  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3310  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3311  * affinity or use cpu_online_mask instead.
3312  *
3313  * If the resulting mask is empty, leave the affinity unchanged and return
3314  * -EINVAL.
3315  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3316 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3317 				     struct cpumask *new_mask,
3318 				     const struct cpumask *subset_mask)
3319 {
3320 	struct affinity_context ac = {
3321 		.new_mask  = new_mask,
3322 		.flags     = 0,
3323 	};
3324 	struct rq_flags rf;
3325 	struct rq *rq;
3326 	int err;
3327 
3328 	rq = task_rq_lock(p, &rf);
3329 
3330 	/*
3331 	 * Forcefully restricting the affinity of a deadline task is
3332 	 * likely to cause problems, so fail and noisily override the
3333 	 * mask entirely.
3334 	 */
3335 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3336 		err = -EPERM;
3337 		goto err_unlock;
3338 	}
3339 
3340 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3341 		err = -EINVAL;
3342 		goto err_unlock;
3343 	}
3344 
3345 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3346 
3347 err_unlock:
3348 	task_rq_unlock(rq, p, &rf);
3349 	return err;
3350 }
3351 
3352 /*
3353  * Restrict the CPU affinity of task @p so that it is a subset of
3354  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3355  * old affinity mask. If the resulting mask is empty, we warn and walk
3356  * up the cpuset hierarchy until we find a suitable mask.
3357  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3358 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3359 {
3360 	cpumask_var_t new_mask;
3361 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3362 
3363 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3364 
3365 	/*
3366 	 * __migrate_task() can fail silently in the face of concurrent
3367 	 * offlining of the chosen destination CPU, so take the hotplug
3368 	 * lock to ensure that the migration succeeds.
3369 	 */
3370 	cpus_read_lock();
3371 	if (!cpumask_available(new_mask))
3372 		goto out_set_mask;
3373 
3374 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3375 		goto out_free_mask;
3376 
3377 	/*
3378 	 * We failed to find a valid subset of the affinity mask for the
3379 	 * task, so override it based on its cpuset hierarchy.
3380 	 */
3381 	cpuset_cpus_allowed(p, new_mask);
3382 	override_mask = new_mask;
3383 
3384 out_set_mask:
3385 	if (printk_ratelimit()) {
3386 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3387 				task_pid_nr(p), p->comm,
3388 				cpumask_pr_args(override_mask));
3389 	}
3390 
3391 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3392 out_free_mask:
3393 	cpus_read_unlock();
3394 	free_cpumask_var(new_mask);
3395 }
3396 
3397 static int
3398 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3399 
3400 /*
3401  * Restore the affinity of a task @p which was previously restricted by a
3402  * call to force_compatible_cpus_allowed_ptr().
3403  *
3404  * It is the caller's responsibility to serialise this with any calls to
3405  * force_compatible_cpus_allowed_ptr(@p).
3406  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3407 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3408 {
3409 	struct affinity_context ac = {
3410 		.new_mask  = task_user_cpus(p),
3411 		.flags     = 0,
3412 	};
3413 	int ret;
3414 
3415 	/*
3416 	 * Try to restore the old affinity mask with __sched_setaffinity().
3417 	 * Cpuset masking will be done there too.
3418 	 */
3419 	ret = __sched_setaffinity(p, &ac);
3420 	WARN_ON_ONCE(ret);
3421 }
3422 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3423 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3424 {
3425 #ifdef CONFIG_SCHED_DEBUG
3426 	unsigned int state = READ_ONCE(p->__state);
3427 
3428 	/*
3429 	 * We should never call set_task_cpu() on a blocked task,
3430 	 * ttwu() will sort out the placement.
3431 	 */
3432 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3433 
3434 	/*
3435 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3436 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3437 	 * time relying on p->on_rq.
3438 	 */
3439 	WARN_ON_ONCE(state == TASK_RUNNING &&
3440 		     p->sched_class == &fair_sched_class &&
3441 		     (p->on_rq && !task_on_rq_migrating(p)));
3442 
3443 #ifdef CONFIG_LOCKDEP
3444 	/*
3445 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3446 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3447 	 *
3448 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3449 	 * see task_group().
3450 	 *
3451 	 * Furthermore, all task_rq users should acquire both locks, see
3452 	 * task_rq_lock().
3453 	 */
3454 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3455 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3456 #endif
3457 	/*
3458 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3459 	 */
3460 	WARN_ON_ONCE(!cpu_online(new_cpu));
3461 
3462 	WARN_ON_ONCE(is_migration_disabled(p));
3463 #endif
3464 
3465 	trace_sched_migrate_task(p, new_cpu);
3466 
3467 	if (task_cpu(p) != new_cpu) {
3468 		if (p->sched_class->migrate_task_rq)
3469 			p->sched_class->migrate_task_rq(p, new_cpu);
3470 		p->se.nr_migrations++;
3471 		rseq_migrate(p);
3472 		sched_mm_cid_migrate_from(p);
3473 		perf_event_task_migrate(p);
3474 		fixup_busy_time(p, new_cpu);
3475 	}
3476 
3477 	__set_task_cpu(p, new_cpu);
3478 }
3479 
3480 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3481 static void __migrate_swap_task(struct task_struct *p, int cpu)
3482 {
3483 	if (task_on_rq_queued(p)) {
3484 		struct rq *src_rq, *dst_rq;
3485 		struct rq_flags srf, drf;
3486 
3487 		src_rq = task_rq(p);
3488 		dst_rq = cpu_rq(cpu);
3489 
3490 		rq_pin_lock(src_rq, &srf);
3491 		rq_pin_lock(dst_rq, &drf);
3492 
3493 		deactivate_task(src_rq, p, 0);
3494 		set_task_cpu(p, cpu);
3495 		activate_task(dst_rq, p, 0);
3496 		wakeup_preempt(dst_rq, p, 0);
3497 
3498 		rq_unpin_lock(dst_rq, &drf);
3499 		rq_unpin_lock(src_rq, &srf);
3500 
3501 	} else {
3502 		/*
3503 		 * Task isn't running anymore; make it appear like we migrated
3504 		 * it before it went to sleep. This means on wakeup we make the
3505 		 * previous CPU our target instead of where it really is.
3506 		 */
3507 		p->wake_cpu = cpu;
3508 	}
3509 }
3510 
3511 struct migration_swap_arg {
3512 	struct task_struct *src_task, *dst_task;
3513 	int src_cpu, dst_cpu;
3514 };
3515 
migrate_swap_stop(void * data)3516 static int migrate_swap_stop(void *data)
3517 {
3518 	struct migration_swap_arg *arg = data;
3519 	struct rq *src_rq, *dst_rq;
3520 
3521 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3522 		return -EAGAIN;
3523 
3524 	src_rq = cpu_rq(arg->src_cpu);
3525 	dst_rq = cpu_rq(arg->dst_cpu);
3526 
3527 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3528 	guard(double_rq_lock)(src_rq, dst_rq);
3529 
3530 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3531 		return -EAGAIN;
3532 
3533 	if (task_cpu(arg->src_task) != arg->src_cpu)
3534 		return -EAGAIN;
3535 
3536 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3537 		return -EAGAIN;
3538 
3539 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3540 		return -EAGAIN;
3541 
3542 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3543 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3544 
3545 	return 0;
3546 }
3547 
3548 /*
3549  * Cross migrate two tasks
3550  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3551 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3552 		int target_cpu, int curr_cpu)
3553 {
3554 	struct migration_swap_arg arg;
3555 	int ret = -EINVAL;
3556 
3557 	arg = (struct migration_swap_arg){
3558 		.src_task = cur,
3559 		.src_cpu = curr_cpu,
3560 		.dst_task = p,
3561 		.dst_cpu = target_cpu,
3562 	};
3563 
3564 	if (arg.src_cpu == arg.dst_cpu)
3565 		goto out;
3566 
3567 	/*
3568 	 * These three tests are all lockless; this is OK since all of them
3569 	 * will be re-checked with proper locks held further down the line.
3570 	 */
3571 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3572 		goto out;
3573 
3574 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3575 		goto out;
3576 
3577 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3578 		goto out;
3579 
3580 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3581 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3582 
3583 out:
3584 	return ret;
3585 }
3586 #endif /* CONFIG_NUMA_BALANCING */
3587 
3588 /***
3589  * kick_process - kick a running thread to enter/exit the kernel
3590  * @p: the to-be-kicked thread
3591  *
3592  * Cause a process which is running on another CPU to enter
3593  * kernel-mode, without any delay. (to get signals handled.)
3594  *
3595  * NOTE: this function doesn't have to take the runqueue lock,
3596  * because all it wants to ensure is that the remote task enters
3597  * the kernel. If the IPI races and the task has been migrated
3598  * to another CPU then no harm is done and the purpose has been
3599  * achieved as well.
3600  */
kick_process(struct task_struct * p)3601 void kick_process(struct task_struct *p)
3602 {
3603 	int cpu;
3604 
3605 	preempt_disable();
3606 	cpu = task_cpu(p);
3607 	if ((cpu != smp_processor_id()) && task_curr(p))
3608 		smp_send_reschedule(cpu);
3609 	preempt_enable();
3610 }
3611 EXPORT_SYMBOL_GPL(kick_process);
3612 
3613 /*
3614  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3615  *
3616  * A few notes on cpu_active vs cpu_online:
3617  *
3618  *  - cpu_active must be a subset of cpu_online
3619  *
3620  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3621  *    see __set_cpus_allowed_ptr(). At this point the newly online
3622  *    CPU isn't yet part of the sched domains, and balancing will not
3623  *    see it.
3624  *
3625  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3626  *    avoid the load balancer to place new tasks on the to be removed
3627  *    CPU. Existing tasks will remain running there and will be taken
3628  *    off.
3629  *
3630  * This means that fallback selection must not select !active CPUs.
3631  * And can assume that any active CPU must be online. Conversely
3632  * select_task_rq() below may allow selection of !active CPUs in order
3633  * to satisfy the above rules.
3634  */
3635 #ifdef CONFIG_CPU_ISOLATION_OPT
select_fallback_rq(int cpu,struct task_struct * p,bool allow_iso)3636 static int select_fallback_rq(int cpu, struct task_struct *p, bool allow_iso)
3637 #else
3638 static int select_fallback_rq(int cpu, struct task_struct *p)
3639 #endif
3640 {
3641 	int nid = cpu_to_node(cpu);
3642 	const struct cpumask *nodemask = NULL;
3643 	enum { cpuset, possible, fail, bug } state = cpuset;
3644 	int dest_cpu;
3645 #ifdef CONFIG_CPU_ISOLATION_OPT
3646 	int isolated_candidate = -1;
3647 #endif
3648 
3649 	/*
3650 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3651 	 * will return -1. There is no CPU on the node, and we should
3652 	 * select the CPU on the other node.
3653 	 */
3654 	if (nid != -1) {
3655 		nodemask = cpumask_of_node(nid);
3656 
3657 		/* Look for allowed, online CPU in same node. */
3658 		for_each_cpu(dest_cpu, nodemask) {
3659 			if (cpu_isolated(dest_cpu))
3660 				continue;
3661 			if (is_cpu_allowed(p, dest_cpu))
3662 				return dest_cpu;
3663 		}
3664 	}
3665 
3666 	for (;;) {
3667 		/* Any allowed, online CPU? */
3668 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3669 			if (!is_cpu_allowed(p, dest_cpu))
3670 				continue;
3671 #ifdef CONFIG_CPU_ISOLATION_OPT
3672 			if (cpu_isolated(dest_cpu)) {
3673 				if (allow_iso)
3674 					isolated_candidate = dest_cpu;
3675 				continue;
3676 			}
3677 			goto out;
3678 		}
3679 
3680 		if (isolated_candidate != -1) {
3681 			dest_cpu = isolated_candidate;
3682 #endif
3683 			goto out;
3684 		}
3685 
3686 		/* No more Mr. Nice Guy. */
3687 		switch (state) {
3688 		case cpuset:
3689 			if (cpuset_cpus_allowed_fallback(p)) {
3690 				state = possible;
3691 				break;
3692 			}
3693 			fallthrough;
3694 		case possible:
3695 			/*
3696 			 * XXX When called from select_task_rq() we only
3697 			 * hold p->pi_lock and again violate locking order.
3698 			 *
3699 			 * More yuck to audit.
3700 			 */
3701 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3702 			state = fail;
3703 			break;
3704 		case fail:
3705 #ifdef CONFIG_CPU_ISOLATION_OPT
3706 			allow_iso = true;
3707 			state = bug;
3708 			break;
3709 #else
3710 			/* fall through; */
3711 #endif
3712 
3713 		case bug:
3714 			BUG();
3715 			break;
3716 		}
3717 	}
3718 
3719 out:
3720 	if (state != cpuset) {
3721 		/*
3722 		 * Don't tell them about moving exiting tasks or
3723 		 * kernel threads (both mm NULL), since they never
3724 		 * leave kernel.
3725 		 */
3726 		if (p->mm && printk_ratelimit()) {
3727 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3728 					task_pid_nr(p), p->comm, cpu);
3729 		}
3730 	}
3731 
3732 	return dest_cpu;
3733 }
3734 
3735 /*
3736  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3737  */
3738 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3739 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3740 {
3741 #ifdef CONFIG_CPU_ISOLATION_OPT
3742 	bool allow_isolated = (p->flags & PF_KTHREAD);
3743 #endif
3744 
3745 	lockdep_assert_held(&p->pi_lock);
3746 
3747 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3748 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3749 	else
3750 		cpu = cpumask_any(p->cpus_ptr);
3751 
3752 	/*
3753 	 * In order not to call set_task_cpu() on a blocking task we need
3754 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3755 	 * CPU.
3756 	 *
3757 	 * Since this is common to all placement strategies, this lives here.
3758 	 *
3759 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3760 	 *   not worry about this generic constraint ]
3761 	 */
3762 #ifdef CONFIG_CPU_ISOLATION_OPT
3763 	if (unlikely(!is_cpu_allowed(p, cpu)) ||
3764 			(cpu_isolated(cpu) && !allow_isolated))
3765 		cpu = select_fallback_rq(task_cpu(p), p, allow_isolated);
3766 #else
3767 	if (unlikely(!is_cpu_allowed(p, cpu)))
3768 		cpu = select_fallback_rq(task_cpu(p), p);
3769 #endif
3770 
3771 	return cpu;
3772 }
3773 
sched_set_stop_task(int cpu,struct task_struct * stop)3774 void sched_set_stop_task(int cpu, struct task_struct *stop)
3775 {
3776 	static struct lock_class_key stop_pi_lock;
3777 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3778 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3779 
3780 	if (stop) {
3781 		/*
3782 		 * Make it appear like a SCHED_FIFO task, its something
3783 		 * userspace knows about and won't get confused about.
3784 		 *
3785 		 * Also, it will make PI more or less work without too
3786 		 * much confusion -- but then, stop work should not
3787 		 * rely on PI working anyway.
3788 		 */
3789 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3790 
3791 		stop->sched_class = &stop_sched_class;
3792 
3793 		/*
3794 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3795 		 * adjust the effective priority of a task. As a result,
3796 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3797 		 * which can then trigger wakeups of the stop thread to push
3798 		 * around the current task.
3799 		 *
3800 		 * The stop task itself will never be part of the PI-chain, it
3801 		 * never blocks, therefore that ->pi_lock recursion is safe.
3802 		 * Tell lockdep about this by placing the stop->pi_lock in its
3803 		 * own class.
3804 		 */
3805 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3806 	}
3807 
3808 	cpu_rq(cpu)->stop = stop;
3809 
3810 	if (old_stop) {
3811 		/*
3812 		 * Reset it back to a normal scheduling class so that
3813 		 * it can die in pieces.
3814 		 */
3815 		old_stop->sched_class = &rt_sched_class;
3816 	}
3817 }
3818 
3819 #else /* CONFIG_SMP */
3820 
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3821 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3822 					 struct affinity_context *ctx)
3823 {
3824 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3825 }
3826 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3827 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3828 
rq_has_pinned_tasks(struct rq * rq)3829 static inline bool rq_has_pinned_tasks(struct rq *rq)
3830 {
3831 	return false;
3832 }
3833 
alloc_user_cpus_ptr(int node)3834 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3835 {
3836 	return NULL;
3837 }
3838 
3839 #endif /* !CONFIG_SMP */
3840 
3841 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3842 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3843 {
3844 	struct rq *rq;
3845 
3846 	if (!schedstat_enabled())
3847 		return;
3848 
3849 	rq = this_rq();
3850 
3851 #ifdef CONFIG_SMP
3852 	if (cpu == rq->cpu) {
3853 		__schedstat_inc(rq->ttwu_local);
3854 		__schedstat_inc(p->stats.nr_wakeups_local);
3855 	} else {
3856 		struct sched_domain *sd;
3857 
3858 		__schedstat_inc(p->stats.nr_wakeups_remote);
3859 
3860 		guard(rcu)();
3861 		for_each_domain(rq->cpu, sd) {
3862 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3863 				__schedstat_inc(sd->ttwu_wake_remote);
3864 				break;
3865 			}
3866 		}
3867 	}
3868 
3869 	if (wake_flags & WF_MIGRATED)
3870 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3871 #endif /* CONFIG_SMP */
3872 
3873 	__schedstat_inc(rq->ttwu_count);
3874 	__schedstat_inc(p->stats.nr_wakeups);
3875 
3876 	if (wake_flags & WF_SYNC)
3877 		__schedstat_inc(p->stats.nr_wakeups_sync);
3878 }
3879 
3880 /*
3881  * Mark the task runnable.
3882  */
ttwu_do_wakeup(struct task_struct * p)3883 static inline void ttwu_do_wakeup(struct task_struct *p)
3884 {
3885 	WRITE_ONCE(p->__state, TASK_RUNNING);
3886 	trace_sched_wakeup(p);
3887 }
3888 
3889 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3890 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3891 		 struct rq_flags *rf)
3892 {
3893 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3894 
3895 	lockdep_assert_rq_held(rq);
3896 
3897 	if (p->sched_contributes_to_load)
3898 		rq->nr_uninterruptible--;
3899 
3900 #ifdef CONFIG_SMP
3901 	if (wake_flags & WF_MIGRATED)
3902 		en_flags |= ENQUEUE_MIGRATED;
3903 	else
3904 #endif
3905 	if (p->in_iowait) {
3906 		delayacct_blkio_end(p);
3907 		atomic_dec(&task_rq(p)->nr_iowait);
3908 	}
3909 
3910 	activate_task(rq, p, en_flags);
3911 	wakeup_preempt(rq, p, wake_flags);
3912 
3913 	ttwu_do_wakeup(p);
3914 
3915 #ifdef CONFIG_SMP
3916 	if (p->sched_class->task_woken) {
3917 		/*
3918 		 * Our task @p is fully woken up and running; so it's safe to
3919 		 * drop the rq->lock, hereafter rq is only used for statistics.
3920 		 */
3921 		rq_unpin_lock(rq, rf);
3922 		p->sched_class->task_woken(rq, p);
3923 		rq_repin_lock(rq, rf);
3924 	}
3925 
3926 	if (rq->idle_stamp) {
3927 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3928 		u64 max = 2*rq->max_idle_balance_cost;
3929 
3930 		update_avg(&rq->avg_idle, delta);
3931 
3932 		if (rq->avg_idle > max)
3933 			rq->avg_idle = max;
3934 
3935 		rq->wake_stamp = jiffies;
3936 		rq->wake_avg_idle = rq->avg_idle / 2;
3937 
3938 		rq->idle_stamp = 0;
3939 	}
3940 #endif
3941 }
3942 
3943 /*
3944  * Consider @p being inside a wait loop:
3945  *
3946  *   for (;;) {
3947  *      set_current_state(TASK_UNINTERRUPTIBLE);
3948  *
3949  *      if (CONDITION)
3950  *         break;
3951  *
3952  *      schedule();
3953  *   }
3954  *   __set_current_state(TASK_RUNNING);
3955  *
3956  * between set_current_state() and schedule(). In this case @p is still
3957  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3958  * an atomic manner.
3959  *
3960  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3961  * then schedule() must still happen and p->state can be changed to
3962  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3963  * need to do a full wakeup with enqueue.
3964  *
3965  * Returns: %true when the wakeup is done,
3966  *          %false otherwise.
3967  */
ttwu_runnable(struct task_struct * p,int wake_flags)3968 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3969 {
3970 	struct rq_flags rf;
3971 	struct rq *rq;
3972 	int ret = 0;
3973 
3974 	rq = __task_rq_lock(p, &rf);
3975 	if (task_on_rq_queued(p)) {
3976 		if (!task_on_cpu(rq, p)) {
3977 			/*
3978 			 * When on_rq && !on_cpu the task is preempted, see if
3979 			 * it should preempt the task that is current now.
3980 			 */
3981 			update_rq_clock(rq);
3982 			wakeup_preempt(rq, p, wake_flags);
3983 		}
3984 		ttwu_do_wakeup(p);
3985 		ret = 1;
3986 	}
3987 	__task_rq_unlock(rq, &rf);
3988 
3989 	return ret;
3990 }
3991 
3992 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3993 void sched_ttwu_pending(void *arg)
3994 {
3995 	struct llist_node *llist = arg;
3996 	struct rq *rq = this_rq();
3997 	struct task_struct *p, *t;
3998 	struct rq_flags rf;
3999 
4000 	if (!llist)
4001 		return;
4002 
4003 	rq_lock_irqsave(rq, &rf);
4004 	update_rq_clock(rq);
4005 
4006 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
4007 		if (WARN_ON_ONCE(p->on_cpu))
4008 			smp_cond_load_acquire(&p->on_cpu, !VAL);
4009 
4010 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
4011 			set_task_cpu(p, cpu_of(rq));
4012 
4013 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
4014 	}
4015 
4016 	/*
4017 	 * Must be after enqueueing at least once task such that
4018 	 * idle_cpu() does not observe a false-negative -- if it does,
4019 	 * it is possible for select_idle_siblings() to stack a number
4020 	 * of tasks on this CPU during that window.
4021 	 *
4022 	 * It is ok to clear ttwu_pending when another task pending.
4023 	 * We will receive IPI after local irq enabled and then enqueue it.
4024 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
4025 	 */
4026 	WRITE_ONCE(rq->ttwu_pending, 0);
4027 	rq_unlock_irqrestore(rq, &rf);
4028 }
4029 
4030 /*
4031  * Prepare the scene for sending an IPI for a remote smp_call
4032  *
4033  * Returns true if the caller can proceed with sending the IPI.
4034  * Returns false otherwise.
4035  */
call_function_single_prep_ipi(int cpu)4036 bool call_function_single_prep_ipi(int cpu)
4037 {
4038 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
4039 		trace_sched_wake_idle_without_ipi(cpu);
4040 		return false;
4041 	}
4042 
4043 	return true;
4044 }
4045 
4046 /*
4047  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
4048  * necessary. The wakee CPU on receipt of the IPI will queue the task
4049  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
4050  * of the wakeup instead of the waker.
4051  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4052 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4053 {
4054 	struct rq *rq = cpu_rq(cpu);
4055 
4056 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
4057 
4058 	WRITE_ONCE(rq->ttwu_pending, 1);
4059 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
4060 }
4061 
wake_up_if_idle(int cpu)4062 void wake_up_if_idle(int cpu)
4063 {
4064 	struct rq *rq = cpu_rq(cpu);
4065 
4066 	guard(rcu)();
4067 	if (is_idle_task(rcu_dereference(rq->curr))) {
4068 		guard(rq_lock_irqsave)(rq);
4069 		if (is_idle_task(rq->curr))
4070 			resched_curr(rq);
4071 	}
4072 }
4073 
cpus_share_cache(int this_cpu,int that_cpu)4074 bool cpus_share_cache(int this_cpu, int that_cpu)
4075 {
4076 	if (this_cpu == that_cpu)
4077 		return true;
4078 
4079 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
4080 }
4081 
ttwu_queue_cond(struct task_struct * p,int cpu)4082 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
4083 {
4084 	/*
4085 	 * Do not complicate things with the async wake_list while the CPU is
4086 	 * in hotplug state.
4087 	 */
4088 	if (!cpu_active(cpu))
4089 		return false;
4090 
4091 	/* Ensure the task will still be allowed to run on the CPU. */
4092 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
4093 		return false;
4094 
4095 	/*
4096 	 * If the CPU does not share cache, then queue the task on the
4097 	 * remote rqs wakelist to avoid accessing remote data.
4098 	 */
4099 	if (!cpus_share_cache(smp_processor_id(), cpu))
4100 		return true;
4101 
4102 	if (cpu == smp_processor_id())
4103 		return false;
4104 
4105 	/*
4106 	 * If the wakee cpu is idle, or the task is descheduling and the
4107 	 * only running task on the CPU, then use the wakelist to offload
4108 	 * the task activation to the idle (or soon-to-be-idle) CPU as
4109 	 * the current CPU is likely busy. nr_running is checked to
4110 	 * avoid unnecessary task stacking.
4111 	 *
4112 	 * Note that we can only get here with (wakee) p->on_rq=0,
4113 	 * p->on_cpu can be whatever, we've done the dequeue, so
4114 	 * the wakee has been accounted out of ->nr_running.
4115 	 */
4116 	if (!cpu_rq(cpu)->nr_running)
4117 		return true;
4118 
4119 	return false;
4120 }
4121 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4122 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4123 {
4124 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4125 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4126 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4127 		return true;
4128 	}
4129 
4130 	return false;
4131 }
4132 
4133 #else /* !CONFIG_SMP */
4134 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4135 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4136 {
4137 	return false;
4138 }
4139 
4140 #endif /* CONFIG_SMP */
4141 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4142 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4143 {
4144 	struct rq *rq = cpu_rq(cpu);
4145 	struct rq_flags rf;
4146 
4147 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4148 		return;
4149 
4150 	rq_lock(rq, &rf);
4151 	update_rq_clock(rq);
4152 	ttwu_do_activate(rq, p, wake_flags, &rf);
4153 	rq_unlock(rq, &rf);
4154 }
4155 
4156 /*
4157  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4158  *
4159  * The caller holds p::pi_lock if p != current or has preemption
4160  * disabled when p == current.
4161  *
4162  * The rules of PREEMPT_RT saved_state:
4163  *
4164  *   The related locking code always holds p::pi_lock when updating
4165  *   p::saved_state, which means the code is fully serialized in both cases.
4166  *
4167  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4168  *   bits set. This allows to distinguish all wakeup scenarios.
4169  */
4170 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4171 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4172 {
4173 	int match;
4174 
4175 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4176 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4177 			     state != TASK_RTLOCK_WAIT);
4178 	}
4179 
4180 	*success = !!(match = __task_state_match(p, state));
4181 
4182 #ifdef CONFIG_PREEMPT_RT
4183 	/*
4184 	 * Saved state preserves the task state across blocking on
4185 	 * an RT lock.  If the state matches, set p::saved_state to
4186 	 * TASK_RUNNING, but do not wake the task because it waits
4187 	 * for a lock wakeup. Also indicate success because from
4188 	 * the regular waker's point of view this has succeeded.
4189 	 *
4190 	 * After acquiring the lock the task will restore p::__state
4191 	 * from p::saved_state which ensures that the regular
4192 	 * wakeup is not lost. The restore will also set
4193 	 * p::saved_state to TASK_RUNNING so any further tests will
4194 	 * not result in false positives vs. @success
4195 	 */
4196 	if (match < 0)
4197 		p->saved_state = TASK_RUNNING;
4198 #endif
4199 	return match > 0;
4200 }
4201 
4202 /*
4203  * Notes on Program-Order guarantees on SMP systems.
4204  *
4205  *  MIGRATION
4206  *
4207  * The basic program-order guarantee on SMP systems is that when a task [t]
4208  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4209  * execution on its new CPU [c1].
4210  *
4211  * For migration (of runnable tasks) this is provided by the following means:
4212  *
4213  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4214  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4215  *     rq(c1)->lock (if not at the same time, then in that order).
4216  *  C) LOCK of the rq(c1)->lock scheduling in task
4217  *
4218  * Release/acquire chaining guarantees that B happens after A and C after B.
4219  * Note: the CPU doing B need not be c0 or c1
4220  *
4221  * Example:
4222  *
4223  *   CPU0            CPU1            CPU2
4224  *
4225  *   LOCK rq(0)->lock
4226  *   sched-out X
4227  *   sched-in Y
4228  *   UNLOCK rq(0)->lock
4229  *
4230  *                                   LOCK rq(0)->lock // orders against CPU0
4231  *                                   dequeue X
4232  *                                   UNLOCK rq(0)->lock
4233  *
4234  *                                   LOCK rq(1)->lock
4235  *                                   enqueue X
4236  *                                   UNLOCK rq(1)->lock
4237  *
4238  *                   LOCK rq(1)->lock // orders against CPU2
4239  *                   sched-out Z
4240  *                   sched-in X
4241  *                   UNLOCK rq(1)->lock
4242  *
4243  *
4244  *  BLOCKING -- aka. SLEEP + WAKEUP
4245  *
4246  * For blocking we (obviously) need to provide the same guarantee as for
4247  * migration. However the means are completely different as there is no lock
4248  * chain to provide order. Instead we do:
4249  *
4250  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4251  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4252  *
4253  * Example:
4254  *
4255  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4256  *
4257  *   LOCK rq(0)->lock LOCK X->pi_lock
4258  *   dequeue X
4259  *   sched-out X
4260  *   smp_store_release(X->on_cpu, 0);
4261  *
4262  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4263  *                    X->state = WAKING
4264  *                    set_task_cpu(X,2)
4265  *
4266  *                    LOCK rq(2)->lock
4267  *                    enqueue X
4268  *                    X->state = RUNNING
4269  *                    UNLOCK rq(2)->lock
4270  *
4271  *                                          LOCK rq(2)->lock // orders against CPU1
4272  *                                          sched-out Z
4273  *                                          sched-in X
4274  *                                          UNLOCK rq(2)->lock
4275  *
4276  *                    UNLOCK X->pi_lock
4277  *   UNLOCK rq(0)->lock
4278  *
4279  *
4280  * However, for wakeups there is a second guarantee we must provide, namely we
4281  * must ensure that CONDITION=1 done by the caller can not be reordered with
4282  * accesses to the task state; see try_to_wake_up() and set_current_state().
4283  */
4284 
4285 #ifdef CONFIG_SMP
4286 #ifdef CONFIG_SCHED_WALT
4287 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)4288 static inline void walt_try_to_wake_up(struct task_struct *p)
4289 {
4290 	struct rq *rq = cpu_rq(task_cpu(p));
4291 	struct rq_flags rf;
4292 	u64 wallclock;
4293 
4294 	rq_lock_irqsave(rq, &rf);
4295 	wallclock = sched_ktime_clock();
4296 	update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
4297 	update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
4298 	rq_unlock_irqrestore(rq, &rf);
4299 }
4300 #else
4301 #define walt_try_to_wake_up(a) {}
4302 #endif
4303 #endif
4304 
4305 /**
4306  * try_to_wake_up - wake up a thread
4307  * @p: the thread to be awakened
4308  * @state: the mask of task states that can be woken
4309  * @wake_flags: wake modifier flags (WF_*)
4310  *
4311  * Conceptually does:
4312  *
4313  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4314  *
4315  * If the task was not queued/runnable, also place it back on a runqueue.
4316  *
4317  * This function is atomic against schedule() which would dequeue the task.
4318  *
4319  * It issues a full memory barrier before accessing @p->state, see the comment
4320  * with set_current_state().
4321  *
4322  * Uses p->pi_lock to serialize against concurrent wake-ups.
4323  *
4324  * Relies on p->pi_lock stabilizing:
4325  *  - p->sched_class
4326  *  - p->cpus_ptr
4327  *  - p->sched_task_group
4328  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4329  *
4330  * Tries really hard to only take one task_rq(p)->lock for performance.
4331  * Takes rq->lock in:
4332  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4333  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4334  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4335  *
4336  * As a consequence we race really badly with just about everything. See the
4337  * many memory barriers and their comments for details.
4338  *
4339  * Return: %true if @p->state changes (an actual wakeup was done),
4340  *	   %false otherwise.
4341  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4342 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4343 {
4344 	guard(preempt)();
4345 	int cpu, success = 0;
4346 
4347 	if (p == current) {
4348 		/*
4349 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4350 		 * == smp_processor_id()'. Together this means we can special
4351 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4352 		 * without taking any locks.
4353 		 *
4354 		 * In particular:
4355 		 *  - we rely on Program-Order guarantees for all the ordering,
4356 		 *  - we're serialized against set_special_state() by virtue of
4357 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4358 		 */
4359 		if (!ttwu_state_match(p, state, &success))
4360 			goto out;
4361 
4362 		trace_sched_waking(p);
4363 		ttwu_do_wakeup(p);
4364 		goto out;
4365 	}
4366 
4367 	/*
4368 	 * If we are going to wake up a thread waiting for CONDITION we
4369 	 * need to ensure that CONDITION=1 done by the caller can not be
4370 	 * reordered with p->state check below. This pairs with smp_store_mb()
4371 	 * in set_current_state() that the waiting thread does.
4372 	 */
4373 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4374 		smp_mb__after_spinlock();
4375 		if (!ttwu_state_match(p, state, &success))
4376 			break;
4377 
4378 		trace_sched_waking(p);
4379 
4380 		/*
4381 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4382 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4383 		 * in smp_cond_load_acquire() below.
4384 		 *
4385 		 * sched_ttwu_pending()			try_to_wake_up()
4386 		 *   STORE p->on_rq = 1			  LOAD p->state
4387 		 *   UNLOCK rq->lock
4388 		 *
4389 		 * __schedule() (switch to task 'p')
4390 		 *   LOCK rq->lock			  smp_rmb();
4391 		 *   smp_mb__after_spinlock();
4392 		 *   UNLOCK rq->lock
4393 		 *
4394 		 * [task p]
4395 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4396 		 *
4397 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4398 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4399 		 *
4400 		 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4401 		 */
4402 		smp_rmb();
4403 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4404 			break;
4405 
4406 #ifdef CONFIG_SMP
4407 		/*
4408 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4409 		 * possible to, falsely, observe p->on_cpu == 0.
4410 		 *
4411 		 * One must be running (->on_cpu == 1) in order to remove oneself
4412 		 * from the runqueue.
4413 		 *
4414 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4415 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4416 		 *   UNLOCK rq->lock
4417 		 *
4418 		 * __schedule() (put 'p' to sleep)
4419 		 *   LOCK rq->lock			  smp_rmb();
4420 		 *   smp_mb__after_spinlock();
4421 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4422 		 *
4423 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4424 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4425 		 *
4426 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4427 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4428 		 * care about it's own p->state. See the comment in __schedule().
4429 		 */
4430 		smp_acquire__after_ctrl_dep();
4431 
4432 		walt_try_to_wake_up(p);
4433 		/*
4434 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4435 		 * == 0), which means we need to do an enqueue, change p->state to
4436 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4437 		 * enqueue, such as ttwu_queue_wakelist().
4438 		 */
4439 		WRITE_ONCE(p->__state, TASK_WAKING);
4440 
4441 		/*
4442 		 * If the owning (remote) CPU is still in the middle of schedule() with
4443 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4444 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4445 		 * let the waker make forward progress. This is safe because IRQs are
4446 		 * disabled and the IPI will deliver after on_cpu is cleared.
4447 		 *
4448 		 * Ensure we load task_cpu(p) after p->on_cpu:
4449 		 *
4450 		 * set_task_cpu(p, cpu);
4451 		 *   STORE p->cpu = @cpu
4452 		 * __schedule() (switch to task 'p')
4453 		 *   LOCK rq->lock
4454 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4455 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4456 		 *
4457 		 * to ensure we observe the correct CPU on which the task is currently
4458 		 * scheduling.
4459 		 */
4460 		if (smp_load_acquire(&p->on_cpu) &&
4461 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4462 			break;
4463 
4464 		/*
4465 		 * If the owning (remote) CPU is still in the middle of schedule() with
4466 		 * this task as prev, wait until it's done referencing the task.
4467 		 *
4468 		 * Pairs with the smp_store_release() in finish_task().
4469 		 *
4470 		 * This ensures that tasks getting woken will be fully ordered against
4471 		 * their previous state and preserve Program Order.
4472 		 */
4473 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4474 
4475 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4476 		if (task_cpu(p) != cpu) {
4477 			if (p->in_iowait) {
4478 				delayacct_blkio_end(p);
4479 				atomic_dec(&task_rq(p)->nr_iowait);
4480 			}
4481 
4482 			wake_flags |= WF_MIGRATED;
4483 			psi_ttwu_dequeue(p);
4484 			set_task_cpu(p, cpu);
4485 		}
4486 #else
4487 		cpu = task_cpu(p);
4488 #endif /* CONFIG_SMP */
4489 
4490 		ttwu_queue(p, cpu, wake_flags);
4491 	}
4492 out:
4493 	if (success)
4494 		ttwu_stat(p, task_cpu(p), wake_flags);
4495 
4496 	return success;
4497 }
4498 
__task_needs_rq_lock(struct task_struct * p)4499 static bool __task_needs_rq_lock(struct task_struct *p)
4500 {
4501 	unsigned int state = READ_ONCE(p->__state);
4502 
4503 	/*
4504 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4505 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4506 	 * locks at the end, see ttwu_queue_wakelist().
4507 	 */
4508 	if (state == TASK_RUNNING || state == TASK_WAKING)
4509 		return true;
4510 
4511 	/*
4512 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4513 	 * possible to, falsely, observe p->on_rq == 0.
4514 	 *
4515 	 * See try_to_wake_up() for a longer comment.
4516 	 */
4517 	smp_rmb();
4518 	if (p->on_rq)
4519 		return true;
4520 
4521 #ifdef CONFIG_SMP
4522 	/*
4523 	 * Ensure the task has finished __schedule() and will not be referenced
4524 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4525 	 */
4526 	smp_rmb();
4527 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4528 #endif
4529 
4530 	return false;
4531 }
4532 
4533 /**
4534  * task_call_func - Invoke a function on task in fixed state
4535  * @p: Process for which the function is to be invoked, can be @current.
4536  * @func: Function to invoke.
4537  * @arg: Argument to function.
4538  *
4539  * Fix the task in it's current state by avoiding wakeups and or rq operations
4540  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4541  * to work out what the state is, if required.  Given that @func can be invoked
4542  * with a runqueue lock held, it had better be quite lightweight.
