1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2024 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 /**
19 * @brief Functions and data declarations.
20 */
21
22 #ifndef ASTCENC_INTERNAL_INCLUDED
23 #define ASTCENC_INTERNAL_INCLUDED
24
25 #include <algorithm>
26 #include <cstddef>
27 #include <cstdint>
28 #if defined(ASTCENC_DIAGNOSTICS)
29 #include <cstdio>
30 #endif
31 #include <cstdlib>
32 #include <limits>
33 #include <mutex>
34
35 #ifdef ASTC_CUSTOMIZED_ENABLE
36 #include <unistd.h>
37 #include <string>
38 #include "hilog/log.h"
39 #define ASTCENC_LOG_DOMAIN 0x2102
40 #define ASTCENC_OHOS_LOG_TAG "astcenc"
41
42 #ifdef MS_COMPILE_WITH_OHOS_NDK
43 #define ASTCENC_DEBUG(content, args...) \
44 { OH_LOG_Print(LOG_APP, LOG_DEBUG, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
45 "%s:%d " #content, __func__, __LINE__, ##args); }
46 #define ASTCENC_WARN(content, args...) \
47 { OH_LOG_Print(LOG_APP, LOG_WARN, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
48 "%s:%d " #content, __func__, __LINE__, ##args); }
49 #define ASTCENC_INFO(content, args...) \
50 { OH_LOG_Print(LOG_APP, LOG_INFO, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
51 "%s:%d " #content, __func__, __LINE__, ##args); }
52 #define ASTCENC_ERROR(content, args...) \
53 { OH_LOG_Print(LOG_APP, LOG_ERROR, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
54 "%s:%d " #content, __func__, __LINE__, ##args); }
55 #else
56 #define ASTCENC_DEBUG(content, args...) \
57 { HiLogPrint(LOG_APP, LOG_DEBUG, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
58 "%s:%d " #content, __func__, __LINE__, ##args); }
59 #define ASTCENC_WARN(content, args...) \
60 { HiLogPrint(LOG_APP, LOG_WARN, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
61 "%s:%d " #content, __func__, __LINE__, ##args); }
62 #define ASTCENC_INFO(content, args...) \
63 { HiLogPrint(LOG_APP, LOG_INFO, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
64 "%s:%d " #content, __func__, __LINE__, ##args); }
65 #define ASTCENC_ERROR(content, args...) \
66 { HiLogPrint(LOG_APP, LOG_ERROR, ASTCENC_LOG_DOMAIN, ASTCENC_OHOS_LOG_TAG, \
67 "%s:%d " #content, __func__, __LINE__, ##args); }
68 #endif
69 #if defined(_WIN32) && !defined(__CYGWIN__)
70 #define NOMINMAX
71 #include <windows.h>
72 #include <io.h>
73 #else
74 #include <dlfcn.h>
75 #endif
76 #endif
77
78 #include "astcenc.h"
79 #include "astcenc_mathlib.h"
80 #include "astcenc_vecmathlib.h"
81
82 /**
83 * @brief Make a promise to the compiler's optimizer.
84 *
85 * A promise is an expression that the optimizer is can assume is true for to help it generate
86 * faster code. Common use cases for this are to promise that a for loop will iterate more than
87 * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop
88 * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer.