4543  *
4544  * Returns:
4545  *   Whatever @func returns
4546  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4547 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4548 {
4549 	struct rq *rq = NULL;
4550 	struct rq_flags rf;
4551 	int ret;
4552 
4553 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4554 
4555 	if (__task_needs_rq_lock(p))
4556 		rq = __task_rq_lock(p, &rf);
4557 
4558 	/*
4559 	 * At this point the task is pinned; either:
4560 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4561 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4562 	 *  - queued, and we're holding off schedule	 (rq->lock)
4563 	 *  - running, and we're holding off de-schedule (rq->lock)
4564 	 *
4565 	 * The called function (@func) can use: task_curr(), p->on_rq and
4566 	 * p->__state to differentiate between these states.
4567 	 */
4568 	ret = func(p, arg);
4569 
4570 	if (rq)
4571 		rq_unlock(rq, &rf);
4572 
4573 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4574 	return ret;
4575 }
4576 
4577 /**
4578  * cpu_curr_snapshot - Return a snapshot of the currently running task
4579  * @cpu: The CPU on which to snapshot the task.
4580  *
4581  * Returns the task_struct pointer of the task "currently" running on
4582  * the specified CPU.
4583  *
4584  * If the specified CPU was offline, the return value is whatever it
4585  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4586  * task, but there is no guarantee.  Callers wishing a useful return
4587  * value must take some action to ensure that the specified CPU remains
4588  * online throughout.
4589  *
4590  * This function executes full memory barriers before and after fetching
4591  * the pointer, which permits the caller to confine this function's fetch
4592  * with respect to the caller's accesses to other shared variables.
4593  */
cpu_curr_snapshot(int cpu)4594 struct task_struct *cpu_curr_snapshot(int cpu)
4595 {
4596 	struct rq *rq = cpu_rq(cpu);
4597 	struct task_struct *t;
4598 	struct rq_flags rf;
4599 
4600 	rq_lock_irqsave(rq, &rf);
4601 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4602 	t = rcu_dereference(cpu_curr(cpu));
4603 	rq_unlock_irqrestore(rq, &rf);
4604 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4605 
4606 	return t;
4607 }
4608 
4609 /**
4610  * wake_up_process - Wake up a specific process
4611  * @p: The process to be woken up.
4612  *
4613  * Attempt to wake up the nominated process and move it to the set of runnable
4614  * processes.
4615  *
4616  * Return: 1 if the process was woken up, 0 if it was already running.
4617  *
4618  * This function executes a full memory barrier before accessing the task state.
4619  */
wake_up_process(struct task_struct * p)4620 int wake_up_process(struct task_struct *p)
4621 {
4622 	return try_to_wake_up(p, TASK_NORMAL, 0);
4623 }
4624 EXPORT_SYMBOL(wake_up_process);
4625 
wake_up_state(struct task_struct * p,unsigned int state)4626 int wake_up_state(struct task_struct *p, unsigned int state)
4627 {
4628 	return try_to_wake_up(p, state, 0);
4629 }
4630 
4631 /*
4632  * Perform scheduler related setup for a newly forked process p.
4633  * p is forked by current.
4634  *
4635  * __sched_fork() is basic setup which is also used by sched_init() to
4636  * initialize the boot CPU's idle task.
4637  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4638 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4639 {
4640 	p->on_rq			= 0;
4641 
4642 	p->se.on_rq			= 0;
4643 	p->se.exec_start		= 0;
4644 	p->se.sum_exec_runtime		= 0;
4645 	p->se.prev_sum_exec_runtime	= 0;
4646 	p->se.nr_migrations		= 0;
4647 	p->se.vruntime			= 0;
4648 	p->se.vlag			= 0;
4649 	p->se.slice			= sysctl_sched_base_slice;
4650 	INIT_LIST_HEAD(&p->se.group_node);
4651 
4652 #ifdef CONFIG_FAIR_GROUP_SCHED
4653 	p->se.cfs_rq			= NULL;
4654 #endif
4655 
4656 #ifdef CONFIG_SCHEDSTATS
4657 	/* Even if schedstat is disabled, there should not be garbage */
4658 	memset(&p->stats, 0, sizeof(p->stats));
4659 #endif
4660 
4661 	init_dl_entity(&p->dl);
4662 
4663 	INIT_LIST_HEAD(&p->rt.run_list);
4664 	p->rt.timeout		= 0;
4665 	p->rt.time_slice	= sched_rr_timeslice;
4666 	p->rt.on_rq		= 0;
4667 	p->rt.on_list		= 0;
4668 
4669 #ifdef CONFIG_PREEMPT_NOTIFIERS
4670 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4671 #endif
4672 
4673 #ifdef CONFIG_COMPACTION
4674 	p->capture_control = NULL;
4675 #endif
4676 	init_numa_balancing(clone_flags, p);
4677 #ifdef CONFIG_SMP
4678 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4679 	p->migration_pending = NULL;
4680 #endif
4681 #ifdef CONFIG_SCHED_RTG
4682 	p->rtg_depth = 0;
4683 #endif
4684 	init_sched_mm_cid(p);
4685 }
4686 
4687 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4688 
4689 #ifdef CONFIG_NUMA_BALANCING
4690 
4691 int sysctl_numa_balancing_mode;
4692 
__set_numabalancing_state(bool enabled)4693 static void __set_numabalancing_state(bool enabled)
4694 {
4695 	if (enabled)
4696 		static_branch_enable(&sched_numa_balancing);
4697 	else
4698 		static_branch_disable(&sched_numa_balancing);
4699 }
4700 
set_numabalancing_state(bool enabled)4701 void set_numabalancing_state(bool enabled)
4702 {
4703 	if (enabled)
4704 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4705 	else
4706 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4707 	__set_numabalancing_state(enabled);
4708 }
4709 
4710 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4711 static void reset_memory_tiering(void)
4712 {
4713 	struct pglist_data *pgdat;
4714 
4715 	for_each_online_pgdat(pgdat) {
4716 		pgdat->nbp_threshold = 0;
4717 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4718 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4719 	}
4720 }
4721 
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4722 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4723 			  void *buffer, size_t *lenp, loff_t *ppos)
4724 {
4725 	struct ctl_table t;
4726 	int err;
4727 	int state = sysctl_numa_balancing_mode;
4728 
4729 	if (write && !capable(CAP_SYS_ADMIN))
4730 		return -EPERM;
4731 
4732 	t = *table;
4733 	t.data = &state;
4734 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4735 	if (err < 0)
4736 		return err;
4737 	if (write) {
4738 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4739 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4740 			reset_memory_tiering();
4741 		sysctl_numa_balancing_mode = state;
4742 		__set_numabalancing_state(state);
4743 	}
4744 	return err;
4745 }
4746 #endif
4747 #endif
4748 
4749 #ifdef CONFIG_SCHEDSTATS
4750 
4751 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4752 
set_schedstats(bool enabled)4753 static void set_schedstats(bool enabled)
4754 {
4755 	if (enabled)
4756 		static_branch_enable(&sched_schedstats);
4757 	else
4758 		static_branch_disable(&sched_schedstats);
4759 }
4760 
force_schedstat_enabled(void)4761 void force_schedstat_enabled(void)
4762 {
4763 	if (!schedstat_enabled()) {
4764 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4765 		static_branch_enable(&sched_schedstats);
4766 	}
4767 }
4768 
setup_schedstats(char * str)4769 static int __init setup_schedstats(char *str)
4770 {
4771 	int ret = 0;
4772 	if (!str)
4773 		goto out;
4774 
4775 	if (!strcmp(str, "enable")) {
4776 		set_schedstats(true);
4777 		ret = 1;
4778 	} else if (!strcmp(str, "disable")) {
4779 		set_schedstats(false);
4780 		ret = 1;
4781 	}
4782 out:
4783 	if (!ret)
4784 		pr_warn("Unable to parse schedstats=\n");
4785 
4786 	return ret;
4787 }
4788 __setup("schedstats=", setup_schedstats);
4789 
4790 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4791 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4792 		size_t *lenp, loff_t *ppos)
4793 {
4794 	struct ctl_table t;
4795 	int err;
4796 	int state = static_branch_likely(&sched_schedstats);
4797 
4798 	if (write && !capable(CAP_SYS_ADMIN))
4799 		return -EPERM;
4800 
4801 	t = *table;
4802 	t.data = &state;
4803 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4804 	if (err < 0)
4805 		return err;
4806 	if (write)
4807 		set_schedstats(state);
4808 	return err;
4809 }
4810 #endif /* CONFIG_PROC_SYSCTL */
4811 #endif /* CONFIG_SCHEDSTATS */
4812 
4813 #ifdef CONFIG_SYSCTL
4814 static struct ctl_table sched_core_sysctls[] = {
4815 #ifdef CONFIG_SCHEDSTATS
4816 	{
4817 		.procname       = "sched_schedstats",
4818 		.data           = NULL,
4819 		.maxlen         = sizeof(unsigned int),
4820 		.mode           = 0644,
4821 		.proc_handler   = sysctl_schedstats,
4822 		.extra1         = SYSCTL_ZERO,
4823 		.extra2         = SYSCTL_ONE,
4824 	},
4825 #endif /* CONFIG_SCHEDSTATS */
4826 #ifdef CONFIG_UCLAMP_TASK
4827 	{
4828 		.procname       = "sched_util_clamp_min",
4829 		.data           = &sysctl_sched_uclamp_util_min,
4830 		.maxlen         = sizeof(unsigned int),
4831 		.mode           = 0644,
4832 		.proc_handler   = sysctl_sched_uclamp_handler,
4833 	},
4834 	{
4835 		.procname       = "sched_util_clamp_max",
4836 		.data           = &sysctl_sched_uclamp_util_max,
4837 		.maxlen         = sizeof(unsigned int),
4838 		.mode           = 0644,
4839 		.proc_handler   = sysctl_sched_uclamp_handler,
4840 	},
4841 	{
4842 		.procname       = "sched_util_clamp_min_rt_default",
4843 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4844 		.maxlen         = sizeof(unsigned int),
4845 		.mode           = 0644,
4846 		.proc_handler   = sysctl_sched_uclamp_handler,
4847 	},
4848 #endif /* CONFIG_UCLAMP_TASK */
4849 #ifdef CONFIG_NUMA_BALANCING
4850 	{
4851 		.procname	= "numa_balancing",
4852 		.data		= NULL, /* filled in by handler */
4853 		.maxlen		= sizeof(unsigned int),
4854 		.mode		= 0644,
4855 		.proc_handler	= sysctl_numa_balancing,
4856 		.extra1		= SYSCTL_ZERO,
4857 		.extra2		= SYSCTL_FOUR,
4858 	},
4859 #endif /* CONFIG_NUMA_BALANCING */
4860 	{}
4861 };
sched_core_sysctl_init(void)4862 static int __init sched_core_sysctl_init(void)
4863 {
4864 	register_sysctl_init("kernel", sched_core_sysctls);
4865 	return 0;
4866 }
4867 late_initcall(sched_core_sysctl_init);
4868 #endif /* CONFIG_SYSCTL */
4869 
4870 /*
4871  * fork()/clone()-time setup:
4872  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4873 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4874 {
4875 	init_new_task_load(p);
4876 
4877 #ifdef CONFIG_QOS_CTRL
4878 	init_task_qos(p);
4879 #endif
4880 
4881 	__sched_fork(clone_flags, p);
4882 	/*
4883 	 * We mark the process as NEW here. This guarantees that
4884 	 * nobody will actually run it, and a signal or other external
4885 	 * event cannot wake it up and insert it on the runqueue either.
4886 	 */
4887 	p->__state = TASK_NEW;
4888 
4889 	/*
4890 	 * Make sure we do not leak PI boosting priority to the child.
4891 	 */
4892 	p->prio = current->normal_prio;
4893 
4894 #ifdef CONFIG_SCHED_LATENCY_NICE
4895 	/* Propagate the parent's latency requirements to the child as well */
4896 	p->latency_prio = current->latency_prio;
4897 #endif
4898 
4899 	uclamp_fork(p);
4900 
4901 	/*
4902 	 * Revert to default priority/policy on fork if requested.
4903 	 */
4904 	if (unlikely(p->sched_reset_on_fork)) {
4905 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4906 			p->policy = SCHED_NORMAL;
4907 #ifdef CONFIG_SCHED_RTG
4908 			if (current->rtg_depth != 0)
4909 				p->static_prio = current->static_prio;
4910 			else
4911 				p->static_prio = NICE_TO_PRIO(0);
4912 #else
4913 			p->static_prio = NICE_TO_PRIO(0);
4914 #endif
4915 			p->rt_priority = 0;
4916 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4917 			p->static_prio = NICE_TO_PRIO(0);
4918 
4919 		p->prio = p->normal_prio = p->static_prio;
4920 		set_load_weight(p, false);
4921 
4922 #ifdef CONFIG_SCHED_LATENCY_NICE
4923 		p->latency_prio = NICE_TO_LATENCY(0);
4924 		set_latency_weight(p);
4925 #endif
4926 
4927 		/*
4928 		 * We don't need the reset flag anymore after the fork. It has
4929 		 * fulfilled its duty:
4930 		 */
4931 		p->sched_reset_on_fork = 0;
4932 	}
4933 
4934 	if (dl_prio(p->prio))
4935 		return -EAGAIN;
4936 	else if (rt_prio(p->prio))
4937 		p->sched_class = &rt_sched_class;
4938 	else
4939 		p->sched_class = &fair_sched_class;
4940 
4941 	init_entity_runnable_average(&p->se);
4942 
4943 
4944 #ifdef CONFIG_SCHED_INFO
4945 	if (likely(sched_info_on()))
4946 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4947 #endif
4948 #if defined(CONFIG_SMP)
4949 	p->on_cpu = 0;
4950 #endif
4951 	init_task_preempt_count(p);
4952 #ifdef CONFIG_SMP
4953 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4954 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4955 #endif
4956 	return 0;
4957 }
4958 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4959 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4960 {
4961 	unsigned long flags;
4962 
4963 	/*
4964 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4965 	 * required yet, but lockdep gets upset if rules are violated.
4966 	 */
4967 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4968 #ifdef CONFIG_CGROUP_SCHED
4969 	if (1) {
4970 		struct task_group *tg;
4971 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4972 				  struct task_group, css);
4973 		tg = autogroup_task_group(p, tg);
4974 		p->sched_task_group = tg;
4975 	}
4976 #endif
4977 	rseq_migrate(p);
4978 	/*
4979 	 * We're setting the CPU for the first time, we don't migrate,
4980 	 * so use __set_task_cpu().
4981 	 */
4982 	__set_task_cpu(p, smp_processor_id());
4983 	if (p->sched_class->task_fork)
4984 		p->sched_class->task_fork(p);
4985 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4986 }
4987 
sched_post_fork(struct task_struct * p)4988 void sched_post_fork(struct task_struct *p)
4989 {
4990 	uclamp_post_fork(p);
4991 }
4992 
to_ratio(u64 period,u64 runtime)4993 unsigned long to_ratio(u64 period, u64 runtime)
4994 {
4995 	if (runtime == RUNTIME_INF)
4996 		return BW_UNIT;
4997 
4998 	/*
4999 	 * Doing this here saves a lot of checks in all
5000 	 * the calling paths, and returning zero seems
5001 	 * safe for them anyway.
5002 	 */
5003 	if (period == 0)
5004 		return 0;
5005 
5006 	return div64_u64(runtime << BW_SHIFT, period);
5007 }
5008 
5009 /*
5010  * wake_up_new_task - wake up a newly created task for the first time.
5011  *
5012  * This function will do some initial scheduler statistics housekeeping
5013  * that must be done for every newly created context, then puts the task
5014  * on the runqueue and wakes it.
5015  */
wake_up_new_task(struct task_struct * p)5016 void wake_up_new_task(struct task_struct *p)
5017 {
5018 	struct rq_flags rf;
5019 	struct rq *rq;
5020 
5021 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
5022 	WRITE_ONCE(p->__state, TASK_RUNNING);
5023 #ifdef CONFIG_SMP
5024 	/*
5025 	 * Fork balancing, do it here and not earlier because:
5026 	 *  - cpus_ptr can change in the fork path
5027 	 *  - any previously selected CPU might disappear through hotplug
5028 	 *
5029 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
5030 	 * as we're not fully set-up yet.
5031 	 */
5032 	p->recent_used_cpu = task_cpu(p);
5033 	rseq_migrate(p);
5034 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
5035 #endif
5036 	rq = __task_rq_lock(p, &rf);
5037 	update_rq_clock(rq);
5038 	post_init_entity_util_avg(p);
5039 
5040 	mark_task_starting(p);
5041 
5042 	activate_task(rq, p, ENQUEUE_NOCLOCK);
5043 	trace_sched_wakeup_new(p);
5044 	wakeup_preempt(rq, p, WF_FORK);
5045 #ifdef CONFIG_SMP
5046 	if (p->sched_class->task_woken) {
5047 		/*
5048 		 * Nothing relies on rq->lock after this, so it's fine to
5049 		 * drop it.
5050 		 */
5051 		rq_unpin_lock(rq, &rf);
5052 		p->sched_class->task_woken(rq, p);
5053 		rq_repin_lock(rq, &rf);
5054 	}
5055 #endif
5056 	task_rq_unlock(rq, p, &rf);
5057 }
5058 
5059 #ifdef CONFIG_PREEMPT_NOTIFIERS
5060 
5061 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
5062 
preempt_notifier_inc(void)5063 void preempt_notifier_inc(void)
5064 {
5065 	static_branch_inc(&preempt_notifier_key);
5066 }
5067 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
5068 
preempt_notifier_dec(void)5069 void preempt_notifier_dec(void)
5070 {
5071 	static_branch_dec(&preempt_notifier_key);
5072 }
5073 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
5074 
5075 /**
5076  * preempt_notifier_register - tell me when current is being preempted & rescheduled
5077  * @notifier: notifier struct to register
5078  */
preempt_notifier_register(struct preempt_notifier * notifier)5079 void preempt_notifier_register(struct preempt_notifier *notifier)
5080 {
5081 	if (!static_branch_unlikely(&preempt_notifier_key))
5082 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
5083 
5084 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
5085 }
5086 EXPORT_SYMBOL_GPL(preempt_notifier_register);
5087 
5088 /**
5089  * preempt_notifier_unregister - no longer interested in preemption notifications
5090  * @notifier: notifier struct to unregister
5091  *
5092  * This is *not* safe to call from within a preemption notifier.
5093  */
preempt_notifier_unregister(struct preempt_notifier * notifier)5094 void preempt_notifier_unregister(struct preempt_notifier *notifier)
5095 {
5096 	hlist_del(&notifier->link);
5097 }
5098 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
5099 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)5100 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
5101 {
5102 	struct preempt_notifier *notifier;
5103 
5104 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5105 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
5106 }
5107 
fire_sched_in_preempt_notifiers(struct task_struct * curr)5108 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5109 {
5110 	if (static_branch_unlikely(&preempt_notifier_key))
5111 		__fire_sched_in_preempt_notifiers(curr);
5112 }
5113 
5114 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5115 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
5116 				   struct task_struct *next)
5117 {
5118 	struct preempt_notifier *notifier;
5119 
5120 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5121 		notifier->ops->sched_out(notifier, next);
5122 }
5123 
5124 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5125 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5126 				 struct task_struct *next)
5127 {
5128 	if (static_branch_unlikely(&preempt_notifier_key))
5129 		__fire_sched_out_preempt_notifiers(curr, next);
5130 }
5131 
5132 #else /* !CONFIG_PREEMPT_NOTIFIERS */
5133 
fire_sched_in_preempt_notifiers(struct task_struct * curr)5134 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5135 {
5136 }
5137 
5138 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5139 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5140 				 struct task_struct *next)
5141 {
5142 }
5143 
5144 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5145 
prepare_task(struct task_struct * next)5146 static inline void prepare_task(struct task_struct *next)
5147 {
5148 #ifdef CONFIG_SMP
5149 	/*
5150 	 * Claim the task as running, we do this before switching to it
5151 	 * such that any running task will have this set.
5152 	 *
5153 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5154 	 * its ordering comment.
5155 	 */
5156 	WRITE_ONCE(next->on_cpu, 1);
5157 #endif
5158 }
5159 
finish_task(struct task_struct * prev)5160 static inline void finish_task(struct task_struct *prev)
5161 {
5162 #ifdef CONFIG_SMP
5163 	/*
5164 	 * This must be the very last reference to @prev from this CPU. After
5165 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5166 	 * must ensure this doesn't happen until the switch is completely
5167 	 * finished.
5168 	 *
5169 	 * In particular, the load of prev->state in finish_task_switch() must
5170 	 * happen before this.
5171 	 *
5172 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5173 	 */
5174 	smp_store_release(&prev->on_cpu, 0);
5175 #endif
5176 }
5177 
5178 #ifdef CONFIG_SMP
5179 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5180 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5181 {
5182 	void (*func)(struct rq *rq);
5183 	struct balance_callback *next;
5184 
5185 	lockdep_assert_rq_held(rq);
5186 
5187 	while (head) {
5188 		func = (void (*)(struct rq *))head->func;
5189 		next = head->next;
5190 		head->next = NULL;
5191 		head = next;
5192 
5193 		func(rq);
5194 	}
5195 }
5196 
5197 static void balance_push(struct rq *rq);
5198 
5199 /*
5200  * balance_push_callback is a right abuse of the callback interface and plays
5201  * by significantly different rules.
5202  *
5203  * Where the normal balance_callback's purpose is to be ran in the same context
5204  * that queued it (only later, when it's safe to drop rq->lock again),
5205  * balance_push_callback is specifically targeted at __schedule().
5206  *
5207  * This abuse is tolerated because it places all the unlikely/odd cases behind
5208  * a single test, namely: rq->balance_callback == NULL.
5209  */
5210 struct balance_callback balance_push_callback = {
5211 	.next = NULL,
5212 	.func = balance_push,
5213 };
5214 
5215 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5216 __splice_balance_callbacks(struct rq *rq, bool split)
5217 {
5218 	struct balance_callback *head = rq->balance_callback;
5219 
5220 	if (likely(!head))
5221 		return NULL;
5222 
5223 	lockdep_assert_rq_held(rq);
5224 	/*
5225 	 * Must not take balance_push_callback off the list when
5226 	 * splice_balance_callbacks() and balance_callbacks() are not
5227 	 * in the same rq->lock section.
5228 	 *
5229 	 * In that case it would be possible for __schedule() to interleave
5230 	 * and observe the list empty.
5231 	 */
5232 	if (split && head == &balance_push_callback)
5233 		head = NULL;
5234 	else
5235 		rq->balance_callback = NULL;
5236 
5237 	return head;
5238 }
5239 
splice_balance_callbacks(struct rq * rq)5240 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5241 {
5242 	return __splice_balance_callbacks(rq, true);
5243 }
5244 
__balance_callbacks(struct rq * rq)5245 static void __balance_callbacks(struct rq *rq)
5246 {
5247 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5248 }
5249 
balance_callbacks(struct rq * rq,struct balance_callback * head)5250 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5251 {
5252 	unsigned long flags;
5253 
5254 	if (unlikely(head)) {
5255 		raw_spin_rq_lock_irqsave(rq, flags);
5256 		do_balance_callbacks(rq, head);
5257 		raw_spin_rq_unlock_irqrestore(rq, flags);
5258 	}
5259 }
5260 
5261 #else
5262 
__balance_callbacks(struct rq * rq)5263 static inline void __balance_callbacks(struct rq *rq)
5264 {
5265 }
5266 
splice_balance_callbacks(struct rq * rq)5267 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5268 {
5269 	return NULL;
5270 }
5271 
balance_callbacks(struct rq * rq,struct balance_callback * head)5272 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5273 {
5274 }
5275 
5276 #endif
5277 
5278 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5279 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5280 {
5281 	/*
5282 	 * Since the runqueue lock will be released by the next
5283 	 * task (which is an invalid locking op but in the case
5284 	 * of the scheduler it's an obvious special-case), so we
5285 	 * do an early lockdep release here:
5286 	 */
5287 	rq_unpin_lock(rq, rf);
5288 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5289 #ifdef CONFIG_DEBUG_SPINLOCK
5290 	/* this is a valid case when another task releases the spinlock */
5291 	rq_lockp(rq)->owner = next;
5292 #endif
5293 }
5294 
finish_lock_switch(struct rq * rq)5295 static inline void finish_lock_switch(struct rq *rq)
5296 {
5297 	/*
5298 	 * If we are tracking spinlock dependencies then we have to
5299 	 * fix up the runqueue lock - which gets 'carried over' from
5300 	 * prev into current:
5301 	 */
5302 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5303 	__balance_callbacks(rq);
5304 	raw_spin_rq_unlock_irq(rq);
5305 }
5306 
5307 /*
5308  * NOP if the arch has not defined these:
5309  */
5310 
5311 #ifndef prepare_arch_switch
5312 # define prepare_arch_switch(next)	do { } while (0)
5313 #endif
5314 
5315 #ifndef finish_arch_post_lock_switch
5316 # define finish_arch_post_lock_switch()	do { } while (0)
5317 #endif
5318 
kmap_local_sched_out(void)5319 static inline void kmap_local_sched_out(void)
5320 {
5321 #ifdef CONFIG_KMAP_LOCAL
5322 	if (unlikely(current->kmap_ctrl.idx))
5323 		__kmap_local_sched_out();
5324 #endif
5325 }
5326 
kmap_local_sched_in(void)5327 static inline void kmap_local_sched_in(void)
5328 {
5329 #ifdef CONFIG_KMAP_LOCAL
5330 	if (unlikely(current->kmap_ctrl.idx))
5331 		__kmap_local_sched_in();
5332 #endif
5333 }
5334 
5335 /**
5336  * prepare_task_switch - prepare to switch tasks
5337  * @rq: the runqueue preparing to switch
5338  * @prev: the current task that is being switched out
5339  * @next: the task we are going to switch to.
5340  *
5341  * This is called with the rq lock held and interrupts off. It must
5342  * be paired with a subsequent finish_task_switch after the context
5343  * switch.
5344  *
5345  * prepare_task_switch sets up locking and calls architecture specific
5346  * hooks.
5347  */
5348 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5349 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5350 		    struct task_struct *next)
5351 {
5352 	kcov_prepare_switch(prev);
5353 	sched_info_switch(rq, prev, next);
5354 	perf_event_task_sched_out(prev, next);
5355 	rseq_preempt(prev);
5356 	fire_sched_out_preempt_notifiers(prev, next);
5357 	kmap_local_sched_out();
5358 	prepare_task(next);
5359 	prepare_arch_switch(next);
5360 }
5361 
5362 /**
5363  * finish_task_switch - clean up after a task-switch
5364  * @prev: the thread we just switched away from.
5365  *
5366  * finish_task_switch must be called after the context switch, paired
5367  * with a prepare_task_switch call before the context switch.
5368  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5369  * and do any other architecture-specific cleanup actions.
5370  *
5371  * Note that we may have delayed dropping an mm in context_switch(). If
5372  * so, we finish that here outside of the runqueue lock. (Doing it
5373  * with the lock held can cause deadlocks; see schedule() for
5374  * details.)
5375  *
5376  * The context switch have flipped the stack from under us and restored the
5377  * local variables which were saved when this task called schedule() in the
5378  * past. prev == current is still correct but we need to recalculate this_rq
5379  * because prev may have moved to another CPU.
5380  */
finish_task_switch(struct task_struct * prev)5381 static struct rq *finish_task_switch(struct task_struct *prev)
5382 	__releases(rq->lock)
5383 {
5384 	struct rq *rq = this_rq();
5385 	struct mm_struct *mm = rq->prev_mm;
5386 	unsigned int prev_state;
5387 
5388 	/*
5389 	 * The previous task will have left us with a preempt_count of 2
5390 	 * because it left us after:
5391 	 *
5392 	 *	schedule()
5393 	 *	  preempt_disable();			// 1
5394 	 *	  __schedule()
5395 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5396 	 *
5397 	 * Also, see FORK_PREEMPT_COUNT.
5398 	 */
5399 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5400 		      "corrupted preempt_count: %s/%d/0x%x\n",
5401 		      current->comm, current->pid, preempt_count()))
5402 		preempt_count_set(FORK_PREEMPT_COUNT);
5403 
5404 	rq->prev_mm = NULL;
5405 
5406 	/*
5407 	 * A task struct has one reference for the use as "current".
5408 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5409 	 * schedule one last time. The schedule call will never return, and
5410 	 * the scheduled task must drop that reference.
5411 	 *
5412 	 * We must observe prev->state before clearing prev->on_cpu (in
5413 	 * finish_task), otherwise a concurrent wakeup can get prev
5414 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5415 	 * transition, resulting in a double drop.
5416 	 */
5417 	prev_state = READ_ONCE(prev->__state);
5418 	vtime_task_switch(prev);
5419 	perf_event_task_sched_in(prev, current);
5420 	finish_task(prev);
5421 	tick_nohz_task_switch();
5422 	finish_lock_switch(rq);
5423 	finish_arch_post_lock_switch();
5424 	kcov_finish_switch(current);
5425 	/*
5426 	 * kmap_local_sched_out() is invoked with rq::lock held and
5427 	 * interrupts disabled. There is no requirement for that, but the
5428 	 * sched out code does not have an interrupt enabled section.
5429 	 * Restoring the maps on sched in does not require interrupts being
5430 	 * disabled either.
5431 	 */
5432 	kmap_local_sched_in();
5433 
5434 	fire_sched_in_preempt_notifiers(current);
5435 	/*
5436 	 * When switching through a kernel thread, the loop in
5437 	 * membarrier_{private,global}_expedited() may have observed that
5438 	 * kernel thread and not issued an IPI. It is therefore possible to
5439 	 * schedule between user->kernel->user threads without passing though
5440 	 * switch_mm(). Membarrier requires a barrier after storing to
5441 	 * rq->curr, before returning to userspace, so provide them here:
5442 	 *
5443 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5444 	 *   provided by mmdrop_lazy_tlb(),
5445 	 * - a sync_core for SYNC_CORE.
5446 	 */
5447 	if (mm) {
5448 		membarrier_mm_sync_core_before_usermode(mm);
5449 		mmdrop_lazy_tlb_sched(mm);
5450 	}
5451 
5452 	if (unlikely(prev_state == TASK_DEAD)) {
5453 		if (prev->sched_class->task_dead)
5454 			prev->sched_class->task_dead(prev);
5455 
5456 		/* Task is done with its stack. */
5457 		put_task_stack(prev);
5458 
5459 		put_task_struct_rcu_user(prev);
5460 	}
5461 
5462 	return rq;
5463 }
5464 
5465 /**
5466  * schedule_tail - first thing a freshly forked thread must call.
5467  * @prev: the thread we just switched away from.
5468  */
schedule_tail(struct task_struct * prev)5469 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5470 	__releases(rq->lock)
5471 {
5472 	/*
5473 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5474 	 * finish_task_switch() for details.
5475 	 *
5476 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5477 	 * and the preempt_enable() will end up enabling preemption (on
5478 	 * PREEMPT_COUNT kernels).
5479 	 */
5480 
5481 	finish_task_switch(prev);
5482 	preempt_enable();
5483 
5484 	if (current->set_child_tid)
5485 		put_user(task_pid_vnr(current), current->set_child_tid);
5486 
5487 	calculate_sigpending();
5488 }
5489 
5490 /*
5491  * context_switch - switch to the new MM and the new thread's register state.
5492  */
5493 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5494 context_switch(struct rq *rq, struct task_struct *prev,
5495 	       struct task_struct *next, struct rq_flags *rf)
5496 {
5497 	prepare_task_switch(rq, prev, next);
5498 
5499 	/*
5500 	 * For paravirt, this is coupled with an exit in switch_to to
5501 	 * combine the page table reload and the switch backend into
5502 	 * one hypercall.
5503 	 */
5504 	arch_start_context_switch(prev);
5505 
5506 	/*
5507 	 * kernel -> kernel   lazy + transfer active
5508 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5509 	 *
5510 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5511 	 *   user ->   user   switch
5512 	 *
5513 	 * switch_mm_cid() needs to be updated if the barriers provided
5514 	 * by context_switch() are modified.
5515 	 */
5516 	if (!next->mm) {                                // to kernel
5517 		enter_lazy_tlb(prev->active_mm, next);
5518 
5519 		next->active_mm = prev->active_mm;
5520 		if (prev->mm)                           // from user
5521 			mmgrab_lazy_tlb(prev->active_mm);
5522 		else
5523 			prev->active_mm = NULL;
5524 	} else {                                        // to user
5525 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5526 		/*
5527 		 * sys_membarrier() requires an smp_mb() between setting
5528 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5529 		 *
5530 		 * The below provides this either through switch_mm(), or in
5531 		 * case 'prev->active_mm == next->mm' through
5532 		 * finish_task_switch()'s mmdrop().
5533 		 */
5534 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5535 		lru_gen_use_mm(next->mm);
5536 
5537 		if (!prev->mm) {                        // from kernel
5538 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5539 			rq->prev_mm = prev->active_mm;
5540 			prev->active_mm = NULL;
5541 		}
5542 	}
5543 
5544 	/* switch_mm_cid() requires the memory barriers above. */
5545 	switch_mm_cid(rq, prev, next);
5546 
5547 	prepare_lock_switch(rq, next, rf);
5548 
5549 	/* Here we just switch the register state and the stack. */
5550 	switch_to(prev, next, prev);
5551 	barrier();
5552 
5553 	return finish_task_switch(prev);
5554 }
5555 
5556 /*
5557  * nr_running and nr_context_switches:
5558  *
5559  * externally visible scheduler statistics: current number of runnable
5560  * threads, total number of context switches performed since bootup.
5561  */
nr_running(void)5562 unsigned int nr_running(void)
5563 {
5564 	unsigned int i, sum = 0;
5565 
5566 	for_each_online_cpu(i)
5567 		sum += cpu_rq(i)->nr_running;
5568 
5569 	return sum;
5570 }
5571 
5572 /*
5573  * Check if only the current task is running on the CPU.
5574  *
5575  * Caution: this function does not check that the caller has disabled
5576  * preemption, thus the result might have a time-of-check-to-time-of-use
5577  * race.  The caller is responsible to use it correctly, for example:
5578  *
5579  * - from a non-preemptible section (of course)
5580  *
5581  * - from a thread that is bound to a single CPU
5582  *
5583  * - in a loop with very short iterations (e.g. a polling loop)
5584  */
single_task_running(void)5585 bool single_task_running(void)
5586 {
5587 	return raw_rq()->nr_running == 1;
5588 }
5589 EXPORT_SYMBOL(single_task_running);
5590 
nr_context_switches_cpu(int cpu)5591 unsigned long long nr_context_switches_cpu(int cpu)
5592 {
5593 	return cpu_rq(cpu)->nr_switches;
5594 }
5595 
nr_context_switches(void)5596 unsigned long long nr_context_switches(void)
5597 {
5598 	int i;
5599 	unsigned long long sum = 0;
5600 
5601 	for_each_possible_cpu(i)
5602 		sum += cpu_rq(i)->nr_switches;
5603 
5604 	return sum;
5605 }
5606 
5607 /*
5608  * Consumers of these two interfaces, like for example the cpuidle menu
5609  * governor, are using nonsensical data. Preferring shallow idle state selection
5610  * for a CPU that has IO-wait which might not even end up running the task when
5611  * it does become runnable.
5612  */
5613 
nr_iowait_cpu(int cpu)5614 unsigned int nr_iowait_cpu(int cpu)
5615 {
5616 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5617 }
5618 
5619 /*
5620  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5621  *
5622  * The idea behind IO-wait account is to account the idle time that we could
5623  * have spend running if it were not for IO. That is, if we were to improve the
5624  * storage performance, we'd have a proportional reduction in IO-wait time.
5625  *
5626  * This all works nicely on UP, where, when a task blocks on IO, we account
5627  * idle time as IO-wait, because if the storage were faster, it could've been
5628  * running and we'd not be idle.
5629  *
5630  * This has been extended to SMP, by doing the same for each CPU. This however
5631  * is broken.
5632  *
5633  * Imagine for instance the case where two tasks block on one CPU, only the one
5634  * CPU will have IO-wait accounted, while the other has regular idle. Even
5635  * though, if the storage were faster, both could've ran at the same time,
5636  * utilising both CPUs.
5637  *
5638  * This means, that when looking globally, the current IO-wait accounting on
5639  * SMP is a lower bound, by reason of under accounting.
5640  *
5641  * Worse, since the numbers are provided per CPU, they are sometimes
5642  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5643  * associated with any one particular CPU, it can wake to another CPU than it
5644  * blocked on. This means the per CPU IO-wait number is meaningless.
5645  *
5646  * Task CPU affinities can make all that even more 'interesting'.
5647  */
5648 
nr_iowait(void)5649 unsigned int nr_iowait(void)
5650 {
5651 	unsigned int i, sum = 0;
5652 
5653 	for_each_possible_cpu(i)
5654 		sum += nr_iowait_cpu(i);
5655 
5656 	return sum;
5657 }
5658 
5659 #ifdef CONFIG_SMP
5660 
5661 /*
5662  * sched_exec - execve() is a valuable balancing opportunity, because at
5663  * this point the task has the smallest effective memory and cache footprint.
5664  */
sched_exec(void)5665 void sched_exec(void)
5666 {
5667 	struct task_struct *p = current;
5668 	struct migration_arg arg;
5669 	int dest_cpu;
5670 
5671 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5672 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5673 		if (dest_cpu == smp_processor_id())
5674 			return;
5675 
5676 		if (unlikely(!cpu_active(dest_cpu) && likely(!cpu_isolated(dest_cpu))))
5677 			return;
5678 
5679 		arg = (struct migration_arg){ p, dest_cpu };
5680 	}
5681 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5682 }
5683 
5684 #endif
5685 
5686 DEFINE_PER_CPU(struct kernel_stat, kstat);
5687 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5688 
5689 EXPORT_PER_CPU_SYMBOL(kstat);
5690 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5691 
5692 /*
5693  * The function fair_sched_class.update_curr accesses the struct curr
5694  * and its field curr->exec_start; when called from task_sched_runtime(),
5695  * we observe a high rate of cache misses in practice.
5696  * Prefetching this data results in improved performance.
5697  */
prefetch_curr_exec_start(struct task_struct * p)5698 static inline void prefetch_curr_exec_start(struct task_struct *p)
5699 {
5700 #ifdef CONFIG_FAIR_GROUP_SCHED
5701 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5702 #else
5703 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5704 #endif
5705 	prefetch(curr);
5706 	prefetch(&curr->exec_start);
5707 }
5708 
5709 /*
5710  * Return accounted runtime for the task.
5711  * In case the task is currently running, return the runtime plus current's
5712  * pending runtime that have not been accounted yet.
5713  */
task_sched_runtime(struct task_struct * p)5714 unsigned long long task_sched_runtime(struct task_struct *p)
5715 {
5716 	struct rq_flags rf;
5717 	struct rq *rq;
5718 	u64 ns;
5719 
5720 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5721 	/*
5722 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5723 	 * So we have a optimization chance when the task's delta_exec is 0.
5724 	 * Reading ->on_cpu is racy, but this is ok.
5725 	 *
5726 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5727 	 * If we race with it entering CPU, unaccounted time is 0. This is
5728 	 * indistinguishable from the read occurring a few cycles earlier.
5729 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5730 	 * been accounted, so we're correct here as well.
5731 	 */
5732 	if (!p->on_cpu || !task_on_rq_queued(p))
5733 		return p->se.sum_exec_runtime;
5734 #endif
5735 
5736 	rq = task_rq_lock(p, &rf);
5737 	/*
5738 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5739 	 * project cycles that may never be accounted to this
5740 	 * thread, breaking clock_gettime().
5741 	 */
5742 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5743 		prefetch_curr_exec_start(p);
5744 		update_rq_clock(rq);
5745 		p->sched_class->update_curr(rq);
5746 	}
5747 	ns = p->se.sum_exec_runtime;
5748 	task_rq_unlock(rq, p, &rf);
5749 
5750 	return ns;
5751 }
5752 
5753 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5754 static u64 cpu_resched_latency(struct rq *rq)
5755 {
5756 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5757 	u64 resched_latency, now = rq_clock(rq);
5758 	static bool warned_once;
5759 
5760 	if (sysctl_resched_latency_warn_once && warned_once)
5761 		return 0;
5762 
5763 	if (!need_resched() || !latency_warn_ms)
5764 		return 0;
5765 
5766 	if (system_state == SYSTEM_BOOTING)
5767 		return 0;
5768 
5769 	if (!rq->last_seen_need_resched_ns) {
5770 		rq->last_seen_need_resched_ns = now;
5771 		rq->ticks_without_resched = 0;
5772 		return 0;
5773 	}
5774 
5775 	rq->ticks_without_resched++;
5776 	resched_latency = now - rq->last_seen_need_resched_ns;
5777 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5778 		return 0;
5779 
5780 	warned_once = true;
5781 
5782 	return resched_latency;
5783 }
5784 
setup_resched_latency_warn_ms(char * str)5785 static int __init setup_resched_latency_warn_ms(char *str)
5786 {
5787 	long val;
5788 
5789 	if ((kstrtol(str, 0, &val))) {
5790 		pr_warn("Unable to set resched_latency_warn_ms\n");
5791 		return 1;
5792 	}
5793 
5794 	sysctl_resched_latency_warn_ms = val;
5795 	return 1;
5796 }
5797 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5798 #else
cpu_resched_latency(struct rq * rq)5799 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5800 #endif /* CONFIG_SCHED_DEBUG */
5801 
5802 /*
5803  * This function gets called by the timer code, with HZ frequency.
5804  * We call it with interrupts disabled.
5805  */
scheduler_tick(void)5806 void scheduler_tick(void)
5807 {
5808 	int cpu = smp_processor_id();
5809 	struct rq *rq = cpu_rq(cpu);
5810 	struct task_struct *curr;
5811 	struct rq_flags rf;
5812 	u64 wallclock;
5813 	unsigned long thermal_pressure;
5814 	u64 resched_latency;
5815 
5816 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5817 		arch_scale_freq_tick();
5818 
5819 	sched_clock_tick();
5820 
5821 	rq_lock(rq, &rf);
5822 
5823 	set_window_start(rq);
5824 	wallclock = sched_ktime_clock();
5825 	update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
5826 
5827 	curr = rq->curr;
5828 	psi_account_irqtime(rq, curr, NULL);
5829 
5830 	update_rq_clock(rq);
5831 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5832 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5833 	curr->sched_class->task_tick(rq, curr, 0);
5834 	if (sched_feat(LATENCY_WARN))
5835 		resched_latency = cpu_resched_latency(rq);
5836 	calc_global_load_tick(rq);
5837 	sched_core_tick(rq);
5838 	task_tick_mm_cid(rq, curr);
5839 
5840 	rq_unlock(rq, &rf);
5841 #ifdef CONFIG_SCHED_RTG
5842 	sched_update_rtg_tick(curr);
5843 #endif
5844 	if (sched_feat(LATENCY_WARN) && resched_latency)
5845 		resched_latency_warn(cpu, resched_latency);
5846 
5847 	perf_event_task_tick();
5848 
5849 	if (curr->flags & PF_WQ_WORKER)
5850 		wq_worker_tick(curr);
5851 
5852 #ifdef CONFIG_SMP
5853 	rq->idle_balance = idle_cpu(cpu);
5854 	trigger_load_balance(rq);
5855 
5856 #ifdef CONFIG_SCHED_EAS
5857 	if (curr->sched_class->check_for_migration)
5858 		curr->sched_class->check_for_migration(rq, curr);
5859 #endif
5860 #endif
5861 }
5862 
5863 #ifdef CONFIG_NO_HZ_FULL
5864 
5865 struct tick_work {
5866 	int			cpu;
5867 	atomic_t		state;
5868 	struct delayed_work	work;
5869 };
5870 /* Values for ->state, see diagram below. */
5871 #define TICK_SCHED_REMOTE_OFFLINE	0
5872 #define TICK_SCHED_REMOTE_OFFLINING	1
5873 #define TICK_SCHED_REMOTE_RUNNING	2
5874 
5875 /*
5876  * State diagram for ->state:
5877  *
5878  *
5879  *          TICK_SCHED_REMOTE_OFFLINE
5880  *                    |   ^
5881  *                    |   |
5882  *                    |   | sched_tick_remote()
5883  *                    |   |
5884  *                    |   |
5885  *                    +--TICK_SCHED_REMOTE_OFFLINING
5886  *                    |   ^
5887  *                    |   |
5888  * sched_tick_start() |   | sched_tick_stop()
5889  *                    |   |
5890  *                    V   |
5891  *          TICK_SCHED_REMOTE_RUNNING
5892  *
5893  *
5894  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5895  * and sched_tick_start() are happy to leave the state in RUNNING.
5896  */
5897 
5898 static struct tick_work __percpu *tick_work_cpu;
5899 
sched_tick_remote(struct work_struct * work)5900 static void sched_tick_remote(struct work_struct *work)
5901 {
5902 	struct delayed_work *dwork = to_delayed_work(work);
5903 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5904 	int cpu = twork->cpu;
5905 	struct rq *rq = cpu_rq(cpu);
5906 	int os;
5907 
5908 	/*
5909 	 * Handle the tick only if it appears the remote CPU is running in full
5910 	 * dynticks mode. The check is racy by nature, but missing a tick or
5911 	 * having one too much is no big deal because the scheduler tick updates
5912 	 * statistics and checks timeslices in a time-independent way, regardless
5913 	 * of when exactly it is running.
5914 	 */
5915 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5916 		guard(rq_lock_irq)(rq);
5917 		struct task_struct *curr = rq->curr;
5918 
5919 		if (cpu_online(cpu)) {
5920 			update_rq_clock(rq);
5921 
5922 			if (!is_idle_task(curr)) {
5923 				/*
5924 				 * Make sure the next tick runs within a
5925 				 * reasonable amount of time.
5926 				 */
5927 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5928 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5929 			}
5930 			curr->sched_class->task_tick(rq, curr, 0);
5931 
5932 			calc_load_nohz_remote(rq);
5933 		}
5934 	}
5935 
5936 	/*
5937 	 * Run the remote tick once per second (1Hz). This arbitrary
5938 	 * frequency is large enough to avoid overload but short enough
5939 	 * to keep scheduler internal stats reasonably up to date.  But
5940 	 * first update state to reflect hotplug activity if required.
5941 	 */
5942 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5943 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5944 	if (os == TICK_SCHED_REMOTE_RUNNING)
5945 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5946 }
5947 
sched_tick_start(int cpu)5948 static void sched_tick_start(int cpu)
5949 {
5950 	int os;
5951 	struct tick_work *twork;
5952 
5953 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5954 		return;
5955 
5956 	WARN_ON_ONCE(!tick_work_cpu);
5957 
5958 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5959 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5960 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5961 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5962 		twork->cpu = cpu;
5963 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5964 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5965 	}
5966 }
5967 
5968 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5969 static void sched_tick_stop(int cpu)
5970 {
5971 	struct tick_work *twork;
5972 	int os;
5973 
5974 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5975 		return;
5976 
5977 	WARN_ON_ONCE(!tick_work_cpu);
5978 
5979 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5980 	/* There cannot be competing actions, but don't rely on stop-machine. */
5981 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5982 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5983 	/* Don't cancel, as this would mess up the state machine. */
5984 }
5985 #endif /* CONFIG_HOTPLUG_CPU */
5986 
sched_tick_offload_init(void)5987 int __init sched_tick_offload_init(void)
5988 {
5989 	tick_work_cpu = alloc_percpu(struct tick_work);
5990 	BUG_ON(!tick_work_cpu);
5991 	return 0;
5992 }
5993 
5994 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5995 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5996 static inline void sched_tick_stop(int cpu) { }
5997 #endif
5998 
5999 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
6000 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
6001 /*
6002  * If the value passed in is equal to the current preempt count
6003  * then we just disabled preemption. Start timing the latency.
6004  */
preempt_latency_start(int val)6005 static inline void preempt_latency_start(int val)
6006 {
6007 	if (preempt_count() == val) {
6008 		unsigned long ip = get_lock_parent_ip();
6009 #ifdef CONFIG_DEBUG_PREEMPT
6010 		current->preempt_disable_ip = ip;
6011 #endif
6012 		trace_preempt_off(CALLER_ADDR0, ip);
6013 	}
6014 }
6015 
preempt_count_add(int val)6016 void preempt_count_add(int val)
6017 {
6018 #ifdef CONFIG_DEBUG_PREEMPT
6019 	/*
6020 	 * Underflow?
6021 	 */
6022 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
6023 		return;
6024 #endif
6025 	__preempt_count_add(val);
6026 #ifdef CONFIG_DEBUG_PREEMPT
6027 	/*
6028 	 * Spinlock count overflowing soon?
6029 	 */
6030 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
6031 				PREEMPT_MASK - 10);
6032 #endif
6033 	preempt_latency_start(val);
6034 }
6035 EXPORT_SYMBOL(preempt_count_add);
6036 NOKPROBE_SYMBOL(preempt_count_add);
6037 
6038 /*
6039  * If the value passed in equals to the current preempt count
6040  * then we just enabled preemption. Stop timing the latency.
6041  */
preempt_latency_stop(int val)6042 static inline void preempt_latency_stop(int val)
6043 {
6044 	if (preempt_count() == val)
6045 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
6046 }
6047 
preempt_count_sub(int val)6048 void preempt_count_sub(int val)
6049 {
6050 #ifdef CONFIG_DEBUG_PREEMPT
6051 	/*
6052 	 * Underflow?
6053 	 */
6054 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
6055 		return;
6056 	/*
6057 	 * Is the spinlock portion underflowing?
6058 	 */
6059 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
6060 			!(preempt_count() & PREEMPT_MASK)))
6061 		return;
6062 #endif
6063 
6064 	preempt_latency_stop(val);
6065 	__preempt_count_sub(val);
6066 }
6067 EXPORT_SYMBOL(preempt_count_sub);
6068 NOKPROBE_SYMBOL(preempt_count_sub);
6069 
6070 #else
preempt_latency_start(int val)6071 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)6072 static inline void preempt_latency_stop(int val) { }
6073 #endif
6074 
get_preempt_disable_ip(struct task_struct * p)6075 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
6076 {
6077 #ifdef CONFIG_DEBUG_PREEMPT
6078 	return p->preempt_disable_ip;
6079 #else
6080 	return 0;
6081 #endif
6082 }
6083 
6084 /*
6085  * Print scheduling while atomic bug:
6086  */
__schedule_bug(struct task_struct * prev)6087 static noinline void __schedule_bug(struct task_struct *prev)
6088 {
6089 	/* Save this before calling printk(), since that will clobber it */
6090 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
6091 
6092 	if (oops_in_progress)
6093 		return;
6094 
6095 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
6096 		prev->comm, prev->pid, preempt_count());
6097 
6098 	debug_show_held_locks(prev);
6099 	print_modules();
6100 	if (irqs_disabled())
6101 		print_irqtrace_events(prev);
6102 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6103 	    && in_atomic_preempt_off()) {
6104 		pr_err("Preemption disabled at:");
6105 		print_ip_sym(KERN_ERR, preempt_disable_ip);
6106 	}
6107 	check_panic_on_warn("scheduling while atomic");
6108 
6109 	dump_stack();
6110 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6111 }
6112 
6113 /*
6114  * Various schedule()-time debugging checks and statistics:
6115  */
schedule_debug(struct task_struct * prev,bool preempt)6116 static inline void schedule_debug(struct task_struct *prev, bool preempt)
6117 {
6118 #ifdef CONFIG_SCHED_STACK_END_CHECK
6119 	if (task_stack_end_corrupted(prev))
6120 		panic("corrupted stack end detected inside scheduler\n");
6121 
6122 	if (task_scs_end_corrupted(prev))
6123 		panic("corrupted shadow stack detected inside scheduler\n");
6124 #endif
6125 
6126 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6127 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
6128 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
6129 			prev->comm, prev->pid, prev->non_block_count);
6130 		dump_stack();
6131 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6132 	}
6133 #endif
6134 
6135 	if (unlikely(in_atomic_preempt_off())) {
6136 		__schedule_bug(prev);
6137 		preempt_count_set(PREEMPT_DISABLED);
6138 	}
6139 	rcu_sleep_check();
6140 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
6141 
6142 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
6143 
6144 	schedstat_inc(this_rq()->sched_count);
6145 }
6146 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6147 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
6148 				  struct rq_flags *rf)
6149 {
6150 #ifdef CONFIG_SMP
6151 	const struct sched_class *class;
6152 	/*
6153 	 * We must do the balancing pass before put_prev_task(), such
6154 	 * that when we release the rq->lock the task is in the same
6155 	 * state as before we took rq->lock.
6156 	 *
6157 	 * We can terminate the balance pass as soon as we know there is
6158 	 * a runnable task of @class priority or higher.
6159 	 */
6160 	for_class_range(class, prev->sched_class, &idle_sched_class) {
6161 		if (class->balance(rq, prev, rf))
6162 			break;
6163 	}
6164 #endif
6165 
6166 	put_prev_task(rq, prev);
6167 }
6168 
6169 /*
6170  * Pick up the highest-prio task:
6171  */
6172 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6173 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6174 {
6175 	const struct sched_class *class;
6176 	struct task_struct *p;
6177 
6178 	/*
6179 	 * Optimization: we know that if all tasks are in the fair class we can
6180 	 * call that function directly, but only if the @prev task wasn't of a
6181 	 * higher scheduling class, because otherwise those lose the
6182 	 * opportunity to pull in more work from other CPUs.
6183 	 */
6184 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6185 		   rq->nr_running == rq->cfs.h_nr_running)) {
6186 
6187 		p = pick_next_task_fair(rq, prev, rf);
6188 		if (unlikely(p == RETRY_TASK))
6189 			goto restart;
6190 
6191 		/* Assume the next prioritized class is idle_sched_class */
6192 		if (!p) {
6193 			put_prev_task(rq, prev);
6194 			p = pick_next_task_idle(rq);
6195 		}
6196 
6197 		return p;
6198 	}
6199 
6200 restart:
6201 	put_prev_task_balance(rq, prev, rf);
6202 
6203 	for_each_class(class) {
6204 		p = class->pick_next_task(rq);
6205 		if (p)
6206 			return p;
6207 	}
6208 
6209 	BUG(); /* The idle class should always have a runnable task. */
6210 }
6211 
6212 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6213 static inline bool is_task_rq_idle(struct task_struct *t)
6214 {
6215 	return (task_rq(t)->idle == t);
6216 }
6217 
cookie_equals(struct task_struct * a,unsigned long cookie)6218 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6219 {
6220 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6221 }
6222 
cookie_match(struct task_struct * a,struct task_struct * b)6223 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6224 {
6225 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6226 		return true;
6227 
6228 	return a->core_cookie == b->core_cookie;
6229 }
6230 
pick_task(struct rq * rq)6231 static inline struct task_struct *pick_task(struct rq *rq)
6232 {
6233 	const struct sched_class *class;
6234 	struct task_struct *p;
6235 
6236 	for_each_class(class) {
6237 		p = class->pick_task(rq);
6238 		if (p)
6239 			return p;
6240 	}
6241 
6242 	BUG(); /* The idle class should always have a runnable task. */
6243 }
6244 
6245 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6246 
6247 static void queue_core_balance(struct rq *rq);
6248 
6249 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6250 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6251 {
6252 	struct task_struct *next, *p, *max = NULL;
6253 	const struct cpumask *smt_mask;
6254 	bool fi_before = false;
6255 	bool core_clock_updated = (rq == rq->core);
6256 	unsigned long cookie;
6257 	int i, cpu, occ = 0;
6258 	struct rq *rq_i;
6259 	bool need_sync;
6260 
6261 	if (!sched_core_enabled(rq))
6262 		return __pick_next_task(rq, prev, rf);
6263 
6264 	cpu = cpu_of(rq);
6265 
6266 	/* Stopper task is switching into idle, no need core-wide selection. */
6267 	if (cpu_is_offline(cpu)) {
6268 		/*
6269 		 * Reset core_pick so that we don't enter the fastpath when
6270 		 * coming online. core_pick would already be migrated to
6271 		 * another cpu during offline.
6272 		 */
6273 		rq->core_pick = NULL;
6274 		return __pick_next_task(rq, prev, rf);
6275 	}
6276 
6277 	/*
6278 	 * If there were no {en,de}queues since we picked (IOW, the task
6279 	 * pointers are all still valid), and we haven't scheduled the last
6280 	 * pick yet, do so now.
6281 	 *
6282 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6283 	 * it was either offline or went offline during a sibling's core-wide
6284 	 * selection. In this case, do a core-wide selection.
6285 	 */
6286 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6287 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6288 	    rq->core_pick) {
6289 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6290 
6291 		next = rq->core_pick;
6292 		if (next != prev) {
6293 			put_prev_task(rq, prev);
6294 			set_next_task(rq, next);
6295 		}
6296 
6297 		rq->core_pick = NULL;
6298 		goto out;
6299 	}
6300 
6301 	put_prev_task_balance(rq, prev, rf);
6302 
6303 	smt_mask = cpu_smt_mask(cpu);
6304 	need_sync = !!rq->core->core_cookie;
6305 
6306 	/* reset state */
6307 	rq->core->core_cookie = 0UL;
6308 	if (rq->core->core_forceidle_count) {
6309 		if (!core_clock_updated) {
6310 			update_rq_clock(rq->core);
6311 			core_clock_updated = true;
6312 		}
6313 		sched_core_account_forceidle(rq);
6314 		/* reset after accounting force idle */
6315 		rq->core->core_forceidle_start = 0;
6316 		rq->core->core_forceidle_count = 0;
6317 		rq->core->core_forceidle_occupation = 0;
6318 		need_sync = true;
6319 		fi_before = true;
6320 	}
6321 
6322 	/*
6323 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6324 	 *
6325 	 * @task_seq guards the task state ({en,de}queues)
6326 	 * @pick_seq is the @task_seq we did a selection on
6327 	 * @sched_seq is the @pick_seq we scheduled
6328 	 *
6329 	 * However, preemptions can cause multiple picks on the same task set.
6330 	 * 'Fix' this by also increasing @task_seq for every pick.
6331 	 */
6332 	rq->core->core_task_seq++;
6333 
6334 	/*
6335 	 * Optimize for common case where this CPU has no cookies
6336 	 * and there are no cookied tasks running on siblings.
6337 	 */
6338 	if (!need_sync) {
6339 		next = pick_task(rq);
6340 		if (!next->core_cookie) {
6341 			rq->core_pick = NULL;
6342 			/*
6343 			 * For robustness, update the min_vruntime_fi for
6344 			 * unconstrained picks as well.
6345 			 */
6346 			WARN_ON_ONCE(fi_before);
6347 			task_vruntime_update(rq, next, false);
6348 			goto out_set_next;
6349 		}
6350 	}
6351 
6352 	/*
6353 	 * For each thread: do the regular task pick and find the max prio task
6354 	 * amongst them.
6355 	 *
6356 	 * Tie-break prio towards the current CPU
6357 	 */
6358 	for_each_cpu_wrap(i, smt_mask, cpu) {
6359 		rq_i = cpu_rq(i);
6360 
6361 		/*
6362 		 * Current cpu always has its clock updated on entrance to
6363 		 * pick_next_task(). If the current cpu is not the core,
6364 		 * the core may also have been updated above.
6365 		 */
6366 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6367 			update_rq_clock(rq_i);
6368 
6369 		p = rq_i->core_pick = pick_task(rq_i);
6370 		if (!max || prio_less(max, p, fi_before))
6371 			max = p;
6372 	}
6373 
6374 	cookie = rq->core->core_cookie = max->core_cookie;
6375 
6376 	/*
6377 	 * For each thread: try and find a runnable task that matches @max or
6378 	 * force idle.
6379 	 */
6380 	for_each_cpu(i, smt_mask) {
6381 		rq_i = cpu_rq(i);
6382 		p = rq_i->core_pick;
6383 
6384 		if (!cookie_equals(p, cookie)) {
6385 			p = NULL;
6386 			if (cookie)
6387 				p = sched_core_find(rq_i, cookie);
6388 			if (!p)
6389 				p = idle_sched_class.pick_task(rq_i);
6390 		}
6391 
6392 		rq_i->core_pick = p;
6393 
6394 		if (p == rq_i->idle) {
6395 			if (rq_i->nr_running) {
6396 				rq->core->core_forceidle_count++;
6397 				if (!fi_before)
6398 					rq->core->core_forceidle_seq++;
6399 			}
6400 		} else {
6401 			occ++;
6402 		}
6403 	}
6404 
6405 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6406 		rq->core->core_forceidle_start = rq_clock(rq->core);
6407 		rq->core->core_forceidle_occupation = occ;
6408 	}
6409 
6410 	rq->core->core_pick_seq = rq->core->core_task_seq;
6411 	next = rq->core_pick;
6412 	rq->core_sched_seq = rq->core->core_pick_seq;
6413 
6414 	/* Something should have been selected for current CPU */
6415 	WARN_ON_ONCE(!next);
6416 
6417 	/*
6418 	 * Reschedule siblings
6419 	 *
6420 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6421 	 * sending an IPI (below) ensures the sibling will no longer be running
6422 	 * their task. This ensures there is no inter-sibling overlap between
6423 	 * non-matching user state.
6424 	 */
6425 	for_each_cpu(i, smt_mask) {
6426 		rq_i = cpu_rq(i);
6427 
6428 		/*
6429 		 * An online sibling might have gone offline before a task
6430 		 * could be picked for it, or it might be offline but later
6431 		 * happen to come online, but its too late and nothing was
6432 		 * picked for it.  That's Ok - it will pick tasks for itself,
6433 		 * so ignore it.
6434 		 */
6435 		if (!rq_i->core_pick)
6436 			continue;
6437 
6438 		/*
6439 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6440 		 * fi_before     fi      update?
6441 		 *  0            0       1
6442 		 *  0            1       1
6443 		 *  1            0       1
6444 		 *  1            1       0
6445 		 */
6446 		if (!(fi_before && rq->core->core_forceidle_count))
6447 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6448 
6449 		rq_i->core_pick->core_occupation = occ;
6450 
6451 		if (i == cpu) {
6452 			rq_i->core_pick = NULL;
6453 			continue;
6454 		}
6455 
6456 		/* Did we break L1TF mitigation requirements? */
6457 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6458 
6459 		if (rq_i->curr == rq_i->core_pick) {
6460 			rq_i->core_pick = NULL;
6461 			continue;
6462 		}
6463 
6464 		resched_curr(rq_i);
6465 	}
6466 
6467 out_set_next:
6468 	set_next_task(rq, next);
6469 out:
6470 	if (rq->core->core_forceidle_count && next == rq->idle)
6471 		queue_core_balance(rq);
6472 
6473 	return next;
6474 }
6475 
try_steal_cookie(int this,int that)6476 static bool try_steal_cookie(int this, int that)
6477 {
6478 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6479 	struct task_struct *p;
6480 	unsigned long cookie;
6481 	bool success = false;
6482 
6483 	guard(irq)();
6484 	guard(double_rq_lock)(dst, src);
6485 
6486 	cookie = dst->core->core_cookie;
6487 	if (!cookie)
6488 		return false;
6489 
6490 	if (dst->curr != dst->idle)
6491 		return false;
6492 
6493 	p = sched_core_find(src, cookie);
6494 	if (!p)
6495 		return false;
6496 
6497 	do {
6498 		if (p == src->core_pick || p == src->curr)
6499 			goto next;
6500 
6501 		if (!is_cpu_allowed(p, this))
6502 			goto next;
6503 
6504 		if (p->core_occupation > dst->idle->core_occupation)
6505 			goto next;
6506 		/*
6507 		 * sched_core_find() and sched_core_next() will ensure
6508 		 * that task @p is not throttled now, we also need to
6509 		 * check whether the runqueue of the destination CPU is
6510 		 * being throttled.
6511 		 */
6512 		if (sched_task_is_throttled(p, this))
6513 			goto next;
6514 
6515 		deactivate_task(src, p, 0);
6516 		set_task_cpu(p, this);
6517 		activate_task(dst, p, 0);
6518 
6519 		resched_curr(dst);
6520 
6521 		success = true;
6522 		break;
6523 
6524 next:
6525 		p = sched_core_next(p, cookie);
6526 	} while (p);
6527 
6528 	return success;
6529 }
6530 
steal_cookie_task(int cpu,struct sched_domain * sd)6531 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6532 {
6533 	int i;
6534 
6535 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6536 		if (i == cpu)
6537 			continue;
6538 
6539 		if (need_resched())
6540 			break;
6541 
6542 		if (try_steal_cookie(cpu, i))
6543 			return true;
6544 	}
6545 
6546 	return false;
6547 }
6548 
sched_core_balance(struct rq * rq)6549 static void sched_core_balance(struct rq *rq)
6550 {
6551 	struct sched_domain *sd;
6552 	int cpu = cpu_of(rq);
6553 
6554 	preempt_disable();
6555 	rcu_read_lock();
6556 	raw_spin_rq_unlock_irq(rq);
6557 	for_each_domain(cpu, sd) {
6558 		if (need_resched())
6559 			break;
6560 
6561 		if (steal_cookie_task(cpu, sd))
6562 			break;
6563 	}
6564 	raw_spin_rq_lock_irq(rq);
6565 	rcu_read_unlock();
6566 	preempt_enable();
6567 }
6568 
6569 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6570 
queue_core_balance(struct rq * rq)6571 static void queue_core_balance(struct rq *rq)
6572 {
6573 	if (!sched_core_enabled(rq))
6574 		return;
6575 
6576 	if (!rq->core->core_cookie)
6577 		return;
6578 
6579 	if (!rq->nr_running) /* not forced idle */
6580 		return;
6581 
6582 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6583 }
6584 
6585 DEFINE_LOCK_GUARD_1(core_lock, int,
6586 		    sched_core_lock(*_T->lock, &_T->flags),
6587 		    sched_core_unlock(*_T->lock, &_T->flags),
6588 		    unsigned long flags)
6589 
sched_core_cpu_starting(unsigned int cpu)6590 static void sched_core_cpu_starting(unsigned int cpu)
6591 {
6592 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6593 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6594 	int t;
6595 
6596 	guard(core_lock)(&cpu);
6597 
6598 	WARN_ON_ONCE(rq->core != rq);
6599 
6600 	/* if we're the first, we'll be our own leader */
6601 	if (cpumask_weight(smt_mask) == 1)
6602 		return;
6603 
6604 	/* find the leader */
6605 	for_each_cpu(t, smt_mask) {
6606 		if (t == cpu)
6607 			continue;
6608 		rq = cpu_rq(t);
6609 		if (rq->core == rq) {
6610 			core_rq = rq;
6611 			break;
6612 		}
6613 	}
6614 
6615 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6616 		return;
6617 
6618 	/* install and validate core_rq */
6619 	for_each_cpu(t, smt_mask) {
6620 		rq = cpu_rq(t);
6621 
6622 		if (t == cpu)
6623 			rq->core = core_rq;
6624 
6625 		WARN_ON_ONCE(rq->core != core_rq);
6626 	}
6627 }
6628 
sched_core_cpu_deactivate(unsigned int cpu)6629 static void sched_core_cpu_deactivate(unsigned int cpu)
6630 {
6631 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6632 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6633 	int t;
6634 
6635 	guard(core_lock)(&cpu);
6636 
6637 	/* if we're the last man standing, nothing to do */
6638 	if (cpumask_weight(smt_mask) == 1) {
6639 		WARN_ON_ONCE(rq->core != rq);
6640 		return;
6641 	}
6642 
6643 	/* if we're not the leader, nothing to do */
6644 	if (rq->core != rq)
6645 		return;
6646 
6647 	/* find a new leader */
6648 	for_each_cpu(t, smt_mask) {
6649 		if (t == cpu)
6650 			continue;
6651 		core_rq = cpu_rq(t);
6652 		break;
6653 	}
6654 
6655 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6656 		return;
6657 
6658 	/* copy the shared state to the new leader */
6659 	core_rq->core_task_seq             = rq->core_task_seq;
6660 	core_rq->core_pick_seq             = rq->core_pick_seq;
6661 	core_rq->core_cookie               = rq->core_cookie;
6662 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6663 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6664 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6665 
6666 	/*
6667 	 * Accounting edge for forced idle is handled in pick_next_task().
6668 	 * Don't need another one here, since the hotplug thread shouldn't
6669 	 * have a cookie.
6670 	 */
6671 	core_rq->core_forceidle_start = 0;
6672 
6673 	/* install new leader */
6674 	for_each_cpu(t, smt_mask) {
6675 		rq = cpu_rq(t);
6676 		rq->core = core_rq;
6677 	}
6678 }
6679 
sched_core_cpu_dying(unsigned int cpu)6680 static inline void sched_core_cpu_dying(unsigned int cpu)
6681 {
6682 	struct rq *rq = cpu_rq(cpu);
6683 
6684 	if (rq->core != rq)
6685 		rq->core = rq;
6686 }
6687 
6688 #else /* !CONFIG_SCHED_CORE */
6689 
sched_core_cpu_starting(unsigned int cpu)6690 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6691 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6692 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6693 
6694 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6695 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6696 {
6697 	return __pick_next_task(rq, prev, rf);
6698 }
6699 
6700 #endif /* CONFIG_SCHED_CORE */
6701 
6702 /*
6703  * Constants for the sched_mode argument of __schedule().
6704  *
6705  * The mode argument allows RT enabled kernels to differentiate a
6706  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6707  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6708  * optimize the AND operation out and just check for zero.
6709  */
6710 #define SM_NONE			0x0
6711 #define SM_PREEMPT		0x1
6712 #define SM_RTLOCK_WAIT		0x2
6713 
6714 #ifndef CONFIG_PREEMPT_RT
6715 # define SM_MASK_PREEMPT	(~0U)
6716 #else
6717 # define SM_MASK_PREEMPT	SM_PREEMPT
6718 #endif
6719 
6720 /*
6721  * __schedule() is the main scheduler function.
6722  *
6723  * The main means of driving the scheduler and thus entering this function are:
6724  *
6725  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6726  *
6727  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6728  *      paths. For example, see arch/x86/entry_64.S.
6729  *
6730  *      To drive preemption between tasks, the scheduler sets the flag in timer
6731  *      interrupt handler scheduler_tick().
6732  *
6733  *   3. Wakeups don't really cause entry into schedule(). They add a
6734  *      task to the run-queue and that's it.
6735  *
6736  *      Now, if the new task added to the run-queue preempts the current
6737  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6738  *      called on the nearest possible occasion:
6739  *
6740  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6741  *
6742  *         - in syscall or exception context, at the next outmost
6743  *           preempt_enable(). (this might be as soon as the wake_up()'s
6744  *           spin_unlock()!)
6745  *
6746  *         - in IRQ context, return from interrupt-handler to
6747  *           preemptible context
6748  *
6749  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6750  *         then at the next:
6751  *
6752  *          - cond_resched() call
6753  *          - explicit schedule() call
6754  *          - return from syscall or exception to user-space
6755  *          - return from interrupt-handler to user-space
6756  *
6757  * WARNING: must be called with preemption disabled!
6758  */
__schedule(unsigned int sched_mode)6759 static void __sched notrace __schedule(unsigned int sched_mode)
6760 {
6761 	struct task_struct *prev, *next;
6762 	unsigned long *switch_count;
6763 	unsigned long prev_state;
6764 	struct rq_flags rf;
6765 	struct rq *rq;
6766 	int cpu;
6767 	u64 wallclock;
6768 
6769 	cpu = smp_processor_id();
6770 	rq = cpu_rq(cpu);
6771 	prev = rq->curr;
6772 
6773 	schedule_debug(prev, !!sched_mode);
6774 
6775 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6776 		hrtick_clear(rq);
6777 
6778 	local_irq_disable();
6779 	rcu_note_context_switch(!!sched_mode);
6780 
6781 	/*
6782 	 * Make sure that signal_pending_state()->signal_pending() below
6783 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6784 	 * done by the caller to avoid the race with signal_wake_up():
6785 	 *
6786 	 * __set_current_state(@state)		signal_wake_up()
6787 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6788 	 *					  wake_up_state(p, state)
6789 	 *   LOCK rq->lock			    LOCK p->pi_state
6790 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6791 	 *     if (signal_pending_state())	    if (p->state & @state)
6792 	 *
6793 	 * Also, the membarrier system call requires a full memory barrier
6794 	 * after coming from user-space, before storing to rq->curr.
6795 	 */
6796 	rq_lock(rq, &rf);
6797 	smp_mb__after_spinlock();
6798 
6799 	/* Promote REQ to ACT */
6800 	rq->clock_update_flags <<= 1;
6801 	update_rq_clock(rq);
6802 	rq->clock_update_flags = RQCF_UPDATED;
6803 
6804 	switch_count = &prev->nivcsw;
6805 
6806 	/*
6807 	 * We must load prev->state once (task_struct::state is volatile), such
6808 	 * that we form a control dependency vs deactivate_task() below.
6809 	 */
6810 	prev_state = READ_ONCE(prev->__state);
6811 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6812 		if (signal_pending_state(prev_state, prev)) {
6813 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6814 		} else {
6815 			prev->sched_contributes_to_load =
6816 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6817 				!(prev_state & TASK_NOLOAD) &&
6818 				!(prev_state & TASK_FROZEN);
6819 
6820 			if (prev->sched_contributes_to_load)
6821 				rq->nr_uninterruptible++;
6822 
6823 			/*
6824 			 * __schedule()			ttwu()
6825 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6826 			 *   if (prev_state)		    goto out;
6827 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6828 			 *				  p->state = TASK_WAKING
6829 			 *
6830 			 * Where __schedule() and ttwu() have matching control dependencies.
6831 			 *
6832 			 * After this, schedule() must not care about p->state any more.
6833 			 */
6834 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6835 
6836 			if (prev->in_iowait) {
6837 				atomic_inc(&rq->nr_iowait);
6838 				delayacct_blkio_start();
6839 			}
6840 		}
6841 		switch_count = &prev->nvcsw;
6842 	}
6843 
6844 	next = pick_next_task(rq, prev, &rf);
6845 	clear_tsk_need_resched(prev);
6846 	clear_preempt_need_resched();
6847 	wallclock = sched_ktime_clock();
6848 #ifdef CONFIG_SCHED_DEBUG
6849 	rq->last_seen_need_resched_ns = 0;
6850 #endif
6851 
6852 	if (likely(prev != next)) {
6853 #ifdef CONFIG_SCHED_WALT
6854 		if (!prev->on_rq)
6855 			prev->last_sleep_ts = wallclock;
6856 #endif
6857 		update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
6858 		update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
6859 		rq->nr_switches++;
6860 		/*
6861 		 * RCU users of rcu_dereference(rq->curr) may not see
6862 		 * changes to task_struct made by pick_next_task().
6863 		 */
6864 		RCU_INIT_POINTER(rq->curr, next);
6865 		/*
6866 		 * The membarrier system call requires each architecture
6867 		 * to have a full memory barrier after updating
6868 		 * rq->curr, before returning to user-space.
6869 		 *
6870 		 * Here are the schemes providing that barrier on the
6871 		 * various architectures:
6872 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6873 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6874 		 *   on PowerPC and on RISC-V.
6875 		 * - finish_lock_switch() for weakly-ordered
6876 		 *   architectures where spin_unlock is a full barrier,
6877 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6878 		 *   is a RELEASE barrier),
6879 		 */
6880 		++*switch_count;
6881 
6882 		migrate_disable_switch(rq, prev);
6883 		psi_account_irqtime(rq, prev, next);
6884 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6885 
6886 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6887 
6888 		/* Also unlocks the rq: */
6889 		rq = context_switch(rq, prev, next, &rf);
6890 	} else {
6891 		update_task_ravg(prev, rq, TASK_UPDATE, wallclock, 0);
6892 		rq_unpin_lock(rq, &rf);
6893 		__balance_callbacks(rq);
6894 		raw_spin_rq_unlock_irq(rq);
6895 	}
6896 }
6897 
do_task_dead(void)6898 void __noreturn do_task_dead(void)
6899 {
6900 	/* Causes final put_task_struct in finish_task_switch(): */
6901 	set_special_state(TASK_DEAD);
6902 
6903 	/* Tell freezer to ignore us: */
6904 	current->flags |= PF_NOFREEZE;
6905 
6906 	__schedule(SM_NONE);
6907 	BUG();
6908 
6909 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6910 	for (;;)
6911 		cpu_relax();
6912 }
6913 
sched_submit_work(struct task_struct * tsk)6914 static inline void sched_submit_work(struct task_struct *tsk)
6915 {
6916 	unsigned int task_flags;
6917 
6918 	if (task_is_running(tsk))
6919 		return;
6920 
6921 	task_flags = tsk->flags;
6922 	/*
6923 	 * If a worker goes to sleep, notify and ask workqueue whether it
6924 	 * wants to wake up a task to maintain concurrency.
6925 	 */
6926 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6927 		if (task_flags & PF_WQ_WORKER)
6928 			wq_worker_sleeping(tsk);
6929 		else
6930 			io_wq_worker_sleeping(tsk);
6931 	}
6932 
6933 	/*
6934 	 * spinlock and rwlock must not flush block requests.  This will
6935 	 * deadlock if the callback attempts to acquire a lock which is
6936 	 * already acquired.
6937 	 */
6938 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6939 
6940 	/*
6941 	 * If we are going to sleep and we have plugged IO queued,
6942 	 * make sure to submit it to avoid deadlocks.
6943 	 */
6944 	blk_flush_plug(tsk->plug, true);
6945 }
6946 
sched_update_worker(struct task_struct * tsk)6947 static void sched_update_worker(struct task_struct *tsk)
6948 {
6949 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6950 		if (tsk->flags & PF_WQ_WORKER)
6951 			wq_worker_running(tsk);
6952 		else
6953 			io_wq_worker_running(tsk);
6954 	}
6955 }
6956 
schedule(void)6957 asmlinkage __visible void __sched schedule(void)
6958 {
6959 	struct task_struct *tsk = current;
6960 
6961 	sched_submit_work(tsk);
6962 	do {
6963 		preempt_disable();
6964 		__schedule(SM_NONE);
6965 		sched_preempt_enable_no_resched();
6966 	} while (need_resched());
6967 	sched_update_worker(tsk);
6968 }
6969 EXPORT_SYMBOL(schedule);
6970 
6971 /*
6972  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6973  * state (have scheduled out non-voluntarily) by making sure that all
6974  * tasks have either left the run queue or have gone into user space.
6975  * As idle tasks do not do either, they must not ever be preempted
6976  * (schedule out non-voluntarily).
6977  *
6978  * schedule_idle() is similar to schedule_preempt_disable() except that it
6979  * never enables preemption because it does not call sched_submit_work().
6980  */
schedule_idle(void)6981 void __sched schedule_idle(void)
6982 {
6983 	/*
6984 	 * As this skips calling sched_submit_work(), which the idle task does
6985 	 * regardless because that function is a nop when the task is in a
6986 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6987 	 * current task can be in any other state. Note, idle is always in the
6988 	 * TASK_RUNNING state.
6989 	 */
6990 	WARN_ON_ONCE(current->__state);
6991 	do {
6992 		__schedule(SM_NONE);
6993 	} while (need_resched());
6994 }
6995 
6996 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6997 asmlinkage __visible void __sched schedule_user(void)
6998 {
6999 	/*
7000 	 * If we come here after a random call to set_need_resched(),
7001 	 * or we have been woken up remotely but the IPI has not yet arrived,
7002 	 * we haven't yet exited the RCU idle mode. Do it here manually until
7003 	 * we find a better solution.
7004 	 *
7005 	 * NB: There are buggy callers of this function.  Ideally we
7006 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
7007 	 * too frequently to make sense yet.
7008 	 */
7009 	enum ctx_state prev_state = exception_enter();
7010 	schedule();
7011 	exception_exit(prev_state);
7012 }
7013 #endif
7014 
7015 /**
7016  * schedule_preempt_disabled - called with preemption disabled
7017  *
7018  * Returns with preemption disabled. Note: preempt_count must be 1
7019  */
schedule_preempt_disabled(void)7020 void __sched schedule_preempt_disabled(void)
7021 {
7022 	sched_preempt_enable_no_resched();
7023 	schedule();
7024 	preempt_disable();
7025 }
7026 
7027 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)7028 void __sched notrace schedule_rtlock(void)
7029 {
7030 	do {
7031 		preempt_disable();
7032 		__schedule(SM_RTLOCK_WAIT);
7033 		sched_preempt_enable_no_resched();
7034 	} while (need_resched());
7035 }
7036 NOKPROBE_SYMBOL(schedule_rtlock);
7037 #endif
7038 
preempt_schedule_common(void)7039 static void __sched notrace preempt_schedule_common(void)
7040 {
7041 	do {
7042 		/*
7043 		 * Because the function tracer can trace preempt_count_sub()
7044 		 * and it also uses preempt_enable/disable_notrace(), if
7045 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7046 		 * by the function tracer will call this function again and
7047 		 * cause infinite recursion.
7048 		 *
7049 		 * Preemption must be disabled here before the function
7050 		 * tracer can trace. Break up preempt_disable() into two
7051 		 * calls. One to disable preemption without fear of being
7052 		 * traced. The other to still record the preemption latency,
7053 		 * which can also be traced by the function tracer.
7054 		 */
7055 		preempt_disable_notrace();
7056 		preempt_latency_start(1);
7057 		__schedule(SM_PREEMPT);
7058 		preempt_latency_stop(1);
7059 		preempt_enable_no_resched_notrace();
7060 
7061 		/*
7062 		 * Check again in case we missed a preemption opportunity
7063 		 * between schedule and now.
7064 		 */
7065 	} while (need_resched());
7066 }
7067 
7068 #ifdef CONFIG_PREEMPTION
7069 /*
7070  * This is the entry point to schedule() from in-kernel preemption
7071  * off of preempt_enable.
7072  */
preempt_schedule(void)7073 asmlinkage __visible void __sched notrace preempt_schedule(void)
7074 {
7075 	/*
7076 	 * If there is a non-zero preempt_count or interrupts are disabled,
7077 	 * we do not want to preempt the current task. Just return..
7078 	 */
7079 	if (likely(!preemptible()))
7080 		return;
7081 	preempt_schedule_common();
7082 }
7083 NOKPROBE_SYMBOL(preempt_schedule);
7084 EXPORT_SYMBOL(preempt_schedule);
7085 
7086 #ifdef CONFIG_PREEMPT_DYNAMIC
7087 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7088 #ifndef preempt_schedule_dynamic_enabled
7089 #define preempt_schedule_dynamic_enabled	preempt_schedule
7090 #define preempt_schedule_dynamic_disabled	NULL
7091 #endif
7092 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7093 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7094 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7095 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)7096 void __sched notrace dynamic_preempt_schedule(void)
7097 {
7098 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7099 		return;
7100 	preempt_schedule();
7101 }
7102 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7103 EXPORT_SYMBOL(dynamic_preempt_schedule);
7104 #endif
7105 #endif
7106 
7107 /**
7108  * preempt_schedule_notrace - preempt_schedule called by tracing
7109  *
7110  * The tracing infrastructure uses preempt_enable_notrace to prevent
7111  * recursion and tracing preempt enabling caused by the tracing
7112  * infrastructure itself. But as tracing can happen in areas coming
7113  * from userspace or just about to enter userspace, a preempt enable
7114  * can occur before user_exit() is called. This will cause the scheduler
7115  * to be called when the system is still in usermode.
7116  *
7117  * To prevent this, the preempt_enable_notrace will use this function
7118  * instead of preempt_schedule() to exit user context if needed before
7119  * calling the scheduler.
7120  */
preempt_schedule_notrace(void)7121 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7122 {
7123 	enum ctx_state prev_ctx;
7124 
7125 	if (likely(!preemptible()))
7126 		return;
7127 
7128 	do {
7129 		/*
7130 		 * Because the function tracer can trace preempt_count_sub()
7131 		 * and it also uses preempt_enable/disable_notrace(), if
7132 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7133 		 * by the function tracer will call this function again and
7134 		 * cause infinite recursion.
7135 		 *
7136 		 * Preemption must be disabled here before the function
7137 		 * tracer can trace. Break up preempt_disable() into two
7138 		 * calls. One to disable preemption without fear of being
7139 		 * traced. The other to still record the preemption latency,
7140 		 * which can also be traced by the function tracer.
7141 		 */
7142 		preempt_disable_notrace();
7143 		preempt_latency_start(1);
7144 		/*
7145 		 * Needs preempt disabled in case user_exit() is traced
7146 		 * and the tracer calls preempt_enable_notrace() causing
7147 		 * an infinite recursion.
7148 		 */
7149 		prev_ctx = exception_enter();
7150 		__schedule(SM_PREEMPT);
7151 		exception_exit(prev_ctx);
7152 
7153 		preempt_latency_stop(1);
7154 		preempt_enable_no_resched_notrace();
7155 	} while (need_resched());
7156 }
7157 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7158 
7159 #ifdef CONFIG_PREEMPT_DYNAMIC
7160 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7161 #ifndef preempt_schedule_notrace_dynamic_enabled
7162 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7163 #define preempt_schedule_notrace_dynamic_disabled	NULL
7164 #endif
7165 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7166 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7167 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7168 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7169 void __sched notrace dynamic_preempt_schedule_notrace(void)
7170 {
7171 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7172 		return;
7173 	preempt_schedule_notrace();
7174 }
7175 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7176 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7177 #endif
7178 #endif
7179 
7180 #endif /* CONFIG_PREEMPTION */
7181 
7182 /*
7183  * This is the entry point to schedule() from kernel preemption
7184  * off of irq context.
7185  * Note, that this is called and return with irqs disabled. This will
7186  * protect us against recursive calling from irq.
7187  */
preempt_schedule_irq(void)7188 asmlinkage __visible void __sched preempt_schedule_irq(void)
7189 {
7190 	enum ctx_state prev_state;
7191 
7192 	/* Catch callers which need to be fixed */
7193 	BUG_ON(preempt_count() || !irqs_disabled());
7194 
7195 	prev_state = exception_enter();
7196 
7197 	do {
7198 		preempt_disable();
7199 		local_irq_enable();
7200 		__schedule(SM_PREEMPT);
7201 		local_irq_disable();
7202 		sched_preempt_enable_no_resched();
7203 	} while (need_resched());
7204 
7205 	exception_exit(prev_state);
7206 }
7207 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7208 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7209 			  void *key)
7210 {
7211 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7212 	return try_to_wake_up(curr->private, mode, wake_flags);
7213 }
7214 EXPORT_SYMBOL(default_wake_function);
7215 
__setscheduler_prio(struct task_struct * p,int prio)7216 static void __setscheduler_prio(struct task_struct *p, int prio)
7217 {
7218 	if (dl_prio(prio))
7219 		p->sched_class = &dl_sched_class;
7220 	else if (rt_prio(prio))
7221 		p->sched_class = &rt_sched_class;
7222 	else
7223 		p->sched_class = &fair_sched_class;
7224 
7225 	p->prio = prio;
7226 }
7227 
7228 #ifdef CONFIG_RT_MUTEXES
7229 
__rt_effective_prio(struct task_struct * pi_task,int prio)7230 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7231 {
7232 	if (pi_task)
7233 		prio = min(prio, pi_task->prio);
7234 
7235 	return prio;
7236 }
7237 
rt_effective_prio(struct task_struct * p,int prio)7238 static inline int rt_effective_prio(struct task_struct *p, int prio)
7239 {
7240 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7241 
7242 	return __rt_effective_prio(pi_task, prio);
7243 }
7244 
7245 /*
7246  * rt_mutex_setprio - set the current priority of a task
7247  * @p: task to boost
7248  * @pi_task: donor task
7249  *
7250  * This function changes the 'effective' priority of a task. It does
7251  * not touch ->normal_prio like __setscheduler().
7252  *
7253  * Used by the rt_mutex code to implement priority inheritance
7254  * logic. Call site only calls if the priority of the task changed.
7255  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7256 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7257 {
7258 	int prio, oldprio, queued, running, queue_flag =
7259 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7260 	const struct sched_class *prev_class;
7261 	struct rq_flags rf;
7262 	struct rq *rq;
7263 
7264 	/* XXX used to be waiter->prio, not waiter->task->prio */
7265 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7266 
7267 	/*
7268 	 * If nothing changed; bail early.
7269 	 */
7270 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7271 		return;
7272 
7273 	rq = __task_rq_lock(p, &rf);
7274 	update_rq_clock(rq);
7275 	/*
7276 	 * Set under pi_lock && rq->lock, such that the value can be used under
7277 	 * either lock.
7278 	 *
7279 	 * Note that there is loads of tricky to make this pointer cache work
7280 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7281 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7282 	 * task is allowed to run again (and can exit). This ensures the pointer
7283 	 * points to a blocked task -- which guarantees the task is present.
7284 	 */
7285 	p->pi_top_task = pi_task;
7286 
7287 	/*
7288 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7289 	 */
7290 	if (prio == p->prio && !dl_prio(prio))
7291 		goto out_unlock;
7292 
7293 	/*
7294 	 * Idle task boosting is a nono in general. There is one
7295 	 * exception, when PREEMPT_RT and NOHZ is active:
7296 	 *
7297 	 * The idle task calls get_next_timer_interrupt() and holds
7298 	 * the timer wheel base->lock on the CPU and another CPU wants
7299 	 * to access the timer (probably to cancel it). We can safely
7300 	 * ignore the boosting request, as the idle CPU runs this code
7301 	 * with interrupts disabled and will complete the lock
7302 	 * protected section without being interrupted. So there is no
7303 	 * real need to boost.
7304 	 */
7305 	if (unlikely(p == rq->idle)) {
7306 		WARN_ON(p != rq->curr);
7307 		WARN_ON(p->pi_blocked_on);
7308 		goto out_unlock;
7309 	}
7310 
7311 	trace_sched_pi_setprio(p, pi_task);
7312 	oldprio = p->prio;
7313 
7314 	if (oldprio == prio)
7315 		queue_flag &= ~DEQUEUE_MOVE;
7316 
7317 	prev_class = p->sched_class;
7318 	queued = task_on_rq_queued(p);
7319 	running = task_current(rq, p);
7320 	if (queued)
7321 		dequeue_task(rq, p, queue_flag);
7322 	if (running)
7323 		put_prev_task(rq, p);
7324 
7325 	/*
7326 	 * Boosting condition are:
7327 	 * 1. -rt task is running and holds mutex A
7328 	 *      --> -dl task blocks on mutex A
7329 	 *
7330 	 * 2. -dl task is running and holds mutex A
7331 	 *      --> -dl task blocks on mutex A and could preempt the
7332 	 *          running task
7333 	 */
7334 	if (dl_prio(prio)) {
7335 		if (!dl_prio(p->normal_prio) ||
7336 		    (pi_task && dl_prio(pi_task->prio) &&
7337 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7338 			p->dl.pi_se = pi_task->dl.pi_se;
7339 			queue_flag |= ENQUEUE_REPLENISH;
7340 		} else {
7341 			p->dl.pi_se = &p->dl;
7342 		}
7343 	} else if (rt_prio(prio)) {
7344 		if (dl_prio(oldprio))
7345 			p->dl.pi_se = &p->dl;
7346 		if (oldprio < prio)
7347 			queue_flag |= ENQUEUE_HEAD;
7348 	} else {
7349 		if (dl_prio(oldprio))
7350 			p->dl.pi_se = &p->dl;
7351 		if (rt_prio(oldprio))
7352 			p->rt.timeout = 0;
7353 	}
7354 
7355 	__setscheduler_prio(p, prio);
7356 
7357 	if (queued)
7358 		enqueue_task(rq, p, queue_flag);
7359 	if (running)
7360 		set_next_task(rq, p);
7361 
7362 	check_class_changed(rq, p, prev_class, oldprio);
7363 out_unlock:
7364 	/* Avoid rq from going away on us: */
7365 	preempt_disable();
7366 
7367 	rq_unpin_lock(rq, &rf);
7368 	__balance_callbacks(rq);
7369 	raw_spin_rq_unlock(rq);
7370 
7371 	preempt_enable();
7372 }
7373 #else
rt_effective_prio(struct task_struct * p,int prio)7374 static inline int rt_effective_prio(struct task_struct *p, int prio)
7375 {
7376 	return prio;
7377 }
7378 #endif
7379 
set_user_nice(struct task_struct * p,long nice)7380 void set_user_nice(struct task_struct *p, long nice)
7381 {
7382 	bool queued, running;
7383 	int old_prio;
7384 	struct rq_flags rf;
7385 	struct rq *rq;
7386 
7387 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7388 		return;
7389 	/*
7390 	 * We have to be careful, if called from sys_setpriority(),
7391 	 * the task might be in the middle of scheduling on another CPU.
7392 	 */
7393 	rq = task_rq_lock(p, &rf);
7394 	update_rq_clock(rq);
7395 
7396 	/*
7397 	 * The RT priorities are set via sched_setscheduler(), but we still
7398 	 * allow the 'normal' nice value to be set - but as expected
7399 	 * it won't have any effect on scheduling until the task is
7400 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7401 	 */
7402 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7403 		p->static_prio = NICE_TO_PRIO(nice);
7404 		goto out_unlock;
7405 	}
7406 	queued = task_on_rq_queued(p);
7407 	running = task_current(rq, p);
7408 	if (queued)
7409 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7410 	if (running)
7411 		put_prev_task(rq, p);
7412 
7413 	p->static_prio = NICE_TO_PRIO(nice);
7414 	set_load_weight(p, true);
7415 	old_prio = p->prio;
7416 	p->prio = effective_prio(p);
7417 
7418 	if (queued)
7419 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7420 	if (running)
7421 		set_next_task(rq, p);
7422 
7423 	/*
7424 	 * If the task increased its priority or is running and
7425 	 * lowered its priority, then reschedule its CPU:
7426 	 */
7427 	p->sched_class->prio_changed(rq, p, old_prio);
7428 
7429 out_unlock:
7430 	task_rq_unlock(rq, p, &rf);
7431 }
7432 EXPORT_SYMBOL(set_user_nice);
7433 
7434 /*
7435  * is_nice_reduction - check if nice value is an actual reduction
7436  *
7437  * Similar to can_nice() but does not perform a capability check.
7438  *
7439  * @p: task
7440  * @nice: nice value
7441  */
is_nice_reduction(const struct task_struct * p,const int nice)7442 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7443 {
7444 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7445 	int nice_rlim = nice_to_rlimit(nice);
7446 
7447 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7448 }
7449 
7450 /*
7451  * can_nice - check if a task can reduce its nice value
7452  * @p: task
7453  * @nice: nice value
7454  */
can_nice(const struct task_struct * p,const int nice)7455 int can_nice(const struct task_struct *p, const int nice)
7456 {
7457 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7458 }
7459 
7460 #ifdef __ARCH_WANT_SYS_NICE
7461 
7462 /*
7463  * sys_nice - change the priority of the current process.
7464  * @increment: priority increment
7465  *
7466  * sys_setpriority is a more generic, but much slower function that
7467  * does similar things.
7468  */
SYSCALL_DEFINE1(nice,int,increment)7469 SYSCALL_DEFINE1(nice, int, increment)
7470 {
7471 	long nice, retval;
7472 
7473 	/*
7474 	 * Setpriority might change our priority at the same moment.
7475 	 * We don't have to worry. Conceptually one call occurs first
7476 	 * and we have a single winner.
7477 	 */
7478 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7479 	nice = task_nice(current) + increment;
7480 
7481 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7482 	if (increment < 0 && !can_nice(current, nice))
7483 		return -EPERM;
7484 
7485 	retval = security_task_setnice(current, nice);
7486 	if (retval)
7487 		return retval;
7488 
7489 	set_user_nice(current, nice);
7490 	return 0;
7491 }
7492 
7493 #endif
7494 
7495 /**
7496  * task_prio - return the priority value of a given task.
7497  * @p: the task in question.
7498  *
7499  * Return: The priority value as seen by users in /proc.
7500  *
7501  * sched policy         return value   kernel prio    user prio/nice
7502  *
7503  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7504  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7505  * deadline                     -101             -1           0
7506  */
task_prio(const struct task_struct * p)7507 int task_prio(const struct task_struct *p)
7508 {
7509 	return p->prio - MAX_RT_PRIO;
7510 }
7511 
7512 /**
7513  * idle_cpu - is a given CPU idle currently?
7514  * @cpu: the processor in question.
7515  *
7516  * Return: 1 if the CPU is currently idle. 0 otherwise.
7517  */
idle_cpu(int cpu)7518 int idle_cpu(int cpu)
7519 {
7520 	struct rq *rq = cpu_rq(cpu);
7521 
7522 	if (rq->curr != rq->idle)
7523 		return 0;
7524 
7525 	if (rq->nr_running)
7526 		return 0;
7527 
7528 #ifdef CONFIG_SMP
7529 	if (rq->ttwu_pending)
7530 		return 0;
7531 #endif
7532 
7533 	return 1;
7534 }
7535 
7536 /**
7537  * available_idle_cpu - is a given CPU idle for enqueuing work.
7538  * @cpu: the CPU in question.
7539  *
7540  * Return: 1 if the CPU is currently idle. 0 otherwise.
7541  */
available_idle_cpu(int cpu)7542 int available_idle_cpu(int cpu)
7543 {
7544 	if (!idle_cpu(cpu))
7545 		return 0;
7546 
7547 	if (vcpu_is_preempted(cpu))
7548 		return 0;
7549 
7550 	return 1;
7551 }
7552 
7553 /**
7554  * idle_task - return the idle task for a given CPU.
7555  * @cpu: the processor in question.
7556  *
7557  * Return: The idle task for the CPU @cpu.
7558  */
idle_task(int cpu)7559 struct task_struct *idle_task(int cpu)
7560 {
7561 	return cpu_rq(cpu)->idle;
7562 }
7563 
7564 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7565 int sched_core_idle_cpu(int cpu)
7566 {
7567 	struct rq *rq = cpu_rq(cpu);
7568 
7569 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7570 		return 1;
7571 
7572 	return idle_cpu(cpu);
7573 }
7574 
7575 #endif
7576 
7577 #ifdef CONFIG_SMP
7578 /*
7579  * This function computes an effective utilization for the given CPU, to be
7580  * used for frequency selection given the linear relation: f = u * f_max.
7581  *
7582  * The scheduler tracks the following metrics:
7583  *
7584  *   cpu_util_{cfs,rt,dl,irq}()
7585  *   cpu_bw_dl()
7586  *
7587  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7588  * synchronized windows and are thus directly comparable.
7589  *
7590  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7591  * which excludes things like IRQ and steal-time. These latter are then accrued
7592  * in the irq utilization.
7593  *
7594  * The DL bandwidth number otoh is not a measured metric but a value computed
7595  * based on the task model parameters and gives the minimal utilization
7596  * required to meet deadlines.
7597  */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7598 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7599 				 enum cpu_util_type type,
7600 				 struct task_struct *p)
7601 {
7602 	unsigned long dl_util, util, irq, max;
7603 	struct rq *rq = cpu_rq(cpu);
7604 
7605 	max = arch_scale_cpu_capacity(cpu);
7606 
7607 	if (!uclamp_is_used() &&
7608 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7609 		return max;
7610 	}
7611 
7612 	/*
7613 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7614 	 * because of inaccuracies in how we track these -- see
7615 	 * update_irq_load_avg().
7616 	 */
7617 	irq = cpu_util_irq(rq);
7618 	if (unlikely(irq >= max))
7619 		return max;
7620 
7621 	/*
7622 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7623 	 * CFS tasks and we use the same metric to track the effective
7624 	 * utilization (PELT windows are synchronized) we can directly add them
7625 	 * to obtain the CPU's actual utilization.
7626 	 *
7627 	 * CFS and RT utilization can be boosted or capped, depending on
7628 	 * utilization clamp constraints requested by currently RUNNABLE
7629 	 * tasks.
7630 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7631 	 * frequency will be gracefully reduced with the utilization decay.
7632 	 */
7633 	util = util_cfs + cpu_util_rt(rq);
7634 	if (type == FREQUENCY_UTIL)
7635 		util = uclamp_rq_util_with(rq, util, p);
7636 
7637 	dl_util = cpu_util_dl(rq);
7638 
7639 	/*
7640 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7641 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7642 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7643 	 * that we select f_max when there is no idle time.
7644 	 *
7645 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7646 	 * saturation when we should -- something for later.
7647 	 */
7648 	if (util + dl_util >= max)
7649 		return max;
7650 
7651 	/*
7652 	 * OTOH, for energy computation we need the estimated running time, so
7653 	 * include util_dl and ignore dl_bw.
7654 	 */
7655 	if (type == ENERGY_UTIL)
7656 		util += dl_util;
7657 
7658 	/*
7659 	 * There is still idle time; further improve the number by using the
7660 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7661 	 * need to scale the task numbers:
7662 	 *
7663 	 *              max - irq
7664 	 *   U' = irq + --------- * U
7665 	 *                 max
7666 	 */
7667 	util = scale_irq_capacity(util, irq, max);
7668 	util += irq;
7669 
7670 	/*
7671 	 * Bandwidth required by DEADLINE must always be granted while, for
7672 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7673 	 * to gracefully reduce the frequency when no tasks show up for longer
7674 	 * periods of time.
7675 	 *
7676 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7677 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7678 	 * an interface. So, we only do the latter for now.
7679 	 */
7680 	if (type == FREQUENCY_UTIL)
7681 		util += cpu_bw_dl(rq);
7682 
7683 	return min(max, util);
7684 }
7685 
sched_cpu_util(int cpu)7686 unsigned long sched_cpu_util(int cpu)
7687 {
7688 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7689 }
7690 #endif /* CONFIG_SMP */
7691 
7692 /**
7693  * find_process_by_pid - find a process with a matching PID value.
7694  * @pid: the pid in question.
7695  *
7696  * The task of @pid, if found. %NULL otherwise.
7697  */
find_process_by_pid(pid_t pid)7698 static struct task_struct *find_process_by_pid(pid_t pid)
7699 {
7700 	return pid ? find_task_by_vpid(pid) : current;
7701 }
7702 
7703 /*
7704  * sched_setparam() passes in -1 for its policy, to let the functions
7705  * it calls know not to change it.
7706  */
7707 #define SETPARAM_POLICY	-1
7708 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7709 static void __setscheduler_params(struct task_struct *p,
7710 		const struct sched_attr *attr)
7711 {
7712 	int policy = attr->sched_policy;
7713 
7714 	if (policy == SETPARAM_POLICY)
7715 		policy = p->policy;
7716 
7717 	p->policy = policy;
7718 
7719 	if (dl_policy(policy))
7720 		__setparam_dl(p, attr);
7721 	else if (fair_policy(policy))
7722 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7723 
7724 	/* rt-policy tasks do not have a timerslack */
7725 	if (task_is_realtime(p)) {
7726 		p->timer_slack_ns = 0;
7727 	} else if (p->timer_slack_ns == 0) {
7728 		/* when switching back to non-rt policy, restore timerslack */
7729 		p->timer_slack_ns = p->default_timer_slack_ns;
7730 	}
7731 
7732 	/*
7733 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7734 	 * !rt_policy. Always setting this ensures that things like
7735 	 * getparam()/getattr() don't report silly values for !rt tasks.
7736 	 */
7737 	p->rt_priority = attr->sched_priority;
7738 	p->normal_prio = normal_prio(p);
7739 	set_load_weight(p, true);
7740 }
7741 
7742 /*
7743  * Check the target process has a UID that matches the current process's:
7744  */
check_same_owner(struct task_struct * p)7745 static bool check_same_owner(struct task_struct *p)
7746 {
7747 	const struct cred *cred = current_cred(), *pcred;
7748 	bool match;
7749 
7750 	rcu_read_lock();
7751 	pcred = __task_cred(p);
7752 	match = (uid_eq(cred->euid, pcred->euid) ||
7753 		 uid_eq(cred->euid, pcred->uid));
7754 	rcu_read_unlock();
7755 	return match;
7756 }
7757 
7758 /*
7759  * Allow unprivileged RT tasks to decrease priority.
7760  * Only issue a capable test if needed and only once to avoid an audit
7761  * event on permitted non-privileged operations:
7762  */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7763 static int user_check_sched_setscheduler(struct task_struct *p,
7764 					 const struct sched_attr *attr,
7765 					 int policy, int reset_on_fork)
7766 {
7767 	if (fair_policy(policy)) {
7768 		if (attr->sched_nice < task_nice(p) &&
7769 		    !is_nice_reduction(p, attr->sched_nice))
7770 			goto req_priv;
7771 	}
7772 
7773 	if (rt_policy(policy)) {
7774 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7775 
7776 		/* Can't set/change the rt policy: */
7777 		if (policy != p->policy && !rlim_rtprio)
7778 			goto req_priv;
7779 
7780 		/* Can't increase priority: */
7781 		if (attr->sched_priority > p->rt_priority &&
7782 		    attr->sched_priority > rlim_rtprio)
7783 			goto req_priv;
7784 	}
7785 
7786 	/*
7787 	 * Can't set/change SCHED_DEADLINE policy at all for now
7788 	 * (safest behavior); in the future we would like to allow
7789 	 * unprivileged DL tasks to increase their relative deadline
7790 	 * or reduce their runtime (both ways reducing utilization)
7791 	 */
7792 	if (dl_policy(policy))
7793 		goto req_priv;
7794 
7795 	/*
7796 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7797 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7798 	 */
7799 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7800 		if (!is_nice_reduction(p, task_nice(p)))
7801 			goto req_priv;
7802 	}
7803 
7804 	/* Can't change other user's priorities: */
7805 	if (!check_same_owner(p))
7806 		goto req_priv;
7807 
7808 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7809 	if (p->sched_reset_on_fork && !reset_on_fork)
7810 		goto req_priv;
7811 
7812 	return 0;
7813 
7814 req_priv:
7815 	if (!capable(CAP_SYS_NICE))
7816 		return -EPERM;
7817 
7818 	return 0;
7819 }
7820 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7821 static int __sched_setscheduler(struct task_struct *p,
7822 				const struct sched_attr *attr,
7823 				bool user, bool pi)
7824 {
7825 	int oldpolicy = -1, policy = attr->sched_policy;
7826 	int retval, oldprio, newprio, queued, running;
7827 	const struct sched_class *prev_class;
7828 	struct balance_callback *head;
7829 	struct rq_flags rf;
7830 	int reset_on_fork;
7831 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7832 	struct rq *rq;
7833 	bool cpuset_locked = false;
7834 
7835 	/* The pi code expects interrupts enabled */
7836 	BUG_ON(pi && in_interrupt());
7837 recheck:
7838 	/* Double check policy once rq lock held: */
7839 	if (policy < 0) {
7840 		reset_on_fork = p->sched_reset_on_fork;
7841 		policy = oldpolicy = p->policy;
7842 	} else {
7843 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7844 
7845 		if (!valid_policy(policy))
7846 			return -EINVAL;
7847 	}
7848 
7849 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7850 		return -EINVAL;
7851 
7852 	/*
7853 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7854 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7855 	 * SCHED_BATCH and SCHED_IDLE is 0.
7856 	 */
7857 	if (attr->sched_priority > MAX_RT_PRIO-1)
7858 		return -EINVAL;
7859 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7860 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7861 		return -EINVAL;
7862 
7863 	if (user) {
7864 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7865 		if (retval)
7866 			return retval;
7867 
7868 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7869 			return -EINVAL;
7870 
7871 		retval = security_task_setscheduler(p);
7872 		if (retval)
7873 			return retval;
7874 	}
7875 
7876 	/* Update task specific "requested" clamps */
7877 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7878 		retval = uclamp_validate(p, attr);
7879 		if (retval)
7880 			return retval;
7881 	}
7882 
7883 	/*
7884 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7885 	 * information.
7886 	 */
7887 	if (dl_policy(policy) || dl_policy(p->policy)) {
7888 		cpuset_locked = true;
7889 		cpuset_lock();
7890 	}
7891 
7892 	/*
7893 	 * Make sure no PI-waiters arrive (or leave) while we are
7894 	 * changing the priority of the task:
7895 	 *
7896 	 * To be able to change p->policy safely, the appropriate
7897 	 * runqueue lock must be held.
7898 	 */
7899 	rq = task_rq_lock(p, &rf);
7900 	update_rq_clock(rq);
7901 
7902 	/*
7903 	 * Changing the policy of the stop threads its a very bad idea:
7904 	 */
7905 	if (p == rq->stop) {
7906 		retval = -EINVAL;
7907 		goto unlock;
7908 	}
7909 
7910 	/*
7911 	 * If not changing anything there's no need to proceed further,
7912 	 * but store a possible modification of reset_on_fork.
7913 	 */
7914 	if (unlikely(policy == p->policy)) {
7915 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7916 			goto change;
7917 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7918 			goto change;
7919 		if (dl_policy(policy) && dl_param_changed(p, attr))
7920 			goto change;
7921 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7922 			goto change;
7923 #ifdef CONFIG_SCHED_LATENCY_NICE
7924 		if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
7925 		    attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
7926 			goto change;
7927 #endif
7928 
7929 		p->sched_reset_on_fork = reset_on_fork;
7930 		retval = 0;
7931 		goto unlock;
7932 	}
7933 change:
7934 
7935 	if (user) {
7936 #ifdef CONFIG_RT_GROUP_SCHED
7937 		/*
7938 		 * Do not allow realtime tasks into groups that have no runtime
7939 		 * assigned.
7940 		 */
7941 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7942 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7943 				!task_group_is_autogroup(task_group(p))) {
7944 			retval = -EPERM;
7945 			goto unlock;
7946 		}
7947 #endif
7948 #ifdef CONFIG_SMP
7949 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7950 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7951 			cpumask_t *span = rq->rd->span;
7952 
7953 			/*
7954 			 * Don't allow tasks with an affinity mask smaller than
7955 			 * the entire root_domain to become SCHED_DEADLINE. We
7956 			 * will also fail if there's no bandwidth available.
7957 			 */
7958 			if (!cpumask_subset(span, p->cpus_ptr) ||
7959 			    rq->rd->dl_bw.bw == 0) {
7960 				retval = -EPERM;
7961 				goto unlock;
7962 			}
7963 		}
7964 #endif
7965 	}
7966 
7967 	/* Re-check policy now with rq lock held: */
7968 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7969 		policy = oldpolicy = -1;
7970 		task_rq_unlock(rq, p, &rf);
7971 		if (cpuset_locked)
7972 			cpuset_unlock();
7973 		goto recheck;
7974 	}
7975 
7976 	/*
7977 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7978 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7979 	 * is available.
7980 	 */
7981 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7982 		retval = -EBUSY;
7983 		goto unlock;
7984 	}
7985 
7986 	p->sched_reset_on_fork = reset_on_fork;
7987 	oldprio = p->prio;
7988 
7989 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7990 	if (pi) {
7991 		/*
7992 		 * Take priority boosted tasks into account. If the new
7993 		 * effective priority is unchanged, we just store the new
7994 		 * normal parameters and do not touch the scheduler class and
7995 		 * the runqueue. This will be done when the task deboost
7996 		 * itself.
7997 		 */
7998 		newprio = rt_effective_prio(p, newprio);
7999 		if (newprio == oldprio)
8000 			queue_flags &= ~DEQUEUE_MOVE;
8001 	}
8002 
8003 	queued = task_on_rq_queued(p);
8004 	running = task_current(rq, p);
8005 	if (queued)
8006 		dequeue_task(rq, p, queue_flags);
8007 	if (running)
8008 		put_prev_task(rq, p);
8009 
8010 	prev_class = p->sched_class;
8011 
8012 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
8013 		__setscheduler_params(p, attr);
8014 		__setscheduler_prio(p, newprio);
8015 	}
8016 	__setscheduler_uclamp(p, attr);
8017 
8018 	if (queued) {
8019 		/*
8020 		 * We enqueue to tail when the priority of a task is
8021 		 * increased (user space view).
8022 		 */
8023 		if (oldprio < p->prio)
8024 			queue_flags |= ENQUEUE_HEAD;
8025 
8026 		enqueue_task(rq, p, queue_flags);
8027 	}
8028 	if (running)
8029 		set_next_task(rq, p);
8030 
8031 	check_class_changed(rq, p, prev_class, oldprio);
8032 
8033 	/* Avoid rq from going away on us: */
8034 	preempt_disable();
8035 	head = splice_balance_callbacks(rq);
8036 	task_rq_unlock(rq, p, &rf);
8037 
8038 	if (pi) {
8039 		if (cpuset_locked)
8040 			cpuset_unlock();
8041 		rt_mutex_adjust_pi(p);
8042 	}
8043 
8044 	/* Run balance callbacks after we've adjusted the PI chain: */
8045 	balance_callbacks(rq, head);
8046 	preempt_enable();
8047 
8048 	return 0;
8049 
8050 unlock:
8051 	task_rq_unlock(rq, p, &rf);
8052 	if (cpuset_locked)
8053 		cpuset_unlock();
8054 	return retval;
8055 }
8056 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)8057 static int _sched_setscheduler(struct task_struct *p, int policy,
8058 			       const struct sched_param *param, bool check)
8059 {
8060 	struct sched_attr attr = {
8061 		.sched_policy   = policy,
8062 		.sched_priority = param->sched_priority,
8063 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
8064 	};
8065 
8066 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
8067 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
8068 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8069 		policy &= ~SCHED_RESET_ON_FORK;
8070 		attr.sched_policy = policy;
8071 	}
8072 
8073 	return __sched_setscheduler(p, &attr, check, true);
8074 }
8075 /**
8076  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
8077  * @p: the task in question.
8078  * @policy: new policy.
8079  * @param: structure containing the new RT priority.
8080  *
8081  * Use sched_set_fifo(), read its comment.
8082  *
8083  * Return: 0 on success. An error code otherwise.
8084  *
8085  * NOTE that the task may be already dead.
8086  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)8087 int sched_setscheduler(struct task_struct *p, int policy,
8088 		       const struct sched_param *param)
8089 {
8090 	return _sched_setscheduler(p, policy, param, true);
8091 }
8092 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)8093 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
8094 {
8095 	return __sched_setscheduler(p, attr, true, true);
8096 }
8097 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)8098 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
8099 {
8100 	return __sched_setscheduler(p, attr, false, true);
8101 }
8102 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
8103 
8104 /**
8105  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
8106  * @p: the task in question.
8107  * @policy: new policy.
8108  * @param: structure containing the new RT priority.
8109  *
8110  * Just like sched_setscheduler, only don't bother checking if the
8111  * current context has permission.  For example, this is needed in
8112  * stop_machine(): we create temporary high priority worker threads,
8113  * but our caller might not have that capability.
8114  *
8115  * Return: 0 on success. An error code otherwise.
8116  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)8117 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
8118 			       const struct sched_param *param)
8119 {
8120 	return _sched_setscheduler(p, policy, param, false);
8121 }
8122 
8123 /*
8124  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
8125  * incapable of resource management, which is the one thing an OS really should
8126  * be doing.
8127  *
8128  * This is of course the reason it is limited to privileged users only.
8129  *
8130  * Worse still; it is fundamentally impossible to compose static priority
8131  * workloads. You cannot take two correctly working static prio workloads
8132  * and smash them together and still expect them to work.
8133  *
8134  * For this reason 'all' FIFO tasks the kernel creates are basically at:
8135  *
8136  *   MAX_RT_PRIO / 2
8137  *
8138  * The administrator _MUST_ configure the system, the kernel simply doesn't
8139  * know enough information to make a sensible choice.
8140  */
sched_set_fifo(struct task_struct * p)8141 void sched_set_fifo(struct task_struct *p)
8142 {
8143 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8144 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8145 }
8146 EXPORT_SYMBOL_GPL(sched_set_fifo);
8147 
8148 /*
8149  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8150  */
sched_set_fifo_low(struct task_struct * p)8151 void sched_set_fifo_low(struct task_struct *p)
8152 {
8153 	struct sched_param sp = { .sched_priority = 1 };
8154 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8155 }
8156 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8157 
sched_set_normal(struct task_struct * p,int nice)8158 void sched_set_normal(struct task_struct *p, int nice)
8159 {
8160 	struct sched_attr attr = {
8161 		.sched_policy = SCHED_NORMAL,
8162 		.sched_nice = nice,
8163 	};
8164 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8165 }
8166 EXPORT_SYMBOL_GPL(sched_set_normal);
8167 
8168 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)8169 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8170 {
8171 	struct sched_param lparam;
8172 	struct task_struct *p;
8173 	int retval;
8174 
8175 	if (!param || pid < 0)
8176 		return -EINVAL;
8177 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8178 		return -EFAULT;
8179 
8180 	rcu_read_lock();
8181 	retval = -ESRCH;
8182 	p = find_process_by_pid(pid);
8183 	if (likely(p))
8184 		get_task_struct(p);
8185 	rcu_read_unlock();
8186 
8187 	if (likely(p)) {
8188 		retval = sched_setscheduler(p, policy, &lparam);
8189 		put_task_struct(p);
8190 	}
8191 
8192 	return retval;
8193 }
8194 
8195 /*
8196  * Mimics kernel/events/core.c perf_copy_attr().
8197  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8198 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8199 {
8200 	u32 size;
8201 	int ret;
8202 
8203 	/* Zero the full structure, so that a short copy will be nice: */
8204 	memset(attr, 0, sizeof(*attr));
8205 
8206 	ret = get_user(size, &uattr->size);
8207 	if (ret)
8208 		return ret;
8209 
8210 	/* ABI compatibility quirk: */
8211 	if (!size)
8212 		size = SCHED_ATTR_SIZE_VER0;
8213 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8214 		goto err_size;
8215 
8216 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8217 	if (ret) {
8218 		if (ret == -E2BIG)
8219 			goto err_size;
8220 		return ret;
8221 	}
8222 
8223 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8224 	    size < SCHED_ATTR_SIZE_VER1)
8225 		return -EINVAL;
8226 
8227 #ifdef CONFIG_SCHED_LATENCY_NICE
8228 	if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
8229 	    size < SCHED_ATTR_SIZE_VER2)
8230 		return -EINVAL;
8231 #endif
8232 	/*
8233 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8234 	 * to be strict and return an error on out-of-bounds values?
8235 	 */
8236 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8237 
8238 	return 0;
8239 
8240 err_size:
8241 	put_user(sizeof(*attr), &uattr->size);
8242 	return -E2BIG;
8243 }
8244 
get_params(struct task_struct * p,struct sched_attr * attr)8245 static void get_params(struct task_struct *p, struct sched_attr *attr)
8246 {
8247 	if (task_has_dl_policy(p))
8248 		__getparam_dl(p, attr);
8249 	else if (task_has_rt_policy(p))
8250 		attr->sched_priority = p->rt_priority;
8251 	else
8252 		attr->sched_nice = task_nice(p);
8253 }
8254 
8255 /**
8256  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8257  * @pid: the pid in question.
8258  * @policy: new policy.
8259  * @param: structure containing the new RT priority.
8260  *
8261  * Return: 0 on success. An error code otherwise.
8262  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8263 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8264 {
8265 	if (policy < 0)
8266 		return -EINVAL;
8267 
8268 	return do_sched_setscheduler(pid, policy, param);
8269 }
8270 
8271 /**
8272  * sys_sched_setparam - set/change the RT priority of a thread
8273  * @pid: the pid in question.
8274  * @param: structure containing the new RT priority.
8275  *
8276  * Return: 0 on success. An error code otherwise.
8277  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8278 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8279 {
8280 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8281 }
8282 
8283 /**
8284  * sys_sched_setattr - same as above, but with extended sched_attr
8285  * @pid: the pid in question.
8286  * @uattr: structure containing the extended parameters.
8287  * @flags: for future extension.
8288  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8289 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8290 			       unsigned int, flags)
8291 {
8292 	struct sched_attr attr;
8293 	struct task_struct *p;
8294 	int retval;
8295 
8296 	if (!uattr || pid < 0 || flags)
8297 		return -EINVAL;
8298 
8299 	retval = sched_copy_attr(uattr, &attr);
8300 	if (retval)
8301 		return retval;
8302 
8303 	if ((int)attr.sched_policy < 0)
8304 		return -EINVAL;
8305 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8306 		attr.sched_policy = SETPARAM_POLICY;
8307 
8308 	rcu_read_lock();
8309 	retval = -ESRCH;
8310 	p = find_process_by_pid(pid);
8311 	if (likely(p))
8312 		get_task_struct(p);
8313 	rcu_read_unlock();
8314 
8315 	if (likely(p)) {
8316 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8317 			get_params(p, &attr);
8318 		retval = sched_setattr(p, &attr);
8319 		put_task_struct(p);
8320 	}
8321 
8322 	return retval;
8323 }
8324 
8325 /**
8326  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8327  * @pid: the pid in question.
8328  *
8329  * Return: On success, the policy of the thread. Otherwise, a negative error
8330  * code.
8331  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8332 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8333 {
8334 	struct task_struct *p;
8335 	int retval;
8336 
8337 	if (pid < 0)
8338 		return -EINVAL;
8339 
8340 	retval = -ESRCH;
8341 	rcu_read_lock();
8342 	p = find_process_by_pid(pid);
8343 	if (p) {
8344 		retval = security_task_getscheduler(p);
8345 		if (!retval)
8346 			retval = p->policy
8347 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8348 	}
8349 	rcu_read_unlock();
8350 	return retval;
8351 }
8352 
8353 /**
8354  * sys_sched_getparam - get the RT priority of a thread
8355  * @pid: the pid in question.
8356  * @param: structure containing the RT priority.
8357  *
8358  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8359  * code.
8360  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8361 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8362 {
8363 	struct sched_param lp = { .sched_priority = 0 };
8364 	struct task_struct *p;
8365 	int retval;
8366 
8367 	if (!param || pid < 0)
8368 		return -EINVAL;
8369 
8370 	rcu_read_lock();
8371 	p = find_process_by_pid(pid);
8372 	retval = -ESRCH;
8373 	if (!p)
8374 		goto out_unlock;
8375 
8376 	retval = security_task_getscheduler(p);
8377 	if (retval)
8378 		goto out_unlock;
8379 
8380 	if (task_has_rt_policy(p))
8381 		lp.sched_priority = p->rt_priority;
8382 	rcu_read_unlock();
8383 
8384 	/*
8385 	 * This one might sleep, we cannot do it with a spinlock held ...
8386 	 */
8387 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8388 
8389 	return retval;
8390 
8391 out_unlock:
8392 	rcu_read_unlock();
8393 	return retval;
8394 }
8395 
8396 /*
8397  * Copy the kernel size attribute structure (which might be larger
8398  * than what user-space knows about) to user-space.
8399  *
8400  * Note that all cases are valid: user-space buffer can be larger or
8401  * smaller than the kernel-space buffer. The usual case is that both
8402  * have the same size.
8403  */
8404 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8405 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8406 			struct sched_attr *kattr,
8407 			unsigned int usize)
8408 {
8409 	unsigned int ksize = sizeof(*kattr);
8410 
8411 	if (!access_ok(uattr, usize))
8412 		return -EFAULT;
8413 
8414 	/*
8415 	 * sched_getattr() ABI forwards and backwards compatibility:
8416 	 *
8417 	 * If usize == ksize then we just copy everything to user-space and all is good.
8418 	 *
8419 	 * If usize < ksize then we only copy as much as user-space has space for,
8420 	 * this keeps ABI compatibility as well. We skip the rest.
8421 	 *
8422 	 * If usize > ksize then user-space is using a newer version of the ABI,
8423 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8424 	 * detect the kernel's knowledge of attributes from the attr->size value
8425 	 * which is set to ksize in this case.
8426 	 */
8427 	kattr->size = min(usize, ksize);
8428 
8429 	if (copy_to_user(uattr, kattr, kattr->size))
8430 		return -EFAULT;
8431 
8432 	return 0;
8433 }
8434 
8435 /**
8436  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8437  * @pid: the pid in question.
8438  * @uattr: structure containing the extended parameters.
8439  * @usize: sizeof(attr) for fwd/bwd comp.
8440  * @flags: for future extension.
8441  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8442 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8443 		unsigned int, usize, unsigned int, flags)
8444 {
8445 	struct sched_attr kattr = { };
8446 	struct task_struct *p;
8447 	int retval;
8448 
8449 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8450 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8451 		return -EINVAL;
8452 
8453 	rcu_read_lock();
8454 	p = find_process_by_pid(pid);
8455 	retval = -ESRCH;
8456 	if (!p)
8457 		goto out_unlock;
8458 
8459 	retval = security_task_getscheduler(p);
8460 	if (retval)
8461 		goto out_unlock;
8462 
8463 	kattr.sched_policy = p->policy;
8464 	if (p->sched_reset_on_fork)
8465 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8466 	get_params(p, &kattr);
8467 	kattr.sched_flags &= SCHED_FLAG_ALL;
8468 
8469 #ifdef CONFIG_SCHED_LATENCY_NICE
8470 	kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
8471 #endif
8472 
8473 #ifdef CONFIG_UCLAMP_TASK
8474 	/*
8475 	 * This could race with another potential updater, but this is fine
8476 	 * because it'll correctly read the old or the new value. We don't need
8477 	 * to guarantee who wins the race as long as it doesn't return garbage.
8478 	 */
8479 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8480 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8481 #endif
8482 
8483 	rcu_read_unlock();
8484 
8485 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8486 
8487 out_unlock:
8488 	rcu_read_unlock();
8489 	return retval;
8490 }
8491 
8492 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8493 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8494 {
8495 	int ret = 0;
8496 
8497 	/*
8498 	 * If the task isn't a deadline task or admission control is
8499 	 * disabled then we don't care about affinity changes.
8500 	 */
8501 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8502 		return 0;
8503 
8504 	/*
8505 	 * Since bandwidth control happens on root_domain basis,
8506 	 * if admission test is enabled, we only admit -deadline
8507 	 * tasks allowed to run on all the CPUs in the task's
8508 	 * root_domain.
8509 	 */
8510 	rcu_read_lock();
8511 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8512 		ret = -EBUSY;
8513 	rcu_read_unlock();
8514 	return ret;
8515 }
8516 #endif
8517 
8518 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8519 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8520 {
8521 	int retval;
8522 	cpumask_var_t cpus_allowed, new_mask;
8523 #ifdef CONFIG_CPU_ISOLATION_OPT
8524 	int dest_cpu;
8525 	cpumask_t allowed_mask;
8526 #endif
8527 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8528 		return -ENOMEM;
8529 
8530 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8531 		retval = -ENOMEM;
8532 		goto out_free_cpus_allowed;
8533 	}
8534 
8535 	cpuset_cpus_allowed(p, cpus_allowed);
8536 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8537 
8538 	ctx->new_mask = new_mask;
8539 	ctx->flags |= SCA_CHECK;
8540 
8541 	retval = dl_task_check_affinity(p, new_mask);
8542 	if (retval)
8543 		goto out_free_new_mask;
8544 #ifdef CONFIG_CPU_ISOLATION_OPT
8545 	cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
8546 	dest_cpu = cpumask_any_and(cpu_active_mask, &allowed_mask);
8547 	if (dest_cpu < nr_cpu_ids) {
8548 #endif
8549 	retval = __set_cpus_allowed_ptr(p, ctx);
8550 	if (retval)
8551 		goto out_free_new_mask;
8552 #ifdef CONFIG_CPU_ISOLATION_OPT
8553 	} else {
8554 		retval = -EINVAL;
8555 	}
8556 #endif
8557 	cpuset_cpus_allowed(p, cpus_allowed);
8558 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8559 		/*
8560 		 * We must have raced with a concurrent cpuset update.
8561 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8562 		 */
8563 		cpumask_copy(new_mask, cpus_allowed);
8564 
8565 		/*
8566 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8567 		 * will restore the previous user_cpus_ptr value.
8568 		 *
8569 		 * In the unlikely event a previous user_cpus_ptr exists,
8570 		 * we need to further restrict the mask to what is allowed
8571 		 * by that old user_cpus_ptr.
8572 		 */
8573 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8574 			bool empty = !cpumask_and(new_mask, new_mask,
8575 						  ctx->user_mask);
8576 
8577 			if (empty)
8578 				cpumask_copy(new_mask, cpus_allowed);
8579 		}
8580 		__set_cpus_allowed_ptr(p, ctx);
8581 		retval = -EINVAL;
8582 	}
8583 
8584 out_free_new_mask:
8585 	free_cpumask_var(new_mask);
8586 out_free_cpus_allowed:
8587 	free_cpumask_var(cpus_allowed);
8588 	return retval;
8589 }
8590 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8591 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8592 {
8593 	struct affinity_context ac;
8594 	struct cpumask *user_mask;
8595 	struct task_struct *p;
8596 	int retval;
8597 #ifdef CONFIG_CPU_ISOLATION_OPT
8598 	int dest_cpu;
8599 	cpumask_t allowed_mask;
8600 #endif
8601 
8602 	rcu_read_lock();
8603 
8604 	p = find_process_by_pid(pid);
8605 	if (!p) {
8606 		rcu_read_unlock();
8607 		return -ESRCH;
8608 	}
8609 
8610 	/* Prevent p going away */
8611 	get_task_struct(p);
8612 	rcu_read_unlock();
8613 
8614 	if (p->flags & PF_NO_SETAFFINITY) {
8615 		retval = -EINVAL;
8616 		goto out_put_task;
8617 	}
8618 
8619 	if (!check_same_owner(p)) {
8620 		rcu_read_lock();
8621 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8622 			rcu_read_unlock();
8623 			retval = -EPERM;
8624 			goto out_put_task;
8625 		}
8626 		rcu_read_unlock();
8627 	}
8628 
8629 	retval = security_task_setscheduler(p);
8630 	if (retval)
8631 		goto out_put_task;
8632 
8633 	/*
8634 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8635 	 * alloc_user_cpus_ptr() returns NULL.
8636 	 */
8637 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8638 	if (user_mask) {
8639 		cpumask_copy(user_mask, in_mask);
8640 	} else if (IS_ENABLED(CONFIG_SMP)) {
8641 		retval = -ENOMEM;
8642 		goto out_put_task;
8643 	}
8644 
8645 	ac = (struct affinity_context){
8646 		.new_mask  = in_mask,
8647 		.user_mask = user_mask,
8648 		.flags     = SCA_USER,
8649 	};
8650 
8651 	retval = __sched_setaffinity(p, &ac);
8652 	kfree(ac.user_mask);
8653 
8654 out_put_task:
8655 	put_task_struct(p);
8656 	return retval;
8657 }
8658 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8659 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8660 			     struct cpumask *new_mask)
8661 {
8662 	if (len < cpumask_size())
8663 		cpumask_clear(new_mask);
8664 	else if (len > cpumask_size())
8665 		len = cpumask_size();
8666 
8667 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8668 }
8669 
8670 /**
8671  * sys_sched_setaffinity - set the CPU affinity of a process
8672  * @pid: pid of the process
8673  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8674  * @user_mask_ptr: user-space pointer to the new CPU mask
8675  *
8676  * Return: 0 on success. An error code otherwise.
8677  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8678 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8679 		unsigned long __user *, user_mask_ptr)
8680 {
8681 	cpumask_var_t new_mask;
8682 	int retval;
8683 
8684 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8685 		return -ENOMEM;
8686 
8687 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8688 	if (retval == 0)
8689 		retval = sched_setaffinity(pid, new_mask);
8690 	free_cpumask_var(new_mask);
8691 	return retval;
8692 }
8693 
sched_getaffinity(pid_t pid,struct cpumask * mask)8694 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8695 {
8696 	struct task_struct *p;
8697 	unsigned long flags;
8698 	int retval;
8699 
8700 	rcu_read_lock();
8701 
8702 	retval = -ESRCH;
8703 	p = find_process_by_pid(pid);
8704 	if (!p)
8705 		goto out_unlock;
8706 
8707 	retval = security_task_getscheduler(p);
8708 	if (retval)
8709 		goto out_unlock;
8710 
8711 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8712 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8713 
8714 #ifdef CONFIG_CPU_ISOLATION_OPT
8715 	/* The userspace tasks are forbidden to run on
8716 	 * isolated CPUs. So exclude isolated CPUs from
8717 	 * the getaffinity.
8718 	 */
8719 	if (!(p->flags & PF_KTHREAD))
8720 		cpumask_andnot(mask, mask, cpu_isolated_mask);
8721 #endif
8722 
8723 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8724 
8725 out_unlock:
8726 	rcu_read_unlock();
8727 
8728 	return retval;
8729 }
8730 
8731 /**
8732  * sys_sched_getaffinity - get the CPU affinity of a process
8733  * @pid: pid of the process
8734  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8735  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8736  *
8737  * Return: size of CPU mask copied to user_mask_ptr on success. An
8738  * error code otherwise.
8739  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8740 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8741 		unsigned long __user *, user_mask_ptr)
8742 {
8743 	int ret;
8744 	cpumask_var_t mask;
8745 
8746 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8747 		return -EINVAL;
8748 	if (len & (sizeof(unsigned long)-1))
8749 		return -EINVAL;
8750 
8751 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8752 		return -ENOMEM;
8753 
8754 	ret = sched_getaffinity(pid, mask);
8755 	if (ret == 0) {
8756 		unsigned int retlen = min(len, cpumask_size());
8757 
8758 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8759 			ret = -EFAULT;
8760 		else
8761 			ret = retlen;
8762 	}
8763 	free_cpumask_var(mask);
8764 
8765 	return ret;
8766 }
8767 
do_sched_yield(void)8768 static void do_sched_yield(void)
8769 {
8770 	struct rq_flags rf;
8771 	struct rq *rq;
8772 
8773 	rq = this_rq_lock_irq(&rf);
8774 
8775 	schedstat_inc(rq->yld_count);
8776 	current->sched_class->yield_task(rq);
8777 
8778 	preempt_disable();
8779 	rq_unlock_irq(rq, &rf);
8780 	sched_preempt_enable_no_resched();
8781 
8782 	schedule();
8783 }
8784 
8785 /**
8786  * sys_sched_yield - yield the current processor to other threads.
8787  *
8788  * This function yields the current CPU to other tasks. If there are no
8789  * other threads running on this CPU then this function will return.
8790  *
8791  * Return: 0.
8792  */
SYSCALL_DEFINE0(sched_yield)8793 SYSCALL_DEFINE0(sched_yield)
8794 {
8795 	do_sched_yield();
8796 	return 0;
8797 }
8798 
8799 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8800 int __sched __cond_resched(void)
8801 {
8802 	if (should_resched(0) && !irqs_disabled()) {
8803 		preempt_schedule_common();
8804 		return 1;
8805 	}
8806 	/*
8807 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8808 	 * whether the current CPU is in an RCU read-side critical section,
8809 	 * so the tick can report quiescent states even for CPUs looping
8810 	 * in kernel context.  In contrast, in non-preemptible kernels,
8811 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8812 	 * processes executing in kernel context might never report an
8813 	 * RCU quiescent state.  Therefore, the following code causes
8814 	 * cond_resched() to report a quiescent state, but only when RCU
8815 	 * is in urgent need of one.
8816 	 */
8817 #ifndef CONFIG_PREEMPT_RCU
8818 	rcu_all_qs();
8819 #endif
8820 	return 0;
8821 }
8822 EXPORT_SYMBOL(__cond_resched);
8823 #endif
8824 
8825 #ifdef CONFIG_PREEMPT_DYNAMIC
8826 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8827 #define cond_resched_dynamic_enabled	__cond_resched
8828 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8829 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8830 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8831 
8832 #define might_resched_dynamic_enabled	__cond_resched
8833 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8834 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8835 EXPORT_STATIC_CALL_TRAMP(might_resched);
8836 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8837 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8838 int __sched dynamic_cond_resched(void)
8839 {
8840 	klp_sched_try_switch();
8841 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8842 		return 0;
8843 	return __cond_resched();
8844 }
8845 EXPORT_SYMBOL(dynamic_cond_resched);
8846 
8847 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8848 int __sched dynamic_might_resched(void)
8849 {
8850 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8851 		return 0;
8852 	return __cond_resched();
8853 }
8854 EXPORT_SYMBOL(dynamic_might_resched);
8855 #endif
8856 #endif
8857 
8858 /*
8859  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8860  * call schedule, and on return reacquire the lock.
8861  *
8862  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8863  * operations here to prevent schedule() from being called twice (once via
8864  * spin_unlock(), once by hand).
8865  */
__cond_resched_lock(spinlock_t * lock)8866 int __cond_resched_lock(spinlock_t *lock)
8867 {
8868 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8869 	int ret = 0;
8870 
8871 	lockdep_assert_held(lock);
8872 
8873 	if (spin_needbreak(lock) || resched) {
8874 		spin_unlock(lock);
8875 		if (!_cond_resched())
8876 			cpu_relax();
8877 		ret = 1;
8878 		spin_lock(lock);
8879 	}
8880 	return ret;
8881 }
8882 EXPORT_SYMBOL(__cond_resched_lock);
8883 
__cond_resched_rwlock_read(rwlock_t * lock)8884 int __cond_resched_rwlock_read(rwlock_t *lock)
8885 {
8886 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8887 	int ret = 0;
8888 
8889 	lockdep_assert_held_read(lock);
8890 
8891 	if (rwlock_needbreak(lock) || resched) {
8892 		read_unlock(lock);
8893 		if (!_cond_resched())
8894 			cpu_relax();
8895 		ret = 1;
8896 		read_lock(lock);
8897 	}
8898 	return ret;
8899 }
8900 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8901 
__cond_resched_rwlock_write(rwlock_t * lock)8902 int __cond_resched_rwlock_write(rwlock_t *lock)
8903 {
8904 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8905 	int ret = 0;
8906 
8907 	lockdep_assert_held_write(lock);
8908 
8909 	if (rwlock_needbreak(lock) || resched) {
8910 		write_unlock(lock);
8911 		if (!_cond_resched())
8912 			cpu_relax();
8913 		ret = 1;
8914 		write_lock(lock);
8915 	}
8916 	return ret;
8917 }
8918 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8919 
8920 #ifdef CONFIG_PREEMPT_DYNAMIC
8921 
8922 #ifdef CONFIG_GENERIC_ENTRY
8923 #include <linux/entry-common.h>
8924 #endif
8925 
8926 /*
8927  * SC:cond_resched
8928  * SC:might_resched
8929  * SC:preempt_schedule
8930  * SC:preempt_schedule_notrace
8931  * SC:irqentry_exit_cond_resched
8932  *
8933  *
8934  * NONE:
8935  *   cond_resched               <- __cond_resched
8936  *   might_resched              <- RET0
8937  *   preempt_schedule           <- NOP
8938  *   preempt_schedule_notrace   <- NOP
8939  *   irqentry_exit_cond_resched <- NOP
8940  *
8941  * VOLUNTARY:
8942  *   cond_resched               <- __cond_resched
8943  *   might_resched              <- __cond_resched
8944  *   preempt_schedule           <- NOP
8945  *   preempt_schedule_notrace   <- NOP
8946  *   irqentry_exit_cond_resched <- NOP
8947  *
8948  * FULL:
8949  *   cond_resched               <- RET0
8950  *   might_resched              <- RET0
8951  *   preempt_schedule           <- preempt_schedule
8952  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8953  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8954  */
8955 
8956 enum {
8957 	preempt_dynamic_undefined = -1,
8958 	preempt_dynamic_none,
8959 	preempt_dynamic_voluntary,
8960 	preempt_dynamic_full,
8961 };
8962 
8963 int preempt_dynamic_mode = preempt_dynamic_undefined;
8964 
sched_dynamic_mode(const char * str)8965 int sched_dynamic_mode(const char *str)
8966 {
8967 	if (!strcmp(str, "none"))
8968 		return preempt_dynamic_none;
8969 
8970 	if (!strcmp(str, "voluntary"))
8971 		return preempt_dynamic_voluntary;
8972 
8973 	if (!strcmp(str, "full"))
8974 		return preempt_dynamic_full;
8975 
8976 	return -EINVAL;
8977 }
8978 
8979 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8980 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8981 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8982 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8983 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8984 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8985 #else
8986 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8987 #endif
8988 
8989 static DEFINE_MUTEX(sched_dynamic_mutex);
8990 static bool klp_override;
8991 
__sched_dynamic_update(int mode)8992 static void __sched_dynamic_update(int mode)
8993 {
8994 	/*
8995 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8996 	 * the ZERO state, which is invalid.
8997 	 */
8998 	if (!klp_override)
8999 		preempt_dynamic_enable(cond_resched);
9000 	preempt_dynamic_enable(might_resched);
9001 	preempt_dynamic_enable(preempt_schedule);
9002 	preempt_dynamic_enable(preempt_schedule_notrace);
9003 	preempt_dynamic_enable(irqentry_exit_cond_resched);
9004 
9005 	switch (mode) {
9006 	case preempt_dynamic_none:
9007 		if (!klp_override)
9008 			preempt_dynamic_enable(cond_resched);
9009 		preempt_dynamic_disable(might_resched);
9010 		preempt_dynamic_disable(preempt_schedule);
9011 		preempt_dynamic_disable(preempt_schedule_notrace);
9012 		preempt_dynamic_disable(irqentry_exit_cond_resched);
9013 		if (mode != preempt_dynamic_mode)
9014 			pr_info("Dynamic Preempt: none\n");
9015 		break;
9016 
9017 	case preempt_dynamic_voluntary:
9018 		if (!klp_override)
9019 			preempt_dynamic_enable(cond_resched);
9020 		preempt_dynamic_enable(might_resched);
9021 		preempt_dynamic_disable(preempt_schedule);
9022 		preempt_dynamic_disable(preempt_schedule_notrace);
9023 		preempt_dynamic_disable(irqentry_exit_cond_resched);
9024 		if (mode != preempt_dynamic_mode)
9025 			pr_info("Dynamic Preempt: voluntary\n");
9026 		break;
9027 
9028 	case preempt_dynamic_full:
9029 		if (!klp_override)
9030 			preempt_dynamic_disable(cond_resched);
9031 		preempt_dynamic_disable(might_resched);
9032 		preempt_dynamic_enable(preempt_schedule);
9033 		preempt_dynamic_enable(preempt_schedule_notrace);
9034 		preempt_dynamic_enable(irqentry_exit_cond_resched);
9035 		if (mode != preempt_dynamic_mode)
9036 			pr_info("Dynamic Preempt: full\n");
9037 		break;
9038 	}
9039 
9040 	preempt_dynamic_mode = mode;
9041 }
9042 
sched_dynamic_update(int mode)9043 void sched_dynamic_update(int mode)
9044 {
9045 	mutex_lock(&sched_dynamic_mutex);
9046 	__sched_dynamic_update(mode);
9047 	mutex_unlock(&sched_dynamic_mutex);
9048 }
9049 
9050 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
9051 
klp_cond_resched(void)9052 static int klp_cond_resched(void)
9053 {
9054 	__klp_sched_try_switch();
9055 	return __cond_resched();
9056 }
9057 
sched_dynamic_klp_enable(void)9058 void sched_dynamic_klp_enable(void)
9059 {
9060 	mutex_lock(&sched_dynamic_mutex);
9061 
9062 	klp_override = true;
9063 	static_call_update(cond_resched, klp_cond_resched);
9064 
9065 	mutex_unlock(&sched_dynamic_mutex);
9066 }
9067 
sched_dynamic_klp_disable(void)9068 void sched_dynamic_klp_disable(void)
9069 {
9070 	mutex_lock(&sched_dynamic_mutex);
9071 
9072 	klp_override = false;
9073 	__sched_dynamic_update(preempt_dynamic_mode);
9074 
9075 	mutex_unlock(&sched_dynamic_mutex);
9076 }
9077 
9078 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
9079 
setup_preempt_mode(char * str)9080 static int __init setup_preempt_mode(char *str)
9081 {
9082 	int mode = sched_dynamic_mode(str);
9083 	if (mode < 0) {
9084 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
9085 		return 0;
9086 	}
9087 
9088 	sched_dynamic_update(mode);
9089 	return 1;
9090 }
9091 __setup("preempt=", setup_preempt_mode);
9092 
preempt_dynamic_init(void)9093 static void __init preempt_dynamic_init(void)
9094 {
9095 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
9096 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
9097 			sched_dynamic_update(preempt_dynamic_none);
9098 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
9099 			sched_dynamic_update(preempt_dynamic_voluntary);
9100 		} else {
9101 			/* Default static call setting, nothing to do */
9102 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
9103 			preempt_dynamic_mode = preempt_dynamic_full;
9104 			pr_info("Dynamic Preempt: full\n");
9105 		}
9106 	}
9107 }
9108 
9109 #define PREEMPT_MODEL_ACCESSOR(mode) \
9110 	bool preempt_model_##mode(void)						 \
9111 	{									 \
9112 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
9113 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
9114 	}									 \
9115 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
9116 
9117 PREEMPT_MODEL_ACCESSOR(none);
9118 PREEMPT_MODEL_ACCESSOR(voluntary);
9119 PREEMPT_MODEL_ACCESSOR(full);
9120 
9121 #else /* !CONFIG_PREEMPT_DYNAMIC */
9122 
preempt_dynamic_init(void)9123 static inline void preempt_dynamic_init(void) { }
9124 
9125 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
9126 
9127 /**
9128  * yield - yield the current processor to other threads.
9129  *
9130  * Do not ever use this function, there's a 99% chance you're doing it wrong.
9131  *
9132  * The scheduler is at all times free to pick the calling task as the most
9133  * eligible task to run, if removing the yield() call from your code breaks
9134  * it, it's already broken.
9135  *
9136  * Typical broken usage is:
9137  *
9138  * while (!event)
9139  *	yield();
9140  *
9141  * where one assumes that yield() will let 'the other' process run that will
9142  * make event true. If the current task is a SCHED_FIFO task that will never
9143  * happen. Never use yield() as a progress guarantee!!
9144  *
9145  * If you want to use yield() to wait for something, use wait_event().
9146  * If you want to use yield() to be 'nice' for others, use cond_resched().
9147  * If you still want to use yield(), do not!
9148  */
yield(void)9149 void __sched yield(void)
9150 {
9151 	set_current_state(TASK_RUNNING);
9152 	do_sched_yield();
9153 }
9154 EXPORT_SYMBOL(yield);
9155 
9156 /**
9157  * yield_to - yield the current processor to another thread in
9158  * your thread group, or accelerate that thread toward the
9159  * processor it's on.
9160  * @p: target task
9161  * @preempt: whether task preemption is allowed or not
9162  *
9163  * It's the caller's job to ensure that the target task struct
9164  * can't go away on us before we can do any checks.
9165  *
9166  * Return:
9167  *	true (>0) if we indeed boosted the target task.
9168  *	false (0) if we failed to boost the target.
9169  *	-ESRCH if there's no task to yield to.
9170  */
yield_to(struct task_struct * p,bool preempt)9171 int __sched yield_to(struct task_struct *p, bool preempt)
9172 {
9173 	struct task_struct *curr = current;
9174 	struct rq *rq, *p_rq;
9175 	unsigned long flags;
9176 	int yielded = 0;
9177 
9178 	local_irq_save(flags);
9179 	rq = this_rq();
9180 
9181 again:
9182 	p_rq = task_rq(p);
9183 	/*
9184 	 * If we're the only runnable task on the rq and target rq also
9185 	 * has only one task, there's absolutely no point in yielding.
9186 	 */
9187 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
9188 		yielded = -ESRCH;
9189 		goto out_irq;
9190 	}
9191 
9192 	double_rq_lock(rq, p_rq);
9193 	if (task_rq(p) != p_rq) {
9194 		double_rq_unlock(rq, p_rq);
9195 		goto again;
9196 	}
9197 
9198 	if (!curr->sched_class->yield_to_task)
9199 		goto out_unlock;
9200 
9201 	if (curr->sched_class != p->sched_class)
9202 		goto out_unlock;
9203 
9204 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
9205 		goto out_unlock;
9206 
9207 	yielded = curr->sched_class->yield_to_task(rq, p);
9208 	if (yielded) {
9209 		schedstat_inc(rq->yld_count);
9210 		/*
9211 		 * Make p's CPU reschedule; pick_next_entity takes care of
9212 		 * fairness.
9213 		 */
9214 		if (preempt && rq != p_rq)
9215 			resched_curr(p_rq);
9216 	}
9217 
9218 out_unlock:
9219 	double_rq_unlock(rq, p_rq);
9220 out_irq:
9221 	local_irq_restore(flags);
9222 
9223 	if (yielded > 0)
9224 		schedule();
9225 
9226 	return yielded;
9227 }
9228 EXPORT_SYMBOL_GPL(yield_to);
9229 
io_schedule_prepare(void)9230 int io_schedule_prepare(void)
9231 {
9232 	int old_iowait = current->in_iowait;
9233 
9234 	current->in_iowait = 1;
9235 	blk_flush_plug(current->plug, true);
9236 	return old_iowait;
9237 }
9238 
io_schedule_finish(int token)9239 void io_schedule_finish(int token)
9240 {
9241 	current->in_iowait = token;
9242 }
9243 
9244 /*
9245  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9246  * that process accounting knows that this is a task in IO wait state.
9247  */
io_schedule_timeout(long timeout)9248 long __sched io_schedule_timeout(long timeout)
9249 {
9250 	int token;
9251 	long ret;
9252 
9253 	token = io_schedule_prepare();
9254 	ret = schedule_timeout(timeout);
9255 	io_schedule_finish(token);
9256 
9257 	return ret;
9258 }
9259 EXPORT_SYMBOL(io_schedule_timeout);
9260 
io_schedule(void)9261 void __sched io_schedule(void)
9262 {
9263 	int token;
9264 
9265 	token = io_schedule_prepare();
9266 	schedule();
9267 	io_schedule_finish(token);
9268 }
9269 EXPORT_SYMBOL(io_schedule);
9270 
9271 /**
9272  * sys_sched_get_priority_max - return maximum RT priority.
9273  * @policy: scheduling class.
9274  *
9275  * Return: On success, this syscall returns the maximum
9276  * rt_priority that can be used by a given scheduling class.
9277  * On failure, a negative error code is returned.
9278  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9279 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9280 {
9281 	int ret = -EINVAL;
9282 
9283 	switch (policy) {
9284 	case SCHED_FIFO:
9285 	case SCHED_RR:
9286 		ret = MAX_RT_PRIO-1;
9287 		break;
9288 	case SCHED_DEADLINE:
9289 	case SCHED_NORMAL:
9290 	case SCHED_BATCH:
9291 	case SCHED_IDLE:
9292 		ret = 0;
9293 		break;
9294 	}
9295 	return ret;
9296 }
9297 
9298 /**
9299  * sys_sched_get_priority_min - return minimum RT priority.
9300  * @policy: scheduling class.
9301  *
9302  * Return: On success, this syscall returns the minimum
9303  * rt_priority that can be used by a given scheduling class.
9304  * On failure, a negative error code is returned.
9305  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9306 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9307 {
9308 	int ret = -EINVAL;
9309 
9310 	switch (policy) {
9311 	case SCHED_FIFO:
9312 	case SCHED_RR:
9313 		ret = 1;
9314 		break;
9315 	case SCHED_DEADLINE:
9316 	case SCHED_NORMAL:
9317 	case SCHED_BATCH:
9318 	case SCHED_IDLE:
9319 		ret = 0;
9320 	}
9321 	return ret;
9322 }
9323 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9324 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9325 {
9326 	struct task_struct *p;
9327 	unsigned int time_slice;
9328 	struct rq_flags rf;
9329 	struct rq *rq;
9330 	int retval;
9331 
9332 	if (pid < 0)
9333 		return -EINVAL;
9334 
9335 	retval = -ESRCH;
9336 	rcu_read_lock();
9337 	p = find_process_by_pid(pid);
9338 	if (!p)
9339 		goto out_unlock;
9340 
9341 	retval = security_task_getscheduler(p);
9342 	if (retval)
9343 		goto out_unlock;
9344 
9345 	rq = task_rq_lock(p, &rf);
9346 	time_slice = 0;
9347 	if (p->sched_class->get_rr_interval)
9348 		time_slice = p->sched_class->get_rr_interval(rq, p);
9349 	task_rq_unlock(rq, p, &rf);
9350 
9351 	rcu_read_unlock();
9352 	jiffies_to_timespec64(time_slice, t);
9353 	return 0;
9354 
9355 out_unlock:
9356 	rcu_read_unlock();
9357 	return retval;
9358 }
9359 
9360 /**
9361  * sys_sched_rr_get_interval - return the default timeslice of a process.
9362  * @pid: pid of the process.
9363  * @interval: userspace pointer to the timeslice value.
9364  *
9365  * this syscall writes the default timeslice value of a given process
9366  * into the user-space timespec buffer. A value of '0' means infinity.
9367  *
9368  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9369  * an error code.
9370  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9371 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9372 		struct __kernel_timespec __user *, interval)
9373 {
9374 	struct timespec64 t;
9375 	int retval = sched_rr_get_interval(pid, &t);
9376 
9377 	if (retval == 0)
9378 		retval = put_timespec64(&t, interval);
9379 
9380 	return retval;
9381 }
9382 
9383 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9384 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9385 		struct old_timespec32 __user *, interval)
9386 {
9387 	struct timespec64 t;
9388 	int retval = sched_rr_get_interval(pid, &t);
9389 
9390 	if (retval == 0)
9391 		retval = put_old_timespec32(&t, interval);
9392 	return retval;
9393 }
9394 #endif
9395 
sched_show_task(struct task_struct * p)9396 void sched_show_task(struct task_struct *p)
9397 {
9398 	unsigned long free = 0;
9399 	int ppid;
9400 
9401 	if (!try_get_task_stack(p))
9402 		return;
9403 
9404 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9405 
9406 	if (task_is_running(p))
9407 		pr_cont("  running task    ");
9408 #ifdef CONFIG_DEBUG_STACK_USAGE
9409 	free = stack_not_used(p);
9410 #endif
9411 	ppid = 0;
9412 	rcu_read_lock();
9413 	if (pid_alive(p))
9414 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9415 	rcu_read_unlock();
9416 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9417 		free, task_pid_nr(p), ppid,
9418 		read_task_thread_flags(p));
9419 
9420 	print_worker_info(KERN_INFO, p);
9421 	print_stop_info(KERN_INFO, p);
9422 	show_stack(p, NULL, KERN_INFO);
9423 	put_task_stack(p);
9424 }
9425 EXPORT_SYMBOL_GPL(sched_show_task);
9426 
9427 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9428 state_filter_match(unsigned long state_filter, struct task_struct *p)
9429 {
9430 	unsigned int state = READ_ONCE(p->__state);
9431 
9432 	/* no filter, everything matches */
9433 	if (!state_filter)
9434 		return true;
9435 
9436 	/* filter, but doesn't match */
9437 	if (!(state & state_filter))
9438 		return false;
9439 
9440 	/*
9441 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9442 	 * TASK_KILLABLE).
9443 	 */
9444 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9445 		return false;
9446 
9447 	return true;
9448 }
9449 
9450 
show_state_filter(unsigned int state_filter)9451 void show_state_filter(unsigned int state_filter)
9452 {
9453 	struct task_struct *g, *p;
9454 
9455 	rcu_read_lock();
9456 	for_each_process_thread(g, p) {
9457 		/*
9458 		 * reset the NMI-timeout, listing all files on a slow
9459 		 * console might take a lot of time:
9460 		 * Also, reset softlockup watchdogs on all CPUs, because
9461 		 * another CPU might be blocked waiting for us to process
9462 		 * an IPI.
9463 		 */
9464 		touch_nmi_watchdog();
9465 		touch_all_softlockup_watchdogs();
9466 		if (state_filter_match(state_filter, p))
9467 			sched_show_task(p);
9468 	}
9469 
9470 #ifdef CONFIG_SCHED_DEBUG
9471 	if (!state_filter)
9472 		sysrq_sched_debug_show();
9473 #endif
9474 	rcu_read_unlock();
9475 	/*
9476 	 * Only show locks if all tasks are dumped:
9477 	 */
9478 	if (!state_filter)
9479 		debug_show_all_locks();
9480 }
9481 
9482 /**
9483  * init_idle - set up an idle thread for a given CPU
9484  * @idle: task in question
9485  * @cpu: CPU the idle task belongs to
9486  *
9487  * NOTE: this function does not set the idle thread's NEED_RESCHED
9488  * flag, to make booting more robust.
9489  */
init_idle(struct task_struct * idle,int cpu)9490 void __init init_idle(struct task_struct *idle, int cpu)
9491 {
9492 #ifdef CONFIG_SMP
9493 	struct affinity_context ac = (struct affinity_context) {
9494 		.new_mask  = cpumask_of(cpu),
9495 		.flags     = 0,
9496 	};
9497 #endif
9498 	struct rq *rq = cpu_rq(cpu);
9499 	unsigned long flags;
9500 
9501 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9502 	raw_spin_rq_lock(rq);
9503 
9504 	idle->__state = TASK_RUNNING;
9505 	idle->se.exec_start = sched_clock();
9506 	/*
9507 	 * PF_KTHREAD should already be set at this point; regardless, make it
9508 	 * look like a proper per-CPU kthread.
9509 	 */
9510 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9511 	kthread_set_per_cpu(idle, cpu);
9512 
9513 #ifdef CONFIG_SMP
9514 	/*
9515 	 * No validation and serialization required at boot time and for
9516 	 * setting up the idle tasks of not yet online CPUs.
9517 	 */
9518 	set_cpus_allowed_common(idle, &ac);
9519 #endif
9520 	/*
9521 	 * We're having a chicken and egg problem, even though we are
9522 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9523 	 * lockdep check in task_group() will fail.
9524 	 *
9525 	 * Similar case to sched_fork(). / Alternatively we could
9526 	 * use task_rq_lock() here and obtain the other rq->lock.
9527 	 *
9528 	 * Silence PROVE_RCU
9529 	 */
9530 	rcu_read_lock();
9531 	__set_task_cpu(idle, cpu);
9532 	rcu_read_unlock();
9533 
9534 	rq->idle = idle;
9535 	rcu_assign_pointer(rq->curr, idle);
9536 	idle->on_rq = TASK_ON_RQ_QUEUED;
9537 #ifdef CONFIG_SMP
9538 	idle->on_cpu = 1;
9539 #endif
9540 	raw_spin_rq_unlock(rq);
9541 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9542 
9543 	/* Set the preempt count _outside_ the spinlocks! */
9544 	init_idle_preempt_count(idle, cpu);
9545 
9546 	/*
9547 	 * The idle tasks have their own, simple scheduling class:
9548 	 */
9549 	idle->sched_class = &idle_sched_class;
9550 	ftrace_graph_init_idle_task(idle, cpu);
9551 	vtime_init_idle(idle, cpu);
9552 #ifdef CONFIG_SMP
9553 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9554 #endif
9555 }
9556 
9557 #ifdef CONFIG_SMP
9558 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9559 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9560 			      const struct cpumask *trial)
9561 {
9562 	int ret = 1;
9563 
9564 	if (cpumask_empty(cur))
9565 		return ret;
9566 
9567 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9568 
9569 	return ret;
9570 }
9571 
task_can_attach(struct task_struct * p)9572 int task_can_attach(struct task_struct *p)
9573 {
9574 	int ret = 0;
9575 
9576 	/*
9577 	 * Kthreads which disallow setaffinity shouldn't be moved
9578 	 * to a new cpuset; we don't want to change their CPU
9579 	 * affinity and isolating such threads by their set of
9580 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9581 	 * applicable for such threads.  This prevents checking for
9582 	 * success of set_cpus_allowed_ptr() on all attached tasks
9583 	 * before cpus_mask may be changed.
9584 	 */
9585 	if (p->flags & PF_NO_SETAFFINITY)
9586 		ret = -EINVAL;
9587 
9588 	return ret;
9589 }
9590 
9591 bool sched_smp_initialized __read_mostly;
9592 
9593 #ifdef CONFIG_NUMA_BALANCING
9594 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9595 int migrate_task_to(struct task_struct *p, int target_cpu)
9596 {
9597 	struct migration_arg arg = { p, target_cpu };
9598 	int curr_cpu = task_cpu(p);
9599 
9600 	if (curr_cpu == target_cpu)
9601 		return 0;
9602 
9603 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9604 		return -EINVAL;
9605 
9606 	/* TODO: This is not properly updating schedstats */
9607 
9608 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9609 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9610 }
9611 
9612 /*
9613  * Requeue a task on a given node and accurately track the number of NUMA
9614  * tasks on the runqueues
9615  */
sched_setnuma(struct task_struct * p,int nid)9616 void sched_setnuma(struct task_struct *p, int nid)
9617 {
9618 	bool queued, running;
9619 	struct rq_flags rf;
9620 	struct rq *rq;
9621 
9622 	rq = task_rq_lock(p, &rf);
9623 	queued = task_on_rq_queued(p);
9624 	running = task_current(rq, p);
9625 
9626 	if (queued)
9627 		dequeue_task(rq, p, DEQUEUE_SAVE);
9628 	if (running)
9629 		put_prev_task(rq, p);
9630 
9631 	p->numa_preferred_nid = nid;
9632 
9633 	if (queued)
9634 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9635 	if (running)
9636 		set_next_task(rq, p);
9637 	task_rq_unlock(rq, p, &rf);
9638 }
9639 #endif /* CONFIG_NUMA_BALANCING */
9640 
9641 #ifdef CONFIG_HOTPLUG_CPU
9642 /*
9643  * Ensure that the idle task is using init_mm right before its CPU goes
9644  * offline.
9645  */
idle_task_exit(void)9646 void idle_task_exit(void)
9647 {
9648 	struct mm_struct *mm = current->active_mm;
9649 
9650 	BUG_ON(cpu_online(smp_processor_id()));
9651 	BUG_ON(current != this_rq()->idle);
9652 
9653 	if (mm != &init_mm) {
9654 		switch_mm(mm, &init_mm, current);
9655 		finish_arch_post_lock_switch();
9656 	}
9657 
9658 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9659 }
9660 
__balance_push_cpu_stop(void * arg)9661 static int __balance_push_cpu_stop(void *arg)
9662 {
9663 	struct task_struct *p = arg;
9664 	struct rq *rq = this_rq();
9665 	struct rq_flags rf;
9666 	int cpu;
9667 #ifdef CONFIG_CPU_ISOLATION_OPT
9668 	bool allow_isolated = (p->flags & PF_KTHREAD);
9669 #endif
9670 
9671 	raw_spin_lock_irq(&p->pi_lock);
9672 	rq_lock(rq, &rf);
9673 
9674 	update_rq_clock(rq);
9675 
9676 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9677 #ifdef CONFIG_CPU_ISOLATION_OPT
9678 		cpu = select_fallback_rq(rq->cpu, p, allow_isolated);
9679 #else
9680 		cpu = select_fallback_rq(rq->cpu, p);
9681 #endif
9682 		rq = __migrate_task(rq, &rf, p, cpu);
9683 	}
9684 
9685 	rq_unlock(rq, &rf);
9686 	raw_spin_unlock_irq(&p->pi_lock);
9687 
9688 	put_task_struct(p);
9689 
9690 	return 0;
9691 }
9692 
9693 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9694 
__pick_migrate_task(struct rq * rq)9695 static struct task_struct *__pick_migrate_task(struct rq *rq)
9696 {
9697 	const struct sched_class *class;
9698 	struct task_struct *next;
9699 
9700 	for_each_class(class) {
9701 		next = class->pick_next_task(rq);
9702 		if (next) {
9703 			next->sched_class->put_prev_task(rq, next);
9704 			return next;
9705 		}
9706 	}
9707 
9708 	/* The idle class should always have a runnable task */
9709 	BUG();
9710 }
9711 
9712 
9713 #ifdef CONFIG_CPU_ISOLATION_OPT
9714 /*
9715  * Remove a task from the runqueue and pretend that it's migrating. This
9716  * should prevent migrations for the detached task and disallow further
9717  * changes to tsk_cpus_allowed.
9718  */
9719 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)9720 detach_one_task_core(struct task_struct *p, struct rq *rq,
9721 		     struct list_head *tasks)
9722 {
9723 	lockdep_assert_held(&rq->__lock);
9724 
9725 	p->on_rq = TASK_ON_RQ_MIGRATING;
9726 	deactivate_task(rq, p, 0);
9727 	list_add(&p->se.group_node, tasks);
9728 }
9729 
attach_tasks_core(struct list_head * tasks,struct rq * rq)9730 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
9731 {
9732 	struct task_struct *p;
9733 
9734 	lockdep_assert_held(&rq->__lock);
9735 
9736 	while (!list_empty(tasks)) {
9737 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9738 		list_del_init(&p->se.group_node);
9739 
9740 		BUG_ON(task_rq(p) != rq);
9741 		activate_task(rq, p, 0);
9742 		p->on_rq = TASK_ON_RQ_QUEUED;
9743 	}
9744 }
9745 
9746 #else
9747 
9748 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)9749 detach_one_task_core(struct task_struct *p, struct rq *rq,
9750 		     struct list_head *tasks)
9751 {
9752 }
9753 
attach_tasks_core(struct list_head * tasks,struct rq * rq)9754 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
9755 {
9756 }
9757 
9758 #endif /* CONFIG_CPU_ISOLATION_OPT */
9759 
9760 /*
9761  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9762  *
9763  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9764  * effective when the hotplug motion is down.
9765  */
balance_push(struct rq * rq)9766 static void balance_push(struct rq *rq)
9767 {
9768 	struct task_struct *push_task = rq->curr;
9769 
9770 	lockdep_assert_rq_held(rq);
9771 
9772 	/*
9773 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9774 	 */
9775 	rq->balance_callback = &balance_push_callback;
9776 
9777 	/*
9778 	 * Only active while going offline and when invoked on the outgoing
9779 	 * CPU.
9780 	 */
9781 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9782 		return;
9783 
9784 	/*
9785 	 * Both the cpu-hotplug and stop task are in this case and are
9786 	 * required to complete the hotplug process.
9787 	 */
9788 	if (kthread_is_per_cpu(push_task) ||
9789 	    is_migration_disabled(push_task)) {
9790 
9791 		/*
9792 		 * If this is the idle task on the outgoing CPU try to wake
9793 		 * up the hotplug control thread which might wait for the
9794 		 * last task to vanish. The rcuwait_active() check is
9795 		 * accurate here because the waiter is pinned on this CPU
9796 		 * and can't obviously be running in parallel.
9797 		 *
9798 		 * On RT kernels this also has to check whether there are
9799 		 * pinned and scheduled out tasks on the runqueue. They
9800 		 * need to leave the migrate disabled section first.
9801 		 */
9802 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9803 		    rcuwait_active(&rq->hotplug_wait)) {
9804 			raw_spin_rq_unlock(rq);
9805 			rcuwait_wake_up(&rq->hotplug_wait);
9806 			raw_spin_rq_lock(rq);
9807 		}
9808 		return;
9809 	}
9810 
9811 	get_task_struct(push_task);
9812 	/*
9813 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9814 	 * Both preemption and IRQs are still disabled.
9815 	 */
9816 	preempt_disable();
9817 	raw_spin_rq_unlock(rq);
9818 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9819 			    this_cpu_ptr(&push_work));
9820 	preempt_enable();
9821 	/*
9822 	 * At this point need_resched() is true and we'll take the loop in
9823 	 * schedule(). The next pick is obviously going to be the stop task
9824 	 * which kthread_is_per_cpu() and will push this task away.
9825 	 */
9826 	raw_spin_rq_lock(rq);
9827 }
9828 
balance_push_set(int cpu,bool on)9829 static void balance_push_set(int cpu, bool on)
9830 {
9831 	struct rq *rq = cpu_rq(cpu);
9832 	struct rq_flags rf;
9833 
9834 	rq_lock_irqsave(rq, &rf);
9835 	if (on) {
9836 		WARN_ON_ONCE(rq->balance_callback);
9837 		rq->balance_callback = &balance_push_callback;
9838 	} else if (rq->balance_callback == &balance_push_callback) {
9839 		rq->balance_callback = NULL;
9840 	}
9841 	rq_unlock_irqrestore(rq, &rf);
9842 }
9843 
9844 /*
9845  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9846  * inactive. All tasks which are not per CPU kernel threads are either
9847  * pushed off this CPU now via balance_push() or placed on a different CPU
9848  * during wakeup. Wait until the CPU is quiescent.
9849  */
balance_hotplug_wait(void)9850 static void balance_hotplug_wait(void)
9851 {
9852 	struct rq *rq = this_rq();
9853 
9854 	rcuwait_wait_event(&rq->hotplug_wait,
9855 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9856 			   TASK_UNINTERRUPTIBLE);
9857 }
9858 
9859 #else
9860 
balance_push(struct rq * rq)9861 static inline void balance_push(struct rq *rq)
9862 {
9863 }
9864 
balance_push_set(int cpu,bool on)9865 static inline void balance_push_set(int cpu, bool on)
9866 {
9867 }
9868 
balance_hotplug_wait(void)9869 static inline void balance_hotplug_wait(void)
9870 {
9871 }
9872 #endif /* CONFIG_HOTPLUG_CPU */
9873 
9874 
9875 /*
9876  * Migrate all tasks (not pinned if pinned argument say so) from the rq,
9877  * sleeping tasks will be migrated by try_to_wake_up()->select_task_rq().
9878  *
9879  * Called with rq->lock held even though we'er in stop_machine() and
9880  * there's no concurrency possible, we hold the required locks anyway
9881  * because of lock validation efforts.
9882  */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool migrate_pinned_tasks)9883 void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
9884 			  bool migrate_pinned_tasks)
9885 {
9886 	struct rq *rq = dead_rq;
9887 	struct task_struct *next, *stop = rq->stop;
9888 	struct rq_flags orf = *rf;
9889 	int dest_cpu;
9890 	unsigned int num_pinned_kthreads = 1; /* this thread */
9891 	LIST_HEAD(tasks);
9892 	cpumask_t avail_cpus;
9893 
9894 #ifdef CONFIG_CPU_ISOLATION_OPT
9895 	cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
9896 #else
9897 	cpumask_copy(&avail_cpus, cpu_online_mask);
9898 #endif
9899 
9900 	/*
9901 	 * Fudge the rq selection such that the below task selection loop
9902 	 * doesn't get stuck on the currently eligible stop task.
9903 	 *
9904 	 * We're currently inside stop_machine() and the rq is either stuck
9905 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
9906 	 * either way we should never end up calling schedule() until we're
9907 	 * done here.
9908 	 */
9909 	rq->stop = NULL;
9910 
9911 	/*
9912 	 * put_prev_task() and pick_next_task() sched
9913 	 * class method both need to have an up-to-date
9914 	 * value of rq->clock[_task]
9915 	 */
9916 	update_rq_clock(rq);
9917 
9918 	for (;;) {
9919 		/*
9920 		 * There's this thread running, bail when that's the only
9921 		 * remaining thread.
9922 		 */
9923 		if (rq->nr_running == 1)
9924 			break;
9925 
9926 		next = __pick_migrate_task(rq);
9927 
9928 		if (!migrate_pinned_tasks && next->flags & PF_KTHREAD &&
9929 			!cpumask_intersects(&avail_cpus, &next->cpus_mask)) {
9930 			detach_one_task_core(next, rq, &tasks);
9931 			num_pinned_kthreads += 1;
9932 			continue;
9933 		}
9934 
9935 		/*
9936 		 * Rules for changing task_struct::cpus_mask are holding
9937 		 * both pi_lock and rq->lock, such that holding either
9938 		 * stabilizes the mask.
9939 		 *
9940 		 * Drop rq->lock is not quite as disastrous as it usually is
9941 		 * because !cpu_active at this point, which means load-balance
9942 		 * will not interfere. Also, stop-machine.
9943 		 */
9944 		rq_unlock(rq, rf);
9945 		raw_spin_lock(&next->pi_lock);
9946 		rq_relock(rq, rf);
9947 		if (!(rq->clock_update_flags & RQCF_UPDATED))
9948 			update_rq_clock(rq);
9949 
9950 		/*
9951 		 * Since we're inside stop-machine, _nothing_ should have
9952 		 * changed the task, WARN if weird stuff happened, because in
9953 		 * that case the above rq->lock drop is a fail too.
9954 		 * However, during cpu isolation the load balancer might have
9955 		 * interferred since we don't stop all CPUs. Ignore warning for
9956 		 * this case.
9957 		 */
9958 		if (task_rq(next) != rq || !task_on_rq_queued(next)) {
9959 			WARN_ON(migrate_pinned_tasks);
9960 			raw_spin_unlock(&next->pi_lock);
9961 			continue;
9962 		}
9963 
9964 		/* Find suitable destination for @next, with force if needed. */
9965 #ifdef CONFIG_CPU_ISOLATION_OPT
9966 		dest_cpu = select_fallback_rq(dead_rq->cpu, next, false);
9967 #else
9968 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
9969 #endif
9970 		rq = __migrate_task(rq, rf, next, dest_cpu);
9971 		if (rq != dead_rq) {
9972 			rq_unlock(rq, rf);
9973 			rq = dead_rq;
9974 			*rf = orf;
9975 			rq_relock(rq, rf);
9976 			if (!(rq->clock_update_flags & RQCF_UPDATED))
9977 				update_rq_clock(rq);
9978 		}
9979 		raw_spin_unlock(&next->pi_lock);
9980 	}
9981 
9982 	rq->stop = stop;
9983 
9984 	if (num_pinned_kthreads > 1)
9985 		attach_tasks_core(&tasks, rq);
9986 }
9987 
9988 #ifdef CONFIG_SCHED_EAS
clear_eas_migration_request(int cpu)9989 static void clear_eas_migration_request(int cpu)
9990 {
9991 	struct rq *rq = cpu_rq(cpu);
9992 	unsigned long flags;
9993 
9994 	clear_reserved(cpu);
9995 	if (rq->push_task) {
9996 		struct task_struct *push_task = NULL;
9997 
9998 		raw_spin_lock_irqsave(&rq->__lock, flags);
9999 		if (rq->push_task) {
10000 			clear_reserved(rq->push_cpu);
10001 			push_task = rq->push_task;
10002 			rq->push_task = NULL;
10003 		}
10004 		rq->active_balance = 0;
10005 		raw_spin_unlock_irqrestore(&rq->__lock, flags);
10006 		if (push_task)
10007 			put_task_struct(push_task);
10008 	}
10009 }
10010 #else
clear_eas_migration_request(int cpu)10011 static inline void clear_eas_migration_request(int cpu) {}
10012 #endif
10013 
10014 #ifdef CONFIG_CPU_ISOLATION_OPT
do_isolation_work_cpu_stop(void * data)10015 int do_isolation_work_cpu_stop(void *data)
10016 {
10017 	unsigned int cpu = smp_processor_id();
10018 	struct rq *rq = cpu_rq(cpu);
10019 	struct rq_flags rf;
10020 
10021 	watchdog_disable(cpu);
10022 
10023 	local_irq_disable();
10024 
10025 	irq_migrate_all_off_this_cpu();
10026 
10027 	flush_smp_call_function_queue();
10028 
10029 	/* Update our root-domain */
10030 	rq_lock(rq, &rf);
10031 
10032 	/*
10033 	 * Temporarily mark the rq as offline. This will allow us to
10034 	 * move tasks off the CPU.
10035 	 */
10036 	if (rq->rd) {
10037 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
10038 		set_rq_offline(rq);
10039 	}
10040 
10041 	migrate_tasks(rq, &rf, false);
10042 
10043 	if (rq->rd)
10044 		set_rq_online(rq);
10045 	rq_unlock(rq, &rf);
10046 
10047 	clear_eas_migration_request(cpu);
10048 	local_irq_enable();
10049 	return 0;
10050 }
10051 
do_unisolation_work_cpu_stop(void * data)10052 int do_unisolation_work_cpu_stop(void *data)
10053 {
10054 	watchdog_enable(smp_processor_id());
10055 	return 0;
10056 }
10057 
sched_update_group_capacities(int cpu)10058 static void sched_update_group_capacities(int cpu)
10059 {
10060 	struct sched_domain *sd;
10061 
10062 	mutex_lock(&sched_domains_mutex);
10063 	rcu_read_lock();
10064 
10065 	for_each_domain(cpu, sd) {
10066 		int balance_cpu = group_balance_cpu(sd->groups);
10067 
10068 		init_sched_groups_capacity(cpu, sd);
10069 		/*
10070 		 * Need to ensure this is also called with balancing
10071 		 * cpu.
10072 		 */
10073 		if (cpu != balance_cpu)
10074 			init_sched_groups_capacity(balance_cpu, sd);
10075 	}
10076 
10077 	rcu_read_unlock();
10078 	mutex_unlock(&sched_domains_mutex);
10079 }
10080 
10081 static unsigned int cpu_isolation_vote[NR_CPUS];
10082 
sched_isolate_count(const cpumask_t * mask,bool include_offline)10083 int sched_isolate_count(const cpumask_t *mask, bool include_offline)
10084 {
10085 	cpumask_t count_mask = CPU_MASK_NONE;
10086 
10087 	if (include_offline) {
10088 		cpumask_complement(&count_mask, cpu_online_mask);
10089 		cpumask_or(&count_mask, &count_mask, cpu_isolated_mask);
10090 		cpumask_and(&count_mask, &count_mask, mask);
10091 	} else {
10092 		cpumask_and(&count_mask, mask, cpu_isolated_mask);
10093 	}
10094 
10095 	return cpumask_weight(&count_mask);
10096 }
10097 
10098 /*
10099  * 1) CPU is isolated and cpu is offlined:
10100  *	Unisolate the core.
10101  * 2) CPU is not isolated and CPU is offlined:
10102  *	No action taken.
10103  * 3) CPU is offline and request to isolate
10104  *	Request ignored.
10105  * 4) CPU is offline and isolated:
10106  *	Not a possible state.
10107  * 5) CPU is online and request to isolate
10108  *	Normal case: Isolate the CPU
10109  * 6) CPU is not isolated and comes back online
10110  *	Nothing to do
10111  *
10112  * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
10113  * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
10114  * Client is also responsible for unisolating when a core goes offline
10115  * (after CPU is marked offline).
10116  */
10117  static void calc_load_migrate(struct rq *rq);
sched_isolate_cpu(int cpu)10118 int sched_isolate_cpu(int cpu)
10119 {
10120 	struct rq *rq;
10121 	cpumask_t avail_cpus;
10122 	int ret_code = 0;
10123 	u64 start_time = 0;
10124 
10125 	if (trace_sched_isolate_enabled())
10126 		start_time = sched_clock();
10127 
10128 	cpu_maps_update_begin();
10129 
10130 	cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
10131 
10132 	if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu) ||
10133 				!cpu_online(cpu) || cpu >= NR_CPUS) {
10134 		ret_code = -EINVAL;
10135 		goto out;
10136 	}
10137 
10138 	rq = cpu_rq(cpu);
10139 
10140 	if (++cpu_isolation_vote[cpu] > 1)
10141 		goto out;
10142 
10143 	/* We cannot isolate ALL cpus in the system */
10144 	if (cpumask_weight(&avail_cpus) == 1) {
10145 		--cpu_isolation_vote[cpu];
10146 		ret_code = -EINVAL;
10147 		goto out;
10148 	}
10149 
10150 	/*
10151 	 * There is a race between watchdog being enabled by hotplug and
10152 	 * core isolation disabling the watchdog. When a CPU is hotplugged in
10153 	 * and the hotplug lock has been released the watchdog thread might
10154 	 * not have run yet to enable the watchdog.
10155 	 * We have to wait for the watchdog to be enabled before proceeding.
10156 	 */
10157 	if (!watchdog_configured(cpu)) {
10158 		msleep(20);
10159 		if (!watchdog_configured(cpu)) {
10160 			--cpu_isolation_vote[cpu];
10161 			ret_code = -EBUSY;
10162 			goto out;
10163 		}
10164 	}
10165 
10166 	set_cpu_isolated(cpu, true);
10167 	cpumask_clear_cpu(cpu, &avail_cpus);
10168 
10169 	/* Migrate timers */
10170 	//smp_call_function_any(&avail_cpus, hrtimer_quiesce_cpu, &cpu, 1);
10171 	smp_call_function_any(&avail_cpus, timer_quiesce_cpu, &cpu, 1);
10172 
10173 	watchdog_disable(cpu);
10174 	irq_lock_sparse();
10175 	stop_cpus(cpumask_of(cpu), do_isolation_work_cpu_stop, 0);
10176 	irq_unlock_sparse();
10177 
10178 	calc_load_migrate(rq);
10179 	update_max_interval();
10180 	sched_update_group_capacities(cpu);
10181 
10182 out:
10183 	cpu_maps_update_done();
10184 	trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
10185 			    start_time, 1);
10186 	return ret_code;
10187 }
10188 
10189 /*
10190  * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
10191  * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
10192  * Client is also responsible for unisolating when a core goes offline
10193  * (after CPU is marked offline).
10194  */
sched_unisolate_cpu_unlocked(int cpu)10195 int sched_unisolate_cpu_unlocked(int cpu)
10196 {
10197 	int ret_code = 0;
10198 	u64 start_time = 0;
10199 
10200 	if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu)
10201 						|| cpu >= NR_CPUS) {
10202 		ret_code = -EINVAL;
10203 		goto out;
10204 	}
10205 
10206 	if (trace_sched_isolate_enabled())
10207 		start_time = sched_clock();
10208 
10209 	if (!cpu_isolation_vote[cpu]) {
10210 		ret_code = -EINVAL;
10211 		goto out;
10212 	}
10213 
10214 	if (--cpu_isolation_vote[cpu])
10215 		goto out;
10216 
10217 	set_cpu_isolated(cpu, false);
10218 	update_max_interval();
10219 	sched_update_group_capacities(cpu);
10220 
10221 	if (cpu_online(cpu)) {
10222 		stop_cpus(cpumask_of(cpu), do_unisolation_work_cpu_stop, 0);
10223 
10224 		/* Kick CPU to immediately do load balancing */
10225 		if (!atomic_fetch_or(NOHZ_KICK_MASK, nohz_flags(cpu)))
10226 			smp_send_reschedule(cpu);
10227 	}
10228 
10229 out:
10230 	trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
10231 			    start_time, 0);
10232 	return ret_code;
10233 }
10234 
sched_unisolate_cpu(int cpu)10235 int sched_unisolate_cpu(int cpu)
10236 {
10237 	int ret_code;
10238 
10239 	cpu_maps_update_begin();
10240 	ret_code = sched_unisolate_cpu_unlocked(cpu);
10241 	cpu_maps_update_done();
10242 	return ret_code;
10243 }
10244 
10245 #endif /* CONFIG_CPU_ISOLATION_OPT */
10246 
set_rq_online(struct rq * rq)10247 void set_rq_online(struct rq *rq)
10248 {
10249 	if (!rq->online) {
10250 		const struct sched_class *class;
10251 
10252 		cpumask_set_cpu(rq->cpu, rq->rd->online);
10253 		rq->online = 1;
10254 
10255 		for_each_class(class) {
10256 			if (class->rq_online)
10257 				class->rq_online(rq);
10258 		}
10259 	}
10260 }
10261 
set_rq_offline(struct rq * rq)10262 void set_rq_offline(struct rq *rq)
10263 {
10264 	if (rq->online) {
10265 		const struct sched_class *class;
10266 
10267 		update_rq_clock(rq);
10268 		for_each_class(class) {
10269 			if (class->rq_offline)
10270 				class->rq_offline(rq);
10271 		}
10272 
10273 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
10274 		rq->online = 0;
10275 	}
10276 }
10277 
sched_set_rq_online(struct rq * rq,int cpu)10278 static inline void sched_set_rq_online(struct rq *rq, int cpu)
10279 {
10280 	struct rq_flags rf;
10281 
10282 	rq_lock_irqsave(rq, &rf);
10283 	if (rq->rd) {
10284 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
10285 		set_rq_online(rq);
10286 	}
10287 	rq_unlock_irqrestore(rq, &rf);
10288 }
10289 
sched_set_rq_offline(struct rq * rq,int cpu)10290 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
10291 {
10292 	struct rq_flags rf;
10293 
10294 	rq_lock_irqsave(rq, &rf);
10295 	if (rq->rd) {
10296 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
10297 		set_rq_offline(rq);
10298 	}
10299 	rq_unlock_irqrestore(rq, &rf);
10300 }
10301 
10302 /*
10303  * used to mark begin/end of suspend/resume:
10304  */
10305 static int num_cpus_frozen;
10306 
10307 /*
10308  * Update cpusets according to cpu_active mask.  If cpusets are
10309  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
10310  * around partition_sched_domains().
10311  *
10312  * If we come here as part of a suspend/resume, don't touch cpusets because we
10313  * want to restore it back to its original state upon resume anyway.
10314  */
cpuset_cpu_active(void)10315 static void cpuset_cpu_active(void)
10316 {
10317 	if (cpuhp_tasks_frozen) {
10318 		/*
10319 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
10320 		 * resume sequence. As long as this is not the last online
10321 		 * operation in the resume sequence, just build a single sched
10322 		 * domain, ignoring cpusets.
10323 		 */
10324 		partition_sched_domains(1, NULL, NULL);
10325 		if (--num_cpus_frozen)
10326 			return;
10327 		/*
10328 		 * This is the last CPU online operation. So fall through and
10329 		 * restore the original sched domains by considering the
10330 		 * cpuset configurations.
10331 		 */
10332 		cpuset_force_rebuild();
10333 	}
10334 	cpuset_update_active_cpus();
10335 }
10336 
cpuset_cpu_inactive(unsigned int cpu)10337 static int cpuset_cpu_inactive(unsigned int cpu)
10338 {
10339 	if (!cpuhp_tasks_frozen) {
10340 		int ret = dl_bw_check_overflow(cpu);
10341 
10342 		if (ret)
10343 			return ret;
10344 		cpuset_update_active_cpus();
10345 	} else {
10346 		num_cpus_frozen++;
10347 		partition_sched_domains(1, NULL, NULL);
10348 	}
10349 	return 0;
10350 }
10351 
sched_smt_present_inc(int cpu)10352 static inline void sched_smt_present_inc(int cpu)
10353 {
10354 #ifdef CONFIG_SCHED_SMT
10355 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
10356 		static_branch_inc_cpuslocked(&sched_smt_present);
10357 #endif
10358 }
10359 
sched_smt_present_dec(int cpu)10360 static inline void sched_smt_present_dec(int cpu)
10361 {
10362 #ifdef CONFIG_SCHED_SMT
10363 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
10364 		static_branch_dec_cpuslocked(&sched_smt_present);
10365 #endif
10366 }
10367 
sched_cpu_activate(unsigned int cpu)10368 int sched_cpu_activate(unsigned int cpu)
10369 {
10370 	struct rq *rq = cpu_rq(cpu);
10371 
10372 	/*
10373 	 * Clear the balance_push callback and prepare to schedule
10374 	 * regular tasks.
10375 	 */
10376 	balance_push_set(cpu, false);
10377 
10378 	/*
10379 	 * When going up, increment the number of cores with SMT present.
10380 	 */
10381 	sched_smt_present_inc(cpu);
10382 	set_cpu_active(cpu, true);
10383 
10384 	if (sched_smp_initialized) {
10385 		sched_update_numa(cpu, true);
10386 		sched_domains_numa_masks_set(cpu);
10387 		cpuset_cpu_active();
10388 	}
10389 
10390 	/*
10391 	 * Put the rq online, if not already. This happens:
10392 	 *
10393 	 * 1) In the early boot process, because we build the real domains
10394 	 *    after all CPUs have been brought up.
10395 	 *
10396 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
10397 	 *    domains.
10398 	 */
10399 	sched_set_rq_online(rq, cpu);
10400 
10401 	return 0;
10402 }
10403 
sched_cpu_deactivate(unsigned int cpu)10404 int sched_cpu_deactivate(unsigned int cpu)
10405 {
10406 	struct rq *rq = cpu_rq(cpu);
10407 	int ret;
10408 
10409 	/*
10410 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
10411 	 * load balancing when not active
10412 	 */
10413 	nohz_balance_exit_idle(rq);
10414 
10415 	set_cpu_active(cpu, false);
10416 
10417 	/*
10418 	 * From this point forward, this CPU will refuse to run any task that
10419 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
10420 	 * push those tasks away until this gets cleared, see
10421 	 * sched_cpu_dying().
10422 	 */
10423 	balance_push_set(cpu, true);
10424 
10425 	/*
10426 	 * We've cleared cpu_active_mask / set balance_push, wait for all
10427 	 * preempt-disabled and RCU users of this state to go away such that
10428 	 * all new such users will observe it.
10429 	 *
10430 	 * Specifically, we rely on ttwu to no longer target this CPU, see
10431 	 * ttwu_queue_cond() and is_cpu_allowed().
10432 	 *
10433 	 * Do sync before park smpboot threads to take care the rcu boost case.
10434 	 */
10435 	synchronize_rcu();
10436 
10437 	sched_set_rq_offline(rq, cpu);
10438 
10439 	/*
10440 	 * When going down, decrement the number of cores with SMT present.
10441 	 */
10442 	sched_smt_present_dec(cpu);
10443 
10444 #ifdef CONFIG_SCHED_SMT
10445 	sched_core_cpu_deactivate(cpu);
10446 #endif
10447 
10448 	if (!sched_smp_initialized)
10449 		return 0;
10450 
10451 	sched_update_numa(cpu, false);
10452 	ret = cpuset_cpu_inactive(cpu);
10453 	if (ret) {
10454 		sched_smt_present_inc(cpu);
10455 		sched_set_rq_online(rq, cpu);
10456 		balance_push_set(cpu, false);
10457 		set_cpu_active(cpu, true);
10458 		sched_update_numa(cpu, true);
10459 		return ret;
10460 	}
10461 	sched_domains_numa_masks_clear(cpu);
10462 	return 0;
10463 }
10464 
sched_rq_cpu_starting(unsigned int cpu)10465 static void sched_rq_cpu_starting(unsigned int cpu)
10466 {
10467 	struct rq *rq = cpu_rq(cpu);
10468 	unsigned long flags;
10469 
10470 	raw_spin_lock_irqsave(&rq->__lock, flags);
10471 	set_window_start(rq);
10472 	raw_spin_unlock_irqrestore(&rq->__lock, flags);
10473 
10474 	rq->calc_load_update = calc_load_update;
10475 	update_max_interval();
10476 }
10477 
sched_cpu_starting(unsigned int cpu)10478 int sched_cpu_starting(unsigned int cpu)
10479 {
10480 	sched_core_cpu_starting(cpu);
10481 	sched_rq_cpu_starting(cpu);
10482 	sched_tick_start(cpu);
10483 	clear_eas_migration_request(cpu);
10484 	return 0;
10485 }
10486 
10487 #ifdef CONFIG_HOTPLUG_CPU
10488 
10489 /*
10490  * Invoked immediately before the stopper thread is invoked to bring the
10491  * CPU down completely. At this point all per CPU kthreads except the
10492  * hotplug thread (current) and the stopper thread (inactive) have been
10493  * either parked or have been unbound from the outgoing CPU. Ensure that
10494  * any of those which might be on the way out are gone.
10495  *
10496  * If after this point a bound task is being woken on this CPU then the
10497  * responsible hotplug callback has failed to do it's job.
10498  * sched_cpu_dying() will catch it with the appropriate fireworks.
10499  */
sched_cpu_wait_empty(unsigned int cpu)10500 int sched_cpu_wait_empty(unsigned int cpu)
10501 {
10502 	balance_hotplug_wait();
10503 	return 0;
10504 }
10505 
10506 /*
10507  * Since this CPU is going 'away' for a while, fold any nr_active delta we
10508  * might have. Called from the CPU stopper task after ensuring that the
10509  * stopper is the last running task on the CPU, so nr_active count is
10510  * stable. We need to take the teardown thread which is calling this into
10511  * account, so we hand in adjust = 1 to the load calculation.
10512  *
10513  * Also see the comment "Global load-average calculations".
10514  */
calc_load_migrate(struct rq * rq)10515 static void calc_load_migrate(struct rq *rq)
10516 {
10517 	long delta = calc_load_fold_active(rq, 1);
10518 
10519 	if (delta)
10520 		atomic_long_add(delta, &calc_load_tasks);
10521 }
10522 
dump_rq_tasks(struct rq * rq,const char * loglvl)10523 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
10524 {
10525 	struct task_struct *g, *p;
10526 	int cpu = cpu_of(rq);
10527 
10528 	lockdep_assert_rq_held(rq);
10529 
10530 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
10531 	for_each_process_thread(g, p) {
10532 		if (task_cpu(p) != cpu)
10533 			continue;
10534 
10535 		if (!task_on_rq_queued(p))
10536 			continue;
10537 
10538 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
10539 	}
10540 }
10541 
sched_cpu_dying(unsigned int cpu)10542 int sched_cpu_dying(unsigned int cpu)
10543 {
10544 	struct rq *rq = cpu_rq(cpu);
10545 	struct rq_flags rf;
10546 
10547 	/* Handle pending wakeups and then migrate everything off */
10548 	sched_tick_stop(cpu);
10549 
10550 	rq_lock_irqsave(rq, &rf);
10551 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
10552 		WARN(true, "Dying CPU not properly vacated!");
10553 		dump_rq_tasks(rq, KERN_WARNING);
10554 	}
10555 	rq_unlock_irqrestore(rq, &rf);
10556 
10557 	clear_eas_migration_request(cpu);
10558 
10559 	calc_load_migrate(rq);
10560 	update_max_interval();
10561 	hrtick_clear(rq);
10562 	sched_core_cpu_dying(cpu);
10563 	return 0;
10564 }
10565 #endif
10566 
sched_init_smp(void)10567 void __init sched_init_smp(void)
10568 {
10569 	sched_init_numa(NUMA_NO_NODE);
10570 
10571 	/*
10572 	 * There's no userspace yet to cause hotplug operations; hence all the
10573 	 * CPU masks are stable and all blatant races in the below code cannot
10574 	 * happen.
10575 	 */
10576 	mutex_lock(&sched_domains_mutex);
10577 	sched_init_domains(cpu_active_mask);
10578 	mutex_unlock(&sched_domains_mutex);
10579 
10580 	update_cluster_topology();
10581 
10582 	/* Move init over to a non-isolated CPU */
10583 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
10584 		BUG();
10585 	current->flags &= ~PF_NO_SETAFFINITY;
10586 	sched_init_granularity();
10587 
10588 	init_sched_rt_class();
10589 	init_sched_dl_class();
10590 
10591 	sched_smp_initialized = true;
10592 }
10593 
migration_init(void)10594 static int __init migration_init(void)
10595 {
10596 	sched_cpu_starting(smp_processor_id());
10597 	return 0;
10598 }
10599 early_initcall(migration_init);
10600 
10601 #else
sched_init_smp(void)10602 void __init sched_init_smp(void)
10603 {
10604 	sched_init_granularity();
10605 }
10606 #endif /* CONFIG_SMP */
10607 
in_sched_functions(unsigned long addr)10608 int in_sched_functions(unsigned long addr)
10609 {
10610 	return in_lock_functions(addr) ||
10611 		(addr >= (unsigned long)__sched_text_start
10612 		&& addr < (unsigned long)__sched_text_end);
10613 }
10614 
10615 #ifdef CONFIG_CGROUP_SCHED
10616 /*
10617  * Default task group.
10618  * Every task in system belongs to this group at bootup.
10619  */
10620 struct task_group root_task_group;
10621 LIST_HEAD(task_groups);
10622 
10623 /* Cacheline aligned slab cache for task_group */
10624 static struct kmem_cache *task_group_cache __read_mostly;
10625 #endif
10626 
sched_init(void)10627 void __init sched_init(void)
10628 {
10629 	unsigned long ptr = 0;
10630 	int i;
10631 
10632 	/* Make sure the linker didn't screw up */
10633 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
10634 	       &fair_sched_class != &rt_sched_class + 1 ||
10635 	       &rt_sched_class   != &dl_sched_class + 1);
10636 #ifdef CONFIG_SMP
10637 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
10638 #endif
10639 
10640 	wait_bit_init();
10641 
10642 	init_clusters();
10643 
10644 #ifdef CONFIG_FAIR_GROUP_SCHED
10645 	ptr += 2 * nr_cpu_ids * sizeof(void **);
10646 #endif
10647 #ifdef CONFIG_RT_GROUP_SCHED
10648 	ptr += 2 * nr_cpu_ids * sizeof(void **);
10649 #endif
10650 	if (ptr) {
10651 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
10652 
10653 #ifdef CONFIG_FAIR_GROUP_SCHED
10654 		root_task_group.se = (struct sched_entity **)ptr;
10655 		ptr += nr_cpu_ids * sizeof(void **);
10656 
10657 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
10658 		ptr += nr_cpu_ids * sizeof(void **);
10659 
10660 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
10661 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
10662 #endif /* CONFIG_FAIR_GROUP_SCHED */
10663 #ifdef CONFIG_RT_GROUP_SCHED
10664 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
10665 		ptr += nr_cpu_ids * sizeof(void **);
10666 
10667 		root_task_group.rt_rq = (struct rt_rq **)ptr;
10668 		ptr += nr_cpu_ids * sizeof(void **);
10669 
10670 #endif /* CONFIG_RT_GROUP_SCHED */
10671 	}
10672 
10673 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
10674 
10675 #ifdef CONFIG_SMP
10676 	init_defrootdomain();
10677 #endif
10678 
10679 #ifdef CONFIG_RT_GROUP_SCHED
10680 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
10681 			global_rt_period(), global_rt_runtime());
10682 #endif /* CONFIG_RT_GROUP_SCHED */
10683 
10684 #ifdef CONFIG_CGROUP_SCHED
10685 	task_group_cache = KMEM_CACHE(task_group, 0);
10686 
10687 	list_add(&root_task_group.list, &task_groups);
10688 	INIT_LIST_HEAD(&root_task_group.children);
10689 	INIT_LIST_HEAD(&root_task_group.siblings);
10690 	autogroup_init(&init_task);
10691 #endif /* CONFIG_CGROUP_SCHED */
10692 
10693 	for_each_possible_cpu(i) {
10694 		struct rq *rq;
10695 
10696 		rq = cpu_rq(i);
10697 		raw_spin_lock_init(&rq->__lock);
10698 		rq->nr_running = 0;
10699 		rq->calc_load_active = 0;
10700 		rq->calc_load_update = jiffies + LOAD_FREQ;
10701 		init_cfs_rq(&rq->cfs);
10702 		init_rt_rq(&rq->rt);
10703 		init_dl_rq(&rq->dl);
10704 #ifdef CONFIG_FAIR_GROUP_SCHED
10705 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10706 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10707 		/*
10708 		 * How much CPU bandwidth does root_task_group get?
10709 		 *
10710 		 * In case of task-groups formed thr' the cgroup filesystem, it
10711 		 * gets 100% of the CPU resources in the system. This overall
10712 		 * system CPU resource is divided among the tasks of
10713 		 * root_task_group and its child task-groups in a fair manner,
10714 		 * based on each entity's (task or task-group's) weight
10715 		 * (se->load.weight).
10716 		 *
10717 		 * In other words, if root_task_group has 10 tasks of weight
10718 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10719 		 * then A0's share of the CPU resource is:
10720 		 *
10721 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10722 		 *
10723 		 * We achieve this by letting root_task_group's tasks sit
10724 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10725 		 */
10726 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10727 #endif /* CONFIG_FAIR_GROUP_SCHED */
10728 
10729 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10730 #ifdef CONFIG_RT_GROUP_SCHED
10731 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10732 #endif
10733 #ifdef CONFIG_SMP
10734 		rq->sd = NULL;
10735 		rq->rd = NULL;
10736 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10737 		rq->balance_callback = &balance_push_callback;
10738 		rq->active_balance = 0;
10739 		rq->next_balance = jiffies;
10740 		rq->push_cpu = 0;
10741 		rq->cpu = i;
10742 		rq->online = 0;
10743 		rq->idle_stamp = 0;
10744 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10745 		rq->wake_stamp = jiffies;
10746 		rq->wake_avg_idle = rq->avg_idle;
10747 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10748 		walt_sched_init_rq(rq);
10749 
10750 		INIT_LIST_HEAD(&rq->cfs_tasks);
10751 
10752 		rq_attach_root(rq, &def_root_domain);
10753 #ifdef CONFIG_NO_HZ_COMMON
10754 		rq->last_blocked_load_update_tick = jiffies;
10755 		atomic_set(&rq->nohz_flags, 0);
10756 
10757 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10758 #endif
10759 #ifdef CONFIG_HOTPLUG_CPU
10760 		rcuwait_init(&rq->hotplug_wait);
10761 #endif
10762 #endif /* CONFIG_SMP */
10763 		hrtick_rq_init(rq);
10764 		atomic_set(&rq->nr_iowait, 0);
10765 
10766 #ifdef CONFIG_SCHED_CORE
10767 		rq->core = rq;
10768 		rq->core_pick = NULL;
10769 		rq->core_enabled = 0;
10770 		rq->core_tree = RB_ROOT;
10771 		rq->core_forceidle_count = 0;
10772 		rq->core_forceidle_occupation = 0;
10773 		rq->core_forceidle_start = 0;
10774 
10775 		rq->core_cookie = 0UL;
10776 #endif
10777 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10778 	}
10779 
10780 	BUG_ON(alloc_related_thread_groups());
10781 	set_load_weight(&init_task, false);
10782 
10783 	/*
10784 	 * The boot idle thread does lazy MMU switching as well:
10785 	 */
10786 	mmgrab_lazy_tlb(&init_mm);
10787 	enter_lazy_tlb(&init_mm, current);
10788 
10789 	/*
10790 	 * The idle task doesn't need the kthread struct to function, but it
10791 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10792 	 * if we want to avoid special-casing it in code that deals with per-CPU
10793 	 * kthreads.
10794 	 */
10795 	WARN_ON(!set_kthread_struct(current));
10796 
10797 	/*
10798 	 * Make us the idle thread. Technically, schedule() should not be
10799 	 * called from this thread, however somewhere below it might be,
10800 	 * but because we are the idle thread, we just pick up running again
10801 	 * when this runqueue becomes "idle".
10802 	 */
10803 	__sched_fork(0, current);
10804 	init_idle(current, smp_processor_id());
10805 	init_new_task_load(current);
10806 
10807 #ifdef CONIG_QOS_CTRL
10808 	init_task_qos(current);
10809 #endif
10810 
10811 	calc_load_update = jiffies + LOAD_FREQ;
10812 
10813 #ifdef CONFIG_SMP
10814 	idle_thread_set_boot_cpu();
10815 	balance_push_set(smp_processor_id(), false);
10816 #endif
10817 	init_sched_fair_class();
10818 
10819 	psi_init();
10820 
10821 	init_uclamp();
10822 
10823 	preempt_dynamic_init();
10824 
10825 	scheduler_running = 1;
10826 }
10827 
10828 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10829 
__might_sleep(const char * file,int line)10830 void __might_sleep(const char *file, int line)
10831 {
10832 	unsigned int state = get_current_state();
10833 	/*
10834 	 * Blocking primitives will set (and therefore destroy) current->state,
10835 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10836 	 * otherwise we will destroy state.
10837 	 */
10838 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10839 			"do not call blocking ops when !TASK_RUNNING; "
10840 			"state=%x set at [<%p>] %pS\n", state,
10841 			(void *)current->task_state_change,
10842 			(void *)current->task_state_change);
10843 
10844 	__might_resched(file, line, 0);
10845 }
10846 EXPORT_SYMBOL(__might_sleep);
10847 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10848 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10849 {
10850 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10851 		return;
10852 
10853 	if (preempt_count() == preempt_offset)
10854 		return;
10855 
10856 	pr_err("Preemption disabled at:");
10857 	print_ip_sym(KERN_ERR, ip);
10858 }
10859 
resched_offsets_ok(unsigned int offsets)10860 static inline bool resched_offsets_ok(unsigned int offsets)
10861 {
10862 	unsigned int nested = preempt_count();
10863 
10864 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10865 
10866 	return nested == offsets;
10867 }
10868 
__might_resched(const char * file,int line,unsigned int offsets)10869 void __might_resched(const char *file, int line, unsigned int offsets)
10870 {
10871 	/* Ratelimiting timestamp: */
10872 	static unsigned long prev_jiffy;
10873 
10874 	unsigned long preempt_disable_ip;
10875 
10876 	/* WARN_ON_ONCE() by default, no rate limit required: */
10877 	rcu_sleep_check();
10878 
10879 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10880 	     !is_idle_task(current) && !current->non_block_count) ||
10881 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10882 	    oops_in_progress)
10883 		return;
10884 
10885 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10886 		return;
10887 	prev_jiffy = jiffies;
10888 
10889 	/* Save this before calling printk(), since that will clobber it: */
10890 	preempt_disable_ip = get_preempt_disable_ip(current);
10891 
10892 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10893 	       file, line);
10894 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10895 	       in_atomic(), irqs_disabled(), current->non_block_count,
10896 	       current->pid, current->comm);
10897 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10898 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10899 
10900 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10901 		pr_err("RCU nest depth: %d, expected: %u\n",
10902 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10903 	}
10904 
10905 	if (task_stack_end_corrupted(current))
10906 		pr_emerg("Thread overran stack, or stack corrupted\n");
10907 
10908 	debug_show_held_locks(current);
10909 	if (irqs_disabled())
10910 		print_irqtrace_events(current);
10911 
10912 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10913 				 preempt_disable_ip);
10914 
10915 	dump_stack();
10916 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10917 }
10918 EXPORT_SYMBOL(__might_resched);
10919 
__cant_sleep(const char * file,int line,int preempt_offset)10920 void __cant_sleep(const char *file, int line, int preempt_offset)
10921 {
10922 	static unsigned long prev_jiffy;
10923 
10924 	if (irqs_disabled())
10925 		return;
10926 
10927 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10928 		return;
10929 
10930 	if (preempt_count() > preempt_offset)
10931 		return;
10932 
10933 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10934 		return;
10935 	prev_jiffy = jiffies;
10936 
10937 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10938 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10939 			in_atomic(), irqs_disabled(),
10940 			current->pid, current->comm);
10941 
10942 	debug_show_held_locks(current);
10943 	dump_stack();
10944 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10945 }
10946 EXPORT_SYMBOL_GPL(__cant_sleep);
10947 
10948 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10949 void __cant_migrate(const char *file, int line)
10950 {
10951 	static unsigned long prev_jiffy;
10952 
10953 	if (irqs_disabled())
10954 		return;
10955 
10956 	if (is_migration_disabled(current))
10957 		return;
10958 
10959 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10960 		return;
10961 
10962 	if (preempt_count() > 0)
10963 		return;
10964 
10965 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10966 		return;
10967 	prev_jiffy = jiffies;
10968 
10969 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10970 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10971 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10972 	       current->pid, current->comm);
10973 
10974 	debug_show_held_locks(current);
10975 	dump_stack();
10976 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10977 }
10978 EXPORT_SYMBOL_GPL(__cant_migrate);
10979 #endif
10980 #endif
10981 
10982 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10983 void normalize_rt_tasks(void)
10984 {
10985 	struct task_struct *g, *p;
10986 	struct sched_attr attr = {
10987 		.sched_policy = SCHED_NORMAL,
10988 	};
10989 
10990 	read_lock(&tasklist_lock);
10991 	for_each_process_thread(g, p) {
10992 		/*
10993 		 * Only normalize user tasks:
10994 		 */
10995 		if (p->flags & PF_KTHREAD)
10996 			continue;
10997 
10998 		p->se.exec_start = 0;
10999 		schedstat_set(p->stats.wait_start,  0);
11000 		schedstat_set(p->stats.sleep_start, 0);
11001 		schedstat_set(p->stats.block_start, 0);
11002 
11003 		if (!dl_task(p) && !rt_task(p)) {
11004 			/*
11005 			 * Renice negative nice level userspace
11006 			 * tasks back to 0:
11007 			 */
11008 			if (task_nice(p) < 0)
11009 				set_user_nice(p, 0);
11010 			continue;
11011 		}
11012 
11013 		__sched_setscheduler(p, &attr, false, false);
11014 	}
11015 	read_unlock(&tasklist_lock);
11016 }
11017 
11018 #endif /* CONFIG_MAGIC_SYSRQ */
11019 
11020 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
11021 /*
11022  * These functions are only useful for the IA64 MCA handling, or kdb.
11023  *
11024  * They can only be called when the whole system has been
11025  * stopped - every CPU needs to be quiescent, and no scheduling
11026  * activity can take place. Using them for anything else would
11027  * be a serious bug, and as a result, they aren't even visible
11028  * under any other configuration.
11029  */
11030 
11031 /**
11032  * curr_task - return the current task for a given CPU.
11033  * @cpu: the processor in question.
11034  *
11035  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
11036  *
11037  * Return: The current task for @cpu.
11038  */
curr_task(int cpu)11039 struct task_struct *curr_task(int cpu)
11040 {
11041 	return cpu_curr(cpu);
11042 }
11043 
11044 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
11045 
11046 #ifdef CONFIG_IA64
11047 /**
11048  * ia64_set_curr_task - set the current task for a given CPU.
11049  * @cpu: the processor in question.
11050  * @p: the task pointer to set.
11051  *
11052  * Description: This function must only be used when non-maskable interrupts
11053  * are serviced on a separate stack. It allows the architecture to switch the
11054  * notion of the current task on a CPU in a non-blocking manner. This function
11055  * must be called with all CPU's synchronized, and interrupts disabled, the
11056  * and caller must save the original value of the current task (see
11057  * curr_task() above) and restore that value before reenabling interrupts and
11058  * re-starting the system.
11059  *
11060  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
11061  */
ia64_set_curr_task(int cpu,struct task_struct * p)11062 void ia64_set_curr_task(int cpu, struct task_struct *p)
11063 {
11064 	cpu_curr(cpu) = p;
11065 }
11066 
11067 #endif
11068 
11069 #ifdef CONFIG_CGROUP_SCHED
11070 /* task_group_lock serializes the addition/removal of task groups */
11071 static DEFINE_SPINLOCK(task_group_lock);
11072 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)11073 static inline void alloc_uclamp_sched_group(struct task_group *tg,
11074 					    struct task_group *parent)
11075 {
11076 #ifdef CONFIG_UCLAMP_TASK_GROUP
11077 	enum uclamp_id clamp_id;
11078 
11079 	for_each_clamp_id(clamp_id) {
11080 		uclamp_se_set(&tg->uclamp_req[clamp_id],
11081 			      uclamp_none(clamp_id), false);
11082 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
11083 	}
11084 #endif
11085 }
11086 
sched_free_group(struct task_group * tg)11087 static void sched_free_group(struct task_group *tg)
11088 {
11089 	free_fair_sched_group(tg);
11090 	free_rt_sched_group(tg);
11091 	autogroup_free(tg);
11092 	kmem_cache_free(task_group_cache, tg);
11093 }
11094 
sched_free_group_rcu(struct rcu_head * rcu)11095 static void sched_free_group_rcu(struct rcu_head *rcu)
11096 {
11097 	sched_free_group(container_of(rcu, struct task_group, rcu));
11098 }
11099 
sched_unregister_group(struct task_group * tg)11100 static void sched_unregister_group(struct task_group *tg)
11101 {
11102 	unregister_fair_sched_group(tg);
11103 	unregister_rt_sched_group(tg);
11104 	/*
11105 	 * We have to wait for yet another RCU grace period to expire, as
11106 	 * print_cfs_stats() might run concurrently.
11107 	 */
11108 	call_rcu(&tg->rcu, sched_free_group_rcu);
11109 }
11110 
11111 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)11112 struct task_group *sched_create_group(struct task_group *parent)
11113 {
11114 	struct task_group *tg;
11115 
11116 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
11117 	if (!tg)
11118 		return ERR_PTR(-ENOMEM);
11119 
11120 	if (!alloc_fair_sched_group(tg, parent))
11121 		goto err;
11122 
11123 	if (!alloc_rt_sched_group(tg, parent))
11124 		goto err;
11125 
11126 	alloc_uclamp_sched_group(tg, parent);
11127 
11128 	return tg;
11129 
11130 err:
11131 	sched_free_group(tg);
11132 	return ERR_PTR(-ENOMEM);
11133 }
11134 
sched_online_group(struct task_group * tg,struct task_group * parent)11135 void sched_online_group(struct task_group *tg, struct task_group *parent)
11136 {
11137 	unsigned long flags;
11138 
11139 	spin_lock_irqsave(&task_group_lock, flags);
11140 	list_add_rcu(&tg->list, &task_groups);
11141 
11142 	/* Root should already exist: */
11143 	WARN_ON(!parent);
11144 
11145 	tg->parent = parent;
11146 	INIT_LIST_HEAD(&tg->children);
11147 	list_add_rcu(&tg->siblings, &parent->children);
11148 	spin_unlock_irqrestore(&task_group_lock, flags);
11149 
11150 	online_fair_sched_group(tg);
11151 }
11152 
11153 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)11154 static void sched_unregister_group_rcu(struct rcu_head *rhp)
11155 {
11156 	/* Now it should be safe to free those cfs_rqs: */
11157 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
11158 }
11159 
sched_destroy_group(struct task_group * tg)11160 void sched_destroy_group(struct task_group *tg)
11161 {
11162 	/* Wait for possible concurrent references to cfs_rqs complete: */
11163 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
11164 }
11165 
sched_release_group(struct task_group * tg)11166 void sched_release_group(struct task_group *tg)
11167 {
11168 	unsigned long flags;
11169 
11170 	/*
11171 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
11172 	 * sched_cfs_period_timer()).
11173 	 *
11174 	 * For this to be effective, we have to wait for all pending users of
11175 	 * this task group to leave their RCU critical section to ensure no new
11176 	 * user will see our dying task group any more. Specifically ensure
11177 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
11178 	 *
11179 	 * We therefore defer calling unregister_fair_sched_group() to
11180 	 * sched_unregister_group() which is guarantied to get called only after the
11181 	 * current RCU grace period has expired.
11182 	 */
11183 	spin_lock_irqsave(&task_group_lock, flags);
11184 	list_del_rcu(&tg->list);
11185 	list_del_rcu(&tg->siblings);
11186 	spin_unlock_irqrestore(&task_group_lock, flags);
11187 }
11188 
sched_change_group(struct task_struct * tsk)11189 static void sched_change_group(struct task_struct *tsk)
11190 {
11191 	struct task_group *tg;
11192 
11193 	/*
11194 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
11195 	 * which is pointless here. Thus, we pass "true" to task_css_check()
11196 	 * to prevent lockdep warnings.
11197 	 */
11198 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
11199 			  struct task_group, css);
11200 	tg = autogroup_task_group(tsk, tg);
11201 	tsk->sched_task_group = tg;
11202 
11203 #ifdef CONFIG_FAIR_GROUP_SCHED
11204 	if (tsk->sched_class->task_change_group)
11205 		tsk->sched_class->task_change_group(tsk);
11206 	else
11207 #endif
11208 		set_task_rq(tsk, task_cpu(tsk));
11209 }
11210 
11211 /*
11212  * Change task's runqueue when it moves between groups.
11213  *
11214  * The caller of this function should have put the task in its new group by
11215  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
11216  * its new group.
11217  */
sched_move_task(struct task_struct * tsk)11218 void sched_move_task(struct task_struct *tsk)
11219 {
11220 	int queued, running, queue_flags =
11221 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
11222 	struct rq_flags rf;
11223 	struct rq *rq;
11224 
11225 	rq = task_rq_lock(tsk, &rf);
11226 	update_rq_clock(rq);
11227 
11228 	running = task_current(rq, tsk);
11229 	queued = task_on_rq_queued(tsk);
11230 
11231 	if (queued)
11232 		dequeue_task(rq, tsk, queue_flags);
11233 	if (running)
11234 		put_prev_task(rq, tsk);
11235 
11236 	sched_change_group(tsk);
11237 
11238 	if (queued)
11239 		enqueue_task(rq, tsk, queue_flags);
11240 	if (running) {
11241 		set_next_task(rq, tsk);
11242 		/*
11243 		 * After changing group, the running task may have joined a
11244 		 * throttled one but it's still the running task. Trigger a
11245 		 * resched to make sure that task can still run.
11246 		 */
11247 		resched_curr(rq);
11248 	}
11249 
11250 	task_rq_unlock(rq, tsk, &rf);
11251 }
11252 
css_tg(struct cgroup_subsys_state * css)11253 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
11254 {
11255 	return css ? container_of(css, struct task_group, css) : NULL;
11256 }
11257 
11258 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)11259 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11260 {
11261 	struct task_group *parent = css_tg(parent_css);
11262 	struct task_group *tg;
11263 
11264 	if (!parent) {
11265 		/* This is early initialization for the top cgroup */
11266 		return &root_task_group.css;
11267 	}
11268 
11269 	tg = sched_create_group(parent);
11270 	if (IS_ERR(tg))
11271 		return ERR_PTR(-ENOMEM);
11272 
11273 #ifdef CONFIG_SCHED_RTG_CGROUP
11274 	tg->colocate = false;
11275 	tg->colocate_update_disabled = false;
11276 #endif
11277 
11278 	return &tg->css;
11279 }
11280 
11281 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)11282 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
11283 {
11284 	struct task_group *tg = css_tg(css);
11285 	struct task_group *parent = css_tg(css->parent);
11286 
11287 	if (parent)
11288 		sched_online_group(tg, parent);
11289 
11290 #ifdef CONFIG_UCLAMP_TASK_GROUP
11291 	/* Propagate the effective uclamp value for the new group */
11292 	mutex_lock(&uclamp_mutex);
11293 	rcu_read_lock();
11294 	cpu_util_update_eff(css);
11295 	rcu_read_unlock();
11296 	mutex_unlock(&uclamp_mutex);
11297 #endif
11298 
11299 	return 0;
11300 }
11301 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)11302 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
11303 {
11304 	struct task_group *tg = css_tg(css);
11305 
11306 	sched_release_group(tg);
11307 }
11308 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)11309 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
11310 {
11311 	struct task_group *tg = css_tg(css);
11312 
11313 	/*
11314 	 * Relies on the RCU grace period between css_released() and this.
11315 	 */
11316 	sched_unregister_group(tg);
11317 }
11318 
11319 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)11320 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
11321 {
11322 	struct task_struct *task;
11323 	struct cgroup_subsys_state *css;
11324 
11325 	cgroup_taskset_for_each(task, css, tset) {
11326 		if (!sched_rt_can_attach(css_tg(css), task))
11327 			return -EINVAL;
11328 	}
11329 	return 0;
11330 }
11331 #endif
11332 
11333 #if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_RTG_CGROUP)
schedgp_attach(struct cgroup_taskset * tset)11334 static void schedgp_attach(struct cgroup_taskset *tset)
11335 {
11336 	struct task_struct *task;
11337 	struct cgroup_subsys_state *css;
11338 	bool colocate;
11339 	struct task_group *tg;
11340 
11341 	cgroup_taskset_first(tset, &css);
11342 	tg = css_tg(css);
11343 
11344 	colocate = tg->colocate;
11345 
11346 	cgroup_taskset_for_each(task, css, tset)
11347 		sync_cgroup_colocation(task, colocate);
11348 }
11349 #else
schedgp_attach(struct cgroup_taskset * tset)11350 static void schedgp_attach(struct cgroup_taskset *tset) { }
11351 #endif
11352 
cpu_cgroup_attach(struct cgroup_taskset * tset)11353 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
11354 {
11355 	struct task_struct *task;
11356 	struct cgroup_subsys_state *css;
11357 
11358 	cgroup_taskset_for_each(task, css, tset)
11359 		sched_move_task(task);
11360 }
11361 
11362 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)11363 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
11364 {
11365 	struct cgroup_subsys_state *top_css = css;
11366 	struct uclamp_se *uc_parent = NULL;
11367 	struct uclamp_se *uc_se = NULL;
11368 	unsigned int eff[UCLAMP_CNT];
11369 	enum uclamp_id clamp_id;
11370 	unsigned int clamps;
11371 
11372 	lockdep_assert_held(&uclamp_mutex);
11373 	SCHED_WARN_ON(!rcu_read_lock_held());
11374 
11375 	css_for_each_descendant_pre(css, top_css) {
11376 		uc_parent = css_tg(css)->parent
11377 			? css_tg(css)->parent->uclamp : NULL;
11378 
11379 		for_each_clamp_id(clamp_id) {
11380 			/* Assume effective clamps matches requested clamps */
11381 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
11382 			/* Cap effective clamps with parent's effective clamps */
11383 			if (uc_parent &&
11384 			    eff[clamp_id] > uc_parent[clamp_id].value) {
11385 				eff[clamp_id] = uc_parent[clamp_id].value;
11386 			}
11387 		}
11388 		/* Ensure protection is always capped by limit */
11389 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
11390 
11391 		/* Propagate most restrictive effective clamps */
11392 		clamps = 0x0;
11393 		uc_se = css_tg(css)->uclamp;
11394 		for_each_clamp_id(clamp_id) {
11395 			if (eff[clamp_id] == uc_se[clamp_id].value)
11396 				continue;
11397 			uc_se[clamp_id].value = eff[clamp_id];
11398 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
11399 			clamps |= (0x1 << clamp_id);
11400 		}
11401 		if (!clamps) {
11402 			css = css_rightmost_descendant(css);
11403 			continue;
11404 		}
11405 
11406 		/* Immediately update descendants RUNNABLE tasks */
11407 		uclamp_update_active_tasks(css);
11408 	}
11409 }
11410 
11411 /*
11412  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
11413  * C expression. Since there is no way to convert a macro argument (N) into a
11414  * character constant, use two levels of macros.
11415  */
11416 #define _POW10(exp) ((unsigned int)1e##exp)
11417 #define POW10(exp) _POW10(exp)
11418 
11419 struct uclamp_request {
11420 #define UCLAMP_PERCENT_SHIFT	2
11421 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
11422 	s64 percent;
11423 	u64 util;
11424 	int ret;
11425 };
11426 
11427 static inline struct uclamp_request
capacity_from_percent(char * buf)11428 capacity_from_percent(char *buf)
11429 {
11430 	struct uclamp_request req = {
11431 		.percent = UCLAMP_PERCENT_SCALE,
11432 		.util = SCHED_CAPACITY_SCALE,
11433 		.ret = 0,
11434 	};
11435 
11436 	buf = strim(buf);
11437 	if (strcmp(buf, "max")) {
11438 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
11439 					     &req.percent);
11440 		if (req.ret)
11441 			return req;
11442 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
11443 			req.ret = -ERANGE;
11444 			return req;
11445 		}
11446 
11447 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
11448 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
11449 	}
11450 
11451 	return req;
11452 }
11453 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)11454 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
11455 				size_t nbytes, loff_t off,
11456 				enum uclamp_id clamp_id)
11457 {
11458 	struct uclamp_request req;
11459 	struct task_group *tg;
11460 
11461 	req = capacity_from_percent(buf);
11462 	if (req.ret)
11463 		return req.ret;
11464 
11465 	static_branch_enable(&sched_uclamp_used);
11466 
11467 	mutex_lock(&uclamp_mutex);
11468 	rcu_read_lock();
11469 
11470 	tg = css_tg(of_css(of));
11471 	if (tg->uclamp_req[clamp_id].value != req.util)
11472 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
11473 
11474 	/*
11475 	 * Because of not recoverable conversion rounding we keep track of the
11476 	 * exact requested value
11477 	 */
11478 	tg->uclamp_pct[clamp_id] = req.percent;
11479 
11480 	/* Update effective clamps to track the most restrictive value */
11481 	cpu_util_update_eff(of_css(of));
11482 
11483 	rcu_read_unlock();
11484 	mutex_unlock(&uclamp_mutex);
11485 
11486 	return nbytes;
11487 }
11488 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11489 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
11490 				    char *buf, size_t nbytes,
11491 				    loff_t off)
11492 {
11493 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
11494 }
11495 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11496 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
11497 				    char *buf, size_t nbytes,
11498 				    loff_t off)
11499 {
11500 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
11501 }
11502 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)11503 static inline void cpu_uclamp_print(struct seq_file *sf,
11504 				    enum uclamp_id clamp_id)
11505 {
11506 	struct task_group *tg;
11507 	u64 util_clamp;
11508 	u64 percent;
11509 	u32 rem;
11510 
11511 	rcu_read_lock();
11512 	tg = css_tg(seq_css(sf));
11513 	util_clamp = tg->uclamp_req[clamp_id].value;
11514 	rcu_read_unlock();
11515 
11516 	if (util_clamp == SCHED_CAPACITY_SCALE) {
11517 		seq_puts(sf, "max\n");
11518 		return;
11519 	}
11520 
11521 	percent = tg->uclamp_pct[clamp_id];
11522 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
11523 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
11524 }
11525 
cpu_uclamp_min_show(struct seq_file * sf,void * v)11526 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
11527 {
11528 	cpu_uclamp_print(sf, UCLAMP_MIN);
11529 	return 0;
11530 }
11531 
cpu_uclamp_max_show(struct seq_file * sf,void * v)11532 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
11533 {
11534 	cpu_uclamp_print(sf, UCLAMP_MAX);
11535 	return 0;
11536 }
11537 
11538 #ifdef CONFIG_SCHED_RTG_CGROUP
sched_colocate_read(struct cgroup_subsys_state * css,struct cftype * cft)11539 static u64 sched_colocate_read(struct cgroup_subsys_state *css,
11540 				struct cftype *cft)
11541 {
11542 	struct task_group *tg = css_tg(css);
11543 
11544 	return (u64) tg->colocate;
11545 }
11546 
sched_colocate_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 colocate)11547 static int sched_colocate_write(struct cgroup_subsys_state *css,
11548 				struct cftype *cft, u64 colocate)
11549 {
11550 	struct task_group *tg = css_tg(css);
11551 
11552 	if (tg->colocate_update_disabled)
11553 		return -EPERM;
11554 
11555 	tg->colocate = !!colocate;
11556 	tg->colocate_update_disabled = true;
11557 
11558 	return 0;
11559 }
11560 #endif /* CONFIG_SCHED_RTG_CGROUP */
11561 #endif /* CONFIG_UCLAMP_TASK_GROUP */
11562 
11563 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)11564 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
11565 				struct cftype *cftype, u64 shareval)
11566 {
11567 	if (shareval > scale_load_down(ULONG_MAX))
11568 		shareval = MAX_SHARES;
11569 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
11570 }
11571 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11572 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
11573 			       struct cftype *cft)
11574 {
11575 	struct task_group *tg = css_tg(css);
11576 
11577 	return (u64) scale_load_down(tg->shares);
11578 }
11579 
11580 #ifdef CONFIG_CFS_BANDWIDTH
11581 static DEFINE_MUTEX(cfs_constraints_mutex);
11582 
11583 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
11584 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
11585 /* More than 203 days if BW_SHIFT equals 20. */
11586 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
11587 
11588 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
11589 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)11590 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
11591 				u64 burst)
11592 {
11593 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
11594 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11595 
11596 	if (tg == &root_task_group)
11597 		return -EINVAL;
11598 
11599 	/*
11600 	 * Ensure we have at some amount of bandwidth every period.  This is
11601 	 * to prevent reaching a state of large arrears when throttled via
11602 	 * entity_tick() resulting in prolonged exit starvation.
11603 	 */
11604 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
11605 		return -EINVAL;
11606 
11607 	/*
11608 	 * Likewise, bound things on the other side by preventing insane quota
11609 	 * periods.  This also allows us to normalize in computing quota
11610 	 * feasibility.
11611 	 */
11612 	if (period > max_cfs_quota_period)
11613 		return -EINVAL;
11614 
11615 	/*
11616 	 * Bound quota to defend quota against overflow during bandwidth shift.
11617 	 */
11618 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
11619 		return -EINVAL;
11620 
11621 	if (quota != RUNTIME_INF && (burst > quota ||
11622 				     burst + quota > max_cfs_runtime))
11623 		return -EINVAL;
11624 
11625 	/*
11626 	 * Prevent race between setting of cfs_rq->runtime_enabled and
11627 	 * unthrottle_offline_cfs_rqs().
11628 	 */
11629 	guard(cpus_read_lock)();
11630 	guard(mutex)(&cfs_constraints_mutex);
11631 
11632 	ret = __cfs_schedulable(tg, period, quota);
11633 	if (ret)
11634 		return ret;
11635 
11636 	runtime_enabled = quota != RUNTIME_INF;
11637 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
11638 	/*
11639 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
11640 	 * before making related changes, and on->off must occur afterwards
11641 	 */
11642 	if (runtime_enabled && !runtime_was_enabled)
11643 		cfs_bandwidth_usage_inc();
11644 
11645 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
11646 		cfs_b->period = ns_to_ktime(period);
11647 		cfs_b->quota = quota;
11648 		cfs_b->burst = burst;
11649 
11650 		__refill_cfs_bandwidth_runtime(cfs_b);
11651 
11652 		/*
11653 		 * Restart the period timer (if active) to handle new
11654 		 * period expiry:
11655 		 */
11656 		if (runtime_enabled)
11657 			start_cfs_bandwidth(cfs_b);
11658 	}
11659 
11660 	for_each_online_cpu(i) {
11661 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
11662 		struct rq *rq = cfs_rq->rq;
11663 
11664 		guard(rq_lock_irq)(rq);
11665 		cfs_rq->runtime_enabled = runtime_enabled;
11666 		cfs_rq->runtime_remaining = 0;
11667 
11668 		if (cfs_rq->throttled)
11669 			unthrottle_cfs_rq(cfs_rq);
11670 	}
11671 
11672 	if (runtime_was_enabled && !runtime_enabled)
11673 		cfs_bandwidth_usage_dec();
11674 
11675 	return 0;
11676 }
11677 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)11678 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
11679 {
11680 	u64 quota, period, burst;
11681 
11682 	period = ktime_to_ns(tg->cfs_bandwidth.period);
11683 	burst = tg->cfs_bandwidth.burst;
11684 	if (cfs_quota_us < 0)
11685 		quota = RUNTIME_INF;
11686 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
11687 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
11688 	else
11689 		return -EINVAL;
11690 
11691 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11692 }
11693 
tg_get_cfs_quota(struct task_group * tg)11694 static long tg_get_cfs_quota(struct task_group *tg)
11695 {
11696 	u64 quota_us;
11697 
11698 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
11699 		return -1;
11700 
11701 	quota_us = tg->cfs_bandwidth.quota;
11702 	do_div(quota_us, NSEC_PER_USEC);
11703 
11704 	return quota_us;
11705 }
11706 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)11707 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
11708 {
11709 	u64 quota, period, burst;
11710 
11711 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
11712 		return -EINVAL;
11713 
11714 	period = (u64)cfs_period_us * NSEC_PER_USEC;
11715 	quota = tg->cfs_bandwidth.quota;
11716 	burst = tg->cfs_bandwidth.burst;
11717 
11718 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11719 }
11720 
tg_get_cfs_period(struct task_group * tg)11721 static long tg_get_cfs_period(struct task_group *tg)
11722 {
11723 	u64 cfs_period_us;
11724 
11725 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
11726 	do_div(cfs_period_us, NSEC_PER_USEC);
11727 
11728 	return cfs_period_us;
11729 }
11730 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)11731 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11732 {
11733 	u64 quota, period, burst;
11734 
11735 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11736 		return -EINVAL;
11737 
11738 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11739 	period = ktime_to_ns(tg->cfs_bandwidth.period);
11740 	quota = tg->cfs_bandwidth.quota;
11741 
11742 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11743 }
11744 
tg_get_cfs_burst(struct task_group * tg)11745 static long tg_get_cfs_burst(struct task_group *tg)
11746 {
11747 	u64 burst_us;
11748 
11749 	burst_us = tg->cfs_bandwidth.burst;
11750 	do_div(burst_us, NSEC_PER_USEC);
11751 
11752 	return burst_us;
11753 }
11754 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11755 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11756 				  struct cftype *cft)
11757 {
11758 	return tg_get_cfs_quota(css_tg(css));
11759 }
11760 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11761 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11762 				   struct cftype *cftype, s64 cfs_quota_us)
11763 {
11764 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11765 }
11766 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11767 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11768 				   struct cftype *cft)
11769 {
11770 	return tg_get_cfs_period(css_tg(css));
11771 }
11772 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11773 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11774 				    struct cftype *cftype, u64 cfs_period_us)
11775 {
11776 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11777 }
11778 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11779 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11780 				  struct cftype *cft)
11781 {
11782 	return tg_get_cfs_burst(css_tg(css));
11783 }
11784 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11785 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11786 				   struct cftype *cftype, u64 cfs_burst_us)
11787 {
11788 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11789 }
11790 
11791 struct cfs_schedulable_data {
11792 	struct task_group *tg;
11793 	u64 period, quota;
11794 };
11795 
11796 /*
11797  * normalize group quota/period to be quota/max_period
11798  * note: units are usecs
11799  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11800 static u64 normalize_cfs_quota(struct task_group *tg,
11801 			       struct cfs_schedulable_data *d)
11802 {
11803 	u64 quota, period;
11804 
11805 	if (tg == d->tg) {
11806 		period = d->period;
11807 		quota = d->quota;
11808 	} else {
11809 		period = tg_get_cfs_period(tg);
11810 		quota = tg_get_cfs_quota(tg);
11811 	}
11812 
11813 	/* note: these should typically be equivalent */
11814 	if (quota == RUNTIME_INF || quota == -1)
11815 		return RUNTIME_INF;
11816 
11817 	return to_ratio(period, quota);
11818 }
11819 
tg_cfs_schedulable_down(struct task_group * tg,void * data)11820 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11821 {
11822 	struct cfs_schedulable_data *d = data;
11823 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11824 	s64 quota = 0, parent_quota = -1;
11825 
11826 	if (!tg->parent) {
11827 		quota = RUNTIME_INF;
11828 	} else {
11829 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11830 
11831 		quota = normalize_cfs_quota(tg, d);
11832 		parent_quota = parent_b->hierarchical_quota;
11833 
11834 		/*
11835 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11836 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11837 		 * inherit when no limit is set. In both cases this is used
11838 		 * by the scheduler to determine if a given CFS task has a
11839 		 * bandwidth constraint at some higher level.
11840 		 */
11841 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11842 			if (quota == RUNTIME_INF)
11843 				quota = parent_quota;
11844 			else if (parent_quota != RUNTIME_INF)
11845 				quota = min(quota, parent_quota);
11846 		} else {
11847 			if (quota == RUNTIME_INF)
11848 				quota = parent_quota;
11849 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11850 				return -EINVAL;
11851 		}
11852 	}
11853 	cfs_b->hierarchical_quota = quota;
11854 
11855 	return 0;
11856 }
11857 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11858 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11859 {
11860 	int ret;
11861 	struct cfs_schedulable_data data = {
11862 		.tg = tg,
11863 		.period = period,
11864 		.quota = quota,
11865 	};
11866 
11867 	if (quota != RUNTIME_INF) {
11868 		do_div(data.period, NSEC_PER_USEC);
11869 		do_div(data.quota, NSEC_PER_USEC);
11870 	}
11871 
11872 	rcu_read_lock();
11873 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11874 	rcu_read_unlock();
11875 
11876 	return ret;
11877 }
11878 
cpu_cfs_stat_show(struct seq_file * sf,void * v)11879 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11880 {
11881 	struct task_group *tg = css_tg(seq_css(sf));
11882 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11883 
11884 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11885 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11886 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11887 
11888 	if (schedstat_enabled() && tg != &root_task_group) {
11889 		struct sched_statistics *stats;
11890 		u64 ws = 0;
11891 		int i;
11892 
11893 		for_each_possible_cpu(i) {
11894 			stats = __schedstats_from_se(tg->se[i]);
11895 			ws += schedstat_val(stats->wait_sum);
11896 		}
11897 
11898 		seq_printf(sf, "wait_sum %llu\n", ws);
11899 	}
11900 
11901 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11902 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11903 
11904 	return 0;
11905 }
11906 
throttled_time_self(struct task_group * tg)11907 static u64 throttled_time_self(struct task_group *tg)
11908 {
11909 	int i;
11910 	u64 total = 0;
11911 
11912 	for_each_possible_cpu(i) {
11913 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11914 	}
11915 
11916 	return total;
11917 }
11918 
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11919 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11920 {
11921 	struct task_group *tg = css_tg(seq_css(sf));
11922 
11923 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11924 
11925 	return 0;
11926 }
11927 #endif /* CONFIG_CFS_BANDWIDTH */
11928 #endif /* CONFIG_FAIR_GROUP_SCHED */
11929 
11930 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11931 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11932 				struct cftype *cft, s64 val)
11933 {
11934 	return sched_group_set_rt_runtime(css_tg(css), val);
11935 }
11936 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11937 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11938 			       struct cftype *cft)
11939 {
11940 	return sched_group_rt_runtime(css_tg(css));
11941 }
11942 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11943 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11944 				    struct cftype *cftype, u64 rt_period_us)
11945 {
11946 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11947 }
11948 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11949 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11950 				   struct cftype *cft)
11951 {
11952 	return sched_group_rt_period(css_tg(css));
11953 }
11954 #endif /* CONFIG_RT_GROUP_SCHED */
11955 
11956 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11957 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11958 			       struct cftype *cft)
11959 {
11960 	return css_tg(css)->idle;
11961 }
11962 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11963 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11964 				struct cftype *cft, s64 idle)
11965 {
11966 	return sched_group_set_idle(css_tg(css), idle);
11967 }
11968 #endif
11969 
11970 static struct cftype cpu_legacy_files[] = {
11971 #ifdef CONFIG_FAIR_GROUP_SCHED
11972 	{
11973 		.name = "shares",
11974 		.read_u64 = cpu_shares_read_u64,
11975 		.write_u64 = cpu_shares_write_u64,
11976 	},
11977 	{
11978 		.name = "idle",
11979 		.read_s64 = cpu_idle_read_s64,
11980 		.write_s64 = cpu_idle_write_s64,
11981 	},
11982 #endif
11983 #ifdef CONFIG_CFS_BANDWIDTH
11984 	{
11985 		.name = "cfs_quota_us",
11986 		.read_s64 = cpu_cfs_quota_read_s64,
11987 		.write_s64 = cpu_cfs_quota_write_s64,
11988 	},
11989 	{
11990 		.name = "cfs_period_us",
11991 		.read_u64 = cpu_cfs_period_read_u64,
11992 		.write_u64 = cpu_cfs_period_write_u64,
11993 	},
11994 	{
11995 		.name = "cfs_burst_us",
11996 		.read_u64 = cpu_cfs_burst_read_u64,
11997 		.write_u64 = cpu_cfs_burst_write_u64,
11998 	},
11999 	{
12000 		.name = "stat",
12001 		.seq_show = cpu_cfs_stat_show,
12002 	},
12003 	{
12004 		.name = "stat.local",
12005 		.seq_show = cpu_cfs_local_stat_show,
12006 	},
12007 #endif
12008 #ifdef CONFIG_RT_GROUP_SCHED
12009 	{
12010 		.name = "rt_runtime_us",
12011 		.read_s64 = cpu_rt_runtime_read,
12012 		.write_s64 = cpu_rt_runtime_write,
12013 	},
12014 	{
12015 		.name = "rt_period_us",
12016 		.read_u64 = cpu_rt_period_read_uint,
12017 		.write_u64 = cpu_rt_period_write_uint,
12018 	},
12019 #endif
12020 #ifdef CONFIG_UCLAMP_TASK_GROUP
12021 	{
12022 		.name = "uclamp.min",
12023 		.flags = CFTYPE_NOT_ON_ROOT,
12024 		.seq_show = cpu_uclamp_min_show,
12025 		.write = cpu_uclamp_min_write,
12026 	},
12027 	{
12028 		.name = "uclamp.max",
12029 		.flags = CFTYPE_NOT_ON_ROOT,
12030 		.seq_show = cpu_uclamp_max_show,
12031 		.write = cpu_uclamp_max_write,
12032 	},
12033 #ifdef CONFIG_SCHED_RTG_CGROUP
12034 	{
12035 		.name = "uclamp.colocate",
12036 		.flags = CFTYPE_NOT_ON_ROOT,
12037 		.read_u64 = sched_colocate_read,
12038 		.write_u64 = sched_colocate_write,
12039 	},
12040 #endif
12041 #endif
12042 	{ }	/* Terminate */
12043 };
12044 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)12045 static int cpu_extra_stat_show(struct seq_file *sf,
12046 			       struct cgroup_subsys_state *css)
12047 {
12048 #ifdef CONFIG_CFS_BANDWIDTH
12049 	{
12050 		struct task_group *tg = css_tg(css);
12051 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
12052 		u64 throttled_usec, burst_usec;
12053 
12054 		throttled_usec = cfs_b->throttled_time;
12055 		do_div(throttled_usec, NSEC_PER_USEC);
12056 		burst_usec = cfs_b->burst_time;
12057 		do_div(burst_usec, NSEC_PER_USEC);
12058 
12059 		seq_printf(sf, "nr_periods %d\n"
12060 			   "nr_throttled %d\n"
12061 			   "throttled_usec %llu\n"
12062 			   "nr_bursts %d\n"
12063 			   "burst_usec %llu\n",
12064 			   cfs_b->nr_periods, cfs_b->nr_throttled,
12065 			   throttled_usec, cfs_b->nr_burst, burst_usec);
12066 	}
12067 #endif
12068 	return 0;
12069 }
12070 
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)12071 static int cpu_local_stat_show(struct seq_file *sf,
12072 			       struct cgroup_subsys_state *css)
12073 {
12074 #ifdef CONFIG_CFS_BANDWIDTH
12075 	{
12076 		struct task_group *tg = css_tg(css);
12077 		u64 throttled_self_usec;
12078 
12079 		throttled_self_usec = throttled_time_self(tg);
12080 		do_div(throttled_self_usec, NSEC_PER_USEC);
12081 
12082 		seq_printf(sf, "throttled_usec %llu\n",
12083 			   throttled_self_usec);
12084 	}
12085 #endif
12086 	return 0;
12087 }
12088 
12089 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)12090 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
12091 			       struct cftype *cft)
12092 {
12093 	struct task_group *tg = css_tg(css);
12094 	u64 weight = scale_load_down(tg->shares);
12095 
12096 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
12097 }
12098 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)12099 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
12100 				struct cftype *cft, u64 weight)
12101 {
12102 	/*
12103 	 * cgroup weight knobs should use the common MIN, DFL and MAX
12104 	 * values which are 1, 100 and 10000 respectively.  While it loses
12105 	 * a bit of range on both ends, it maps pretty well onto the shares
12106 	 * value used by scheduler and the round-trip conversions preserve
12107 	 * the original value over the entire range.
12108 	 */
12109 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
12110 		return -ERANGE;
12111 
12112 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
12113 
12114 	return sched_group_set_shares(css_tg(css), scale_load(weight));
12115 }
12116 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)12117 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
12118 				    struct cftype *cft)
12119 {
12120 	unsigned long weight = scale_load_down(css_tg(css)->shares);
12121 	int last_delta = INT_MAX;
12122 	int prio, delta;
12123 
12124 	/* find the closest nice value to the current weight */
12125 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
12126 		delta = abs(sched_prio_to_weight[prio] - weight);
12127 		if (delta >= last_delta)
12128 			break;
12129 		last_delta = delta;
12130 	}
12131 
12132 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
12133 }
12134 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)12135 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
12136 				     struct cftype *cft, s64 nice)
12137 {
12138 	unsigned long weight;
12139 	int idx;
12140 
12141 	if (nice < MIN_NICE || nice > MAX_NICE)
12142 		return -ERANGE;
12143 
12144 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
12145 	idx = array_index_nospec(idx, 40);
12146 	weight = sched_prio_to_weight[idx];
12147 
12148 	return sched_group_set_shares(css_tg(css), scale_load(weight));
12149 }
12150 #endif
12151 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)12152 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
12153 						  long period, long quota)
12154 {
12155 	if (quota < 0)
12156 		seq_puts(sf, "max");
12157 	else
12158 		seq_printf(sf, "%ld", quota);
12159 
12160 	seq_printf(sf, " %ld\n", period);
12161 }
12162 
12163 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)12164 static int __maybe_unused cpu_period_quota_parse(char *buf,
12165 						 u64 *periodp, u64 *quotap)
12166 {
12167 	char tok[21];	/* U64_MAX */
12168 
12169 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
12170 		return -EINVAL;
12171 
12172 	*periodp *= NSEC_PER_USEC;
12173 
12174 	if (sscanf(tok, "%llu", quotap))
12175 		*quotap *= NSEC_PER_USEC;
12176 	else if (!strcmp(tok, "max"))
12177 		*quotap = RUNTIME_INF;
12178 	else
12179 		return -EINVAL;
12180 
12181 	return 0;
12182 }
12183 
12184 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)12185 static int cpu_max_show(struct seq_file *sf, void *v)
12186 {
12187 	struct task_group *tg = css_tg(seq_css(sf));
12188 
12189 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
12190 	return 0;
12191 }
12192 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)12193 static ssize_t cpu_max_write(struct kernfs_open_file *of,
12194 			     char *buf, size_t nbytes, loff_t off)
12195 {
12196 	struct task_group *tg = css_tg(of_css(of));
12197 	u64 period = tg_get_cfs_period(tg);
12198 	u64 burst = tg->cfs_bandwidth.burst;
12199 	u64 quota;
12200 	int ret;
12201 
12202 	ret = cpu_period_quota_parse(buf, &period, &quota);
12203 	if (!ret)
12204 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
12205 	return ret ?: nbytes;
12206 }
12207 #endif
12208 
12209 static struct cftype cpu_files[] = {
12210 #ifdef CONFIG_FAIR_GROUP_SCHED
12211 	{
12212 		.name = "weight",
12213 		.flags = CFTYPE_NOT_ON_ROOT,
12214 		.read_u64 = cpu_weight_read_u64,
12215 		.write_u64 = cpu_weight_write_u64,
12216 	},
12217 	{
12218 		.name = "weight.nice",
12219 		.flags = CFTYPE_NOT_ON_ROOT,
12220 		.read_s64 = cpu_weight_nice_read_s64,
12221 		.write_s64 = cpu_weight_nice_write_s64,
12222 	},
12223 	{
12224 		.name = "idle",
12225 		.flags = CFTYPE_NOT_ON_ROOT,
12226 		.read_s64 = cpu_idle_read_s64,
12227 		.write_s64 = cpu_idle_write_s64,
12228 	},
12229 #endif
12230 #ifdef CONFIG_CFS_BANDWIDTH
12231 	{
12232 		.name = "max",
12233 		.flags = CFTYPE_NOT_ON_ROOT,
12234 		.seq_show = cpu_max_show,
12235 		.write = cpu_max_write,
12236 	},
12237 	{
12238 		.name = "max.burst",
12239 		.flags = CFTYPE_NOT_ON_ROOT,
12240 		.read_u64 = cpu_cfs_burst_read_u64,
12241 		.write_u64 = cpu_cfs_burst_write_u64,
12242 	},
12243 #endif
12244 #ifdef CONFIG_UCLAMP_TASK_GROUP
12245 	{
12246 		.name = "uclamp.min",
12247 		.flags = CFTYPE_NOT_ON_ROOT,
12248 		.seq_show = cpu_uclamp_min_show,
12249 		.write = cpu_uclamp_min_write,
12250 	},
12251 	{
12252 		.name = "uclamp.max",
12253 		.flags = CFTYPE_NOT_ON_ROOT,
12254 		.seq_show = cpu_uclamp_max_show,
12255 		.write = cpu_uclamp_max_write,
12256 	},
12257 #endif
12258 	{ }	/* terminate */
12259 };
12260 
12261 struct cgroup_subsys cpu_cgrp_subsys = {
12262 	.css_alloc	= cpu_cgroup_css_alloc,
12263 	.css_online	= cpu_cgroup_css_online,
12264 	.css_released	= cpu_cgroup_css_released,
12265 	.css_free	= cpu_cgroup_css_free,
12266 	.css_extra_stat_show = cpu_extra_stat_show,
12267 	.css_local_stat_show = cpu_local_stat_show,
12268 #ifdef CONFIG_RT_GROUP_SCHED
12269 	.can_attach	= cpu_cgroup_can_attach,
12270 #endif
12271 	.attach		= cpu_cgroup_attach,
12272 	.legacy_cftypes	= cpu_legacy_files,
12273 	.dfl_cftypes	= cpu_files,
12274 	.early_init	= true,
12275 	.threaded	= true,
12276 };
12277 
12278 #endif	/* CONFIG_CGROUP_SCHED */
12279 
dump_cpu_task(int cpu)12280 void dump_cpu_task(int cpu)
12281 {
12282 	if (cpu == smp_processor_id() && in_hardirq()) {
12283 		struct pt_regs *regs;
12284 
12285 		regs = get_irq_regs();
12286 		if (regs) {
12287 			show_regs(regs);
12288 			return;
12289 		}
12290 	}
12291 
12292 	if (trigger_single_cpu_backtrace(cpu))
12293 		return;
12294 
12295 	pr_info("Task dump for CPU %d:\n", cpu);
12296 	sched_show_task(cpu_curr(cpu));
12297 }
12298 
12299 /*
12300  * Nice levels are multiplicative, with a gentle 10% change for every
12301  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
12302  * nice 1, it will get ~10% less CPU time than another CPU-bound task
12303  * that remained on nice 0.
12304  *
12305  * The "10% effect" is relative and cumulative: from _any_ nice level,
12306  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
12307  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
12308  * If a task goes up by ~10% and another task goes down by ~10% then
12309  * the relative distance between them is ~25%.)
12310  */
12311 const int sched_prio_to_weight[40] = {
12312  /* -20 */     88761,     71755,     56483,     46273,     36291,
12313  /* -15 */     29154,     23254,     18705,     14949,     11916,
12314  /* -10 */      9548,      7620,      6100,      4904,      3906,
12315  /*  -5 */      3121,      2501,      1991,      1586,      1277,
12316  /*   0 */      1024,       820,       655,       526,       423,
12317  /*   5 */       335,       272,       215,       172,       137,
12318  /*  10 */       110,        87,        70,        56,        45,
12319  /*  15 */        36,        29,        23,        18,        15,
12320 };
12321 
12322 /*
12323  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
12324  *
12325  * In cases where the weight does not change often, we can use the
12326  * precalculated inverse to speed up arithmetics by turning divisions
12327  * into multiplications:
12328  */
12329 const u32 sched_prio_to_wmult[40] = {
12330  /* -20 */     48388,     59856,     76040,     92818,    118348,
12331  /* -15 */    147320,    184698,    229616,    287308,    360437,
12332  /* -10 */    449829,    563644,    704093,    875809,   1099582,
12333  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
12334  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
12335  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
12336  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
12337  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
12338 };
12339 
12340 #ifdef CONFIG_SCHED_LATENCY_NICE
12341 /*
12342  * latency weight for wakeup preemption
12343  */
12344 const int sched_latency_to_weight[40] = {
12345  /* -20 */      1024,       973,       922,       870,       819,
12346  /* -15 */       768,       717,       666,       614,       563,
12347  /* -10 */       512,       461,       410,       358,       307,
12348  /*  -5 */       256,       205,       154,       102,       51,
12349  /*   0 */	   0,       -51,      -102,      -154,      -205,
12350  /*   5 */      -256,      -307,      -358,      -410,      -461,
12351  /*  10 */      -512,      -563,      -614,      -666,      -717,
12352  /*  15 */      -768,      -819,      -870,      -922,      -973,
12353 };
12354 #endif
12355 
call_trace_sched_update_nr_running(struct rq * rq,int count)12356 void call_trace_sched_update_nr_running(struct rq *rq, int count)
12357 {
12358         trace_sched_update_nr_running_tp(rq, count);
12359 }
12360 
12361 #ifdef CONFIG_SCHED_MM_CID
12362 
12363 /*
12364  * @cid_lock: Guarantee forward-progress of cid allocation.
12365  *
12366  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
12367  * is only used when contention is detected by the lock-free allocation so
12368  * forward progress can be guaranteed.
12369  */
12370 DEFINE_RAW_SPINLOCK(cid_lock);
12371 
12372 /*
12373  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
12374  *
12375  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
12376  * detected, it is set to 1 to ensure that all newly coming allocations are
12377  * serialized by @cid_lock until the allocation which detected contention
12378  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
12379  * of a cid allocation.
12380  */
12381 int use_cid_lock;
12382 
12383 /*
12384  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
12385  * concurrently with respect to the execution of the source runqueue context
12386  * switch.
12387  *
12388  * There is one basic properties we want to guarantee here:
12389  *
12390  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
12391  * used by a task. That would lead to concurrent allocation of the cid and
12392  * userspace corruption.
12393  *
12394  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
12395  * that a pair of loads observe at least one of a pair of stores, which can be
12396  * shown as:
12397  *
12398  *      X = Y = 0
12399  *
12400  *      w[X]=1          w[Y]=1
12401  *      MB              MB
12402  *      r[Y]=y          r[X]=x
12403  *
12404  * Which guarantees that x==0 && y==0 is impossible. But rather than using
12405  * values 0 and 1, this algorithm cares about specific state transitions of the
12406  * runqueue current task (as updated by the scheduler context switch), and the
12407  * per-mm/cpu cid value.
12408  *
12409  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
12410  * task->mm != mm for the rest of the discussion. There are two scheduler state
12411  * transitions on context switch we care about:
12412  *
12413  * (TSA) Store to rq->curr with transition from (N) to (Y)
12414  *
12415  * (TSB) Store to rq->curr with transition from (Y) to (N)
12416  *
12417  * On the remote-clear side, there is one transition we care about:
12418  *
12419  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
12420  *
12421  * There is also a transition to UNSET state which can be performed from all
12422  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
12423  * guarantees that only a single thread will succeed:
12424  *
12425  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
12426  *
12427  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
12428  * when a thread is actively using the cid (property (1)).
12429  *
12430  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
12431  *
12432  * Scenario A) (TSA)+(TMA) (from next task perspective)
12433  *
12434  * CPU0                                      CPU1
12435  *
12436  * Context switch CS-1                       Remote-clear
12437  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
12438  *                                             (implied barrier after cmpxchg)
12439  *   - switch_mm_cid()
12440  *     - memory barrier (see switch_mm_cid()
12441  *       comment explaining how this barrier
12442  *       is combined with other scheduler
12443  *       barriers)
12444  *     - mm_cid_get (next)
12445  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
12446  *
12447  * This Dekker ensures that either task (Y) is observed by the
12448  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
12449  * observed.
12450  *
12451  * If task (Y) store is observed by rcu_dereference(), it means that there is
12452  * still an active task on the cpu. Remote-clear will therefore not transition
12453  * to UNSET, which fulfills property (1).
12454  *
12455  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
12456  * it will move its state to UNSET, which clears the percpu cid perhaps
12457  * uselessly (which is not an issue for correctness). Because task (Y) is not
12458  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
12459  * state to UNSET is done with a cmpxchg expecting that the old state has the
12460  * LAZY flag set, only one thread will successfully UNSET.
12461  *
12462  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
12463  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
12464  * CPU1 will observe task (Y) and do nothing more, which is fine.
12465  *
12466  * What we are effectively preventing with this Dekker is a scenario where
12467  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
12468  * because this would UNSET a cid which is actively used.
12469  */
12470 
sched_mm_cid_migrate_from(struct task_struct * t)12471 void sched_mm_cid_migrate_from(struct task_struct *t)
12472 {
12473 	t->migrate_from_cpu = task_cpu(t);
12474 }
12475 
12476 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)12477 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
12478 					  struct task_struct *t,
12479 					  struct mm_cid *src_pcpu_cid)
12480 {
12481 	struct mm_struct *mm = t->mm;
12482 	struct task_struct *src_task;
12483 	int src_cid, last_mm_cid;
12484 
12485 	if (!mm)
12486 		return -1;
12487 
12488 	last_mm_cid = t->last_mm_cid;
12489 	/*
12490 	 * If the migrated task has no last cid, or if the current
12491 	 * task on src rq uses the cid, it means the source cid does not need
12492 	 * to be moved to the destination cpu.
12493 	 */
12494 	if (last_mm_cid == -1)
12495 		return -1;
12496 	src_cid = READ_ONCE(src_pcpu_cid->cid);
12497 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
12498 		return -1;
12499 
12500 	/*
12501 	 * If we observe an active task using the mm on this rq, it means we
12502 	 * are not the last task to be migrated from this cpu for this mm, so
12503 	 * there is no need to move src_cid to the destination cpu.
12504 	 */
12505 	rcu_read_lock();
12506 	src_task = rcu_dereference(src_rq->curr);
12507 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
12508 		rcu_read_unlock();
12509 		t->last_mm_cid = -1;
12510 		return -1;
12511 	}
12512 	rcu_read_unlock();
12513 
12514 	return src_cid;
12515 }
12516 
12517 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)12518 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
12519 					      struct task_struct *t,
12520 					      struct mm_cid *src_pcpu_cid,
12521 					      int src_cid)
12522 {
12523 	struct task_struct *src_task;
12524 	struct mm_struct *mm = t->mm;
12525 	int lazy_cid;
12526 
12527 	if (src_cid == -1)
12528 		return -1;
12529 
12530 	/*
12531 	 * Attempt to clear the source cpu cid to move it to the destination
12532 	 * cpu.
12533 	 */
12534 	lazy_cid = mm_cid_set_lazy_put(src_cid);
12535 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
12536 		return -1;
12537 
12538 	/*
12539 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12540 	 * rq->curr->mm matches the scheduler barrier in context_switch()
12541 	 * between store to rq->curr and load of prev and next task's
12542 	 * per-mm/cpu cid.
12543 	 *
12544 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12545 	 * rq->curr->mm_cid_active matches the barrier in
12546 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
12547 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
12548 	 * load of per-mm/cpu cid.
12549 	 */
12550 
12551 	/*
12552 	 * If we observe an active task using the mm on this rq after setting
12553 	 * the lazy-put flag, this task will be responsible for transitioning
12554 	 * from lazy-put flag set to MM_CID_UNSET.
12555 	 */
12556 	rcu_read_lock();
12557 	src_task = rcu_dereference(src_rq->curr);
12558 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
12559 		rcu_read_unlock();
12560 		/*
12561 		 * We observed an active task for this mm, there is therefore
12562 		 * no point in moving this cid to the destination cpu.
12563 		 */
12564 		t->last_mm_cid = -1;
12565 		return -1;
12566 	}
12567 	rcu_read_unlock();
12568 
12569 	/*
12570 	 * The src_cid is unused, so it can be unset.
12571 	 */
12572 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
12573 		return -1;
12574 	return src_cid;
12575 }
12576 
12577 /*
12578  * Migration to dst cpu. Called with dst_rq lock held.
12579  * Interrupts are disabled, which keeps the window of cid ownership without the
12580  * source rq lock held small.
12581  */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)12582 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
12583 {
12584 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
12585 	struct mm_struct *mm = t->mm;
12586 	int src_cid, dst_cid, src_cpu;
12587 	struct rq *src_rq;
12588 
12589 	lockdep_assert_rq_held(dst_rq);
12590 
12591 	if (!mm)
12592 		return;
12593 	src_cpu = t->migrate_from_cpu;
12594 	if (src_cpu == -1) {
12595 		t->last_mm_cid = -1;
12596 		return;
12597 	}
12598 	/*
12599 	 * Move the src cid if the dst cid is unset. This keeps id
12600 	 * allocation closest to 0 in cases where few threads migrate around
12601 	 * many cpus.
12602 	 *
12603 	 * If destination cid is already set, we may have to just clear
12604 	 * the src cid to ensure compactness in frequent migrations
12605 	 * scenarios.
12606 	 *
12607 	 * It is not useful to clear the src cid when the number of threads is
12608 	 * greater or equal to the number of allowed cpus, because user-space
12609 	 * can expect that the number of allowed cids can reach the number of
12610 	 * allowed cpus.
12611 	 */
12612 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
12613 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
12614 	if (!mm_cid_is_unset(dst_cid) &&
12615 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
12616 		return;
12617 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
12618 	src_rq = cpu_rq(src_cpu);
12619 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
12620 	if (src_cid == -1)
12621 		return;
12622 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
12623 							    src_cid);
12624 	if (src_cid == -1)
12625 		return;
12626 	if (!mm_cid_is_unset(dst_cid)) {
12627 		__mm_cid_put(mm, src_cid);
12628 		return;
12629 	}
12630 	/* Move src_cid to dst cpu. */
12631 	mm_cid_snapshot_time(dst_rq, mm);
12632 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
12633 }
12634 
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)12635 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
12636 				      int cpu)
12637 {
12638 	struct rq *rq = cpu_rq(cpu);
12639 	struct task_struct *t;
12640 	unsigned long flags;
12641 	int cid, lazy_cid;
12642 
12643 	cid = READ_ONCE(pcpu_cid->cid);
12644 	if (!mm_cid_is_valid(cid))
12645 		return;
12646 
12647 	/*
12648 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
12649 	 * there happens to be other tasks left on the source cpu using this
12650 	 * mm, the next task using this mm will reallocate its cid on context
12651 	 * switch.
12652 	 */
12653 	lazy_cid = mm_cid_set_lazy_put(cid);
12654 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
12655 		return;
12656 
12657 	/*
12658 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12659 	 * rq->curr->mm matches the scheduler barrier in context_switch()
12660 	 * between store to rq->curr and load of prev and next task's
12661 	 * per-mm/cpu cid.
12662 	 *
12663 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
12664 	 * rq->curr->mm_cid_active matches the barrier in
12665 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
12666 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
12667 	 * load of per-mm/cpu cid.
12668 	 */
12669 
12670 	/*
12671 	 * If we observe an active task using the mm on this rq after setting
12672 	 * the lazy-put flag, that task will be responsible for transitioning
12673 	 * from lazy-put flag set to MM_CID_UNSET.
12674 	 */
12675 	rcu_read_lock();
12676 	t = rcu_dereference(rq->curr);
12677 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
12678 		rcu_read_unlock();
12679 		return;
12680 	}
12681 	rcu_read_unlock();
12682 
12683 	/*
12684 	 * The cid is unused, so it can be unset.
12685 	 * Disable interrupts to keep the window of cid ownership without rq
12686 	 * lock small.
12687 	 */
12688 	local_irq_save(flags);
12689 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
12690 		__mm_cid_put(mm, cid);
12691 	local_irq_restore(flags);
12692 }
12693 
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)12694 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
12695 {
12696 	struct rq *rq = cpu_rq(cpu);
12697 	struct mm_cid *pcpu_cid;
12698 	struct task_struct *curr;
12699 	u64 rq_clock;
12700 
12701 	/*
12702 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
12703 	 * while is irrelevant.
12704 	 */
12705 	rq_clock = READ_ONCE(rq->clock);
12706 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12707 
12708 	/*
12709 	 * In order to take care of infrequently scheduled tasks, bump the time
12710 	 * snapshot associated with this cid if an active task using the mm is
12711 	 * observed on this rq.
12712 	 */
12713 	rcu_read_lock();
12714 	curr = rcu_dereference(rq->curr);
12715 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
12716 		WRITE_ONCE(pcpu_cid->time, rq_clock);
12717 		rcu_read_unlock();
12718 		return;
12719 	}
12720 	rcu_read_unlock();
12721 
12722 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
12723 		return;
12724 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12725 }
12726 
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)12727 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
12728 					     int weight)
12729 {
12730 	struct mm_cid *pcpu_cid;
12731 	int cid;
12732 
12733 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12734 	cid = READ_ONCE(pcpu_cid->cid);
12735 	if (!mm_cid_is_valid(cid) || cid < weight)
12736 		return;
12737 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12738 }
12739 
task_mm_cid_work(struct callback_head * work)12740 static void task_mm_cid_work(struct callback_head *work)
12741 {
12742 	unsigned long now = jiffies, old_scan, next_scan;
12743 	struct task_struct *t = current;
12744 	struct cpumask *cidmask;
12745 	struct mm_struct *mm;
12746 	int weight, cpu;
12747 
12748 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
12749 
12750 	work->next = work;	/* Prevent double-add */
12751 	if (t->flags & PF_EXITING)
12752 		return;
12753 	mm = t->mm;
12754 	if (!mm)
12755 		return;
12756 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
12757 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12758 	if (!old_scan) {
12759 		unsigned long res;
12760 
12761 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12762 		if (res != old_scan)
12763 			old_scan = res;
12764 		else
12765 			old_scan = next_scan;
12766 	}
12767 	if (time_before(now, old_scan))
12768 		return;
12769 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12770 		return;
12771 	cidmask = mm_cidmask(mm);
12772 	/* Clear cids that were not recently used. */
12773 	for_each_possible_cpu(cpu)
12774 		sched_mm_cid_remote_clear_old(mm, cpu);
12775 	weight = cpumask_weight(cidmask);
12776 	/*
12777 	 * Clear cids that are greater or equal to the cidmask weight to
12778 	 * recompact it.
12779 	 */
12780 	for_each_possible_cpu(cpu)
12781 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12782 }
12783 
init_sched_mm_cid(struct task_struct * t)12784 void init_sched_mm_cid(struct task_struct *t)
12785 {
12786 	struct mm_struct *mm = t->mm;
12787 	int mm_users = 0;
12788 
12789 	if (mm) {
12790 		mm_users = atomic_read(&mm->mm_users);
12791 		if (mm_users == 1)
12792 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12793 	}
12794 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
12795 	init_task_work(&t->cid_work, task_mm_cid_work);
12796 }
12797 
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12798 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12799 {
12800 	struct callback_head *work = &curr->cid_work;
12801 	unsigned long now = jiffies;
12802 
12803 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12804 	    work->next != work)
12805 		return;
12806 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12807 		return;
12808 
12809 	/* No page allocation under rq lock */
12810 	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12811 }
12812 
sched_mm_cid_exit_signals(struct task_struct * t)12813 void sched_mm_cid_exit_signals(struct task_struct *t)
12814 {
12815 	struct mm_struct *mm = t->mm;
12816 	struct rq_flags rf;
12817 	struct rq *rq;
12818 
12819 	if (!mm)
12820 		return;
12821 
12822 	preempt_disable();
12823 	rq = this_rq();
12824 	rq_lock_irqsave(rq, &rf);
12825 	preempt_enable_no_resched();	/* holding spinlock */
12826 	WRITE_ONCE(t->mm_cid_active, 0);
12827 	/*
12828 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12829 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12830 	 */
12831 	smp_mb();
12832 	mm_cid_put(mm);
12833 	t->last_mm_cid = t->mm_cid = -1;
12834 	rq_unlock_irqrestore(rq, &rf);
12835 }
12836 
sched_mm_cid_before_execve(struct task_struct * t)12837 void sched_mm_cid_before_execve(struct task_struct *t)
12838 {
12839 	struct mm_struct *mm = t->mm;
12840 	struct rq_flags rf;
12841 	struct rq *rq;
12842 
12843 	if (!mm)
12844 		return;
12845 
12846 	preempt_disable();
12847 	rq = this_rq();
12848 	rq_lock_irqsave(rq, &rf);
12849 	preempt_enable_no_resched();	/* holding spinlock */
12850 	WRITE_ONCE(t->mm_cid_active, 0);
12851 	/*
12852 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12853 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12854 	 */
12855 	smp_mb();
12856 	mm_cid_put(mm);
12857 	t->last_mm_cid = t->mm_cid = -1;
12858 	rq_unlock_irqrestore(rq, &rf);
12859 }
12860 
sched_mm_cid_after_execve(struct task_struct * t)12861 void sched_mm_cid_after_execve(struct task_struct *t)
12862 {
12863 	struct mm_struct *mm = t->mm;
12864 	struct rq_flags rf;
12865 	struct rq *rq;
12866 
12867 	if (!mm)
12868 		return;
12869 
12870 	preempt_disable();
12871 	rq = this_rq();
12872 	rq_lock_irqsave(rq, &rf);
12873 	preempt_enable_no_resched();	/* holding spinlock */
12874 	WRITE_ONCE(t->mm_cid_active, 1);
12875 	/*
12876 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12877 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12878 	 */
12879 	smp_mb();
12880 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12881 	rq_unlock_irqrestore(rq, &rf);
12882 	rseq_set_notify_resume(t);
12883 }
12884 
sched_mm_cid_fork(struct task_struct * t)12885 void sched_mm_cid_fork(struct task_struct *t)
12886 {
12887 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12888 	t->mm_cid_active = 1;
12889 }
12890 #endif
12891 
12892 #ifdef CONFIG_SCHED_WALT
12893 /*
12894  * sched_exit() - Set EXITING_TASK_MARKER in task's ravg.demand field
12895  *
12896  * Stop accounting (exiting) task's future cpu usage
12897  *
12898  * We need this so that reset_all_windows_stats() can function correctly.
12899  * reset_all_window_stats() depends on do_each_thread/for_each_thread task
12900  * iterators to reset *all* task's statistics. Exiting tasks however become
12901  * invisible to those iterators. sched_exit() is called on a exiting task prior
12902  * to being removed from task_list, which will let reset_all_window_stats()
12903  * function correctly.
12904  */
sched_exit(struct task_struct * p)12905 void sched_exit(struct task_struct *p)
12906 {
12907 	struct rq_flags rf;
12908 	struct rq *rq;
12909 	u64 wallclock;
12910 
12911 #ifdef CONFIG_SCHED_RTG
12912 	sched_set_group_id(p, 0);
12913 #endif
12914 
12915 	rq = task_rq_lock(p, &rf);
12916 
12917 	/* rq->curr == p */
12918 	wallclock = sched_ktime_clock();
12919 	update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
12920 	dequeue_task(rq, p, 0);
12921 	/*
12922 	 * task's contribution is already removed from the
12923 	 * cumulative window demand in dequeue. As the
12924 	 * task's stats are reset, the next enqueue does
12925 	 * not change the cumulative window demand.
12926 	 */
12927 	reset_task_stats(p);
12928 	p->ravg.mark_start = wallclock;
12929 	p->ravg.sum_history[0] = EXITING_TASK_MARKER;
12930 
12931 	enqueue_task(rq, p, 0);
12932 	task_rq_unlock(rq, p, &rf);
12933 	free_task_load_ptrs(p);
12934 }
12935 #endif /* CONFIG_SCHED_WALT */
12936