89 */
90 #if defined(NDEBUG)
91 #if !defined(__clang__) && defined(_MSC_VER)
92 #define promise(cond) __assume(cond)
93 #elif defined(__clang__)
94 #if __has_builtin(__builtin_assume)
95 #define promise(cond) __builtin_assume(cond)
96 #elif __has_builtin(__builtin_unreachable)
97 #define promise(cond) if (!(cond)) { __builtin_unreachable(); }
98 #else
99 #define promise(cond)
100 #endif
101 #else // Assume GCC
102 #define promise(cond) if (!(cond)) { __builtin_unreachable(); }
103 #endif
104 #else
105 #define promise(cond) assert(cond)
106 #endif
107
108 /* ============================================================================
109 Constants
110 ============================================================================ */
111 #if !defined(ASTCENC_BLOCK_MAX_TEXELS)
112 #define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block
113 #endif
114
115 /** @brief The maximum number of texels a block can support (6x6x6 block). */
116 static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS };
117
118 /** @brief The maximum number of components a block can support. */
119 static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 };
120
121 /** @brief The maximum number of partitions a block can support. */
122 static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 };
123
124 /** @brief The number of partitionings, per partition count, suported by the ASTC format. */
125 static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 };
126
127 /** @brief The maximum number of texels used during partition selection for texel clustering. */
128 static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 };
129
130 /** @brief The maximum number of weights a block can support. */
131 static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 };
132
133 /** @brief The maximum number of weights a block can support per plane in 2 plane mode. */
134 static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 };
135
136 /** @brief The minimum number of weight bits a candidate encoding must encode. */
137 static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 };
138
139 /** @brief The maximum number of weight bits a candidate encoding can encode. */
140 static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 };
141
142 /** @brief The index indicating a bad (unused) block mode in the remap array. */
143 static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu };
144
145 /** @brief The index indicating a bad (unused) partitioning in the remap array. */
146 static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu };
147
148 /** @brief The number of partition index bits supported by the ASTC format . */
149 static constexpr unsigned int PARTITION_INDEX_BITS { 10 };
150
151 /** @brief The offset of the plane 2 weights in shared weight arrays. */
152 static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE };
153
154 /** @brief The sum of quantized weights for one texel. */
155 static constexpr float WEIGHTS_TEXEL_SUM { 16.0f };
156
157 /** @brief The number of block modes supported by the ASTC format. */
158 static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 };
159
160 /** @brief The number of weight grid decimation modes supported by the ASTC format. */
161 static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 };
162
163 /** @brief The high default error used to initialize error trackers. */
164 static constexpr float ERROR_CALC_DEFAULT { 1e30f };
165
166 /**
167 * @brief The minimum tuning setting threshold for the one partition fast path.
168 */
169 static constexpr float TUNE_MIN_SEARCH_MODE0 { 0.85f };
170
171 /**
172 * @brief The maximum number of candidate encodings tested for each encoding mode.
173 *
174 * This can be dynamically reduced by the compression quality preset.
175 */
176 static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 };
177
178 /**
179 * @brief The maximum number of candidate partitionings tested for each encoding mode.
180 *
181 * This can be dynamically reduced by the compression quality preset.
182 */
183 static constexpr unsigned int TUNE_MAX_PARTITIONING_CANDIDATES { 8 };
184
185 /**
186 * @brief The maximum quant level using full angular endpoint search method.
187 *
188 * The angular endpoint search is used to find the min/max weight that should
189 * be used for a given quantization level. It is effective but expensive, so
190 * we only use it where it has the most value - low quant levels with wide
191 * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we
192 * assume the min weight is 0.0f, and the max weight is 1.0f.
193 *
194 * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills
195 * one 8-wide vector. Decreasing by one doesn't buy much performance, and
196 * increasing by one is disproportionately expensive.
197 */
198 static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */
199
200 static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0,
201 "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH");
202
203 static_assert(BLOCK_MAX_TEXELS <= 216,
204 "BLOCK_MAX_TEXELS must not be greater than 216");
205
206 static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0,
207 "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH");
208
209 static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0,
210 "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH");
211
212
213 /* ============================================================================
214 Commonly used data structures
215 ============================================================================ */
216
217 /**
218 * @brief The ASTC endpoint formats.
219 *
220 * Note, the values here are used directly in the encoding in the format so do not rearrange.
221 */
222 enum endpoint_formats
223 {
224 FMT_LUMINANCE = 0,
225 FMT_LUMINANCE_DELTA = 1,
226 FMT_HDR_LUMINANCE_LARGE_RANGE = 2,
227 FMT_HDR_LUMINANCE_SMALL_RANGE = 3,
228 FMT_LUMINANCE_ALPHA = 4,
229 FMT_LUMINANCE_ALPHA_DELTA = 5,
230 FMT_RGB_SCALE = 6,
231 FMT_HDR_RGB_SCALE = 7,
232 FMT_RGB = 8,
233 FMT_RGB_DELTA = 9,
234 FMT_RGB_SCALE_ALPHA = 10,
235 FMT_HDR_RGB = 11,
236 FMT_RGBA = 12,
237 FMT_RGBA_DELTA = 13,
238 FMT_HDR_RGB_LDR_ALPHA = 14,
239 FMT_HDR_RGBA = 15
240 };
241
242 /**
243 * @brief The ASTC quantization methods.
244 *
245 * Note, the values here are used directly in the encoding in the format so do not rearrange.
246 */
247 enum quant_method
248 {
249 QUANT_2 = 0,
250 QUANT_3 = 1,
251 QUANT_4 = 2,
252 QUANT_5 = 3,
253 QUANT_6 = 4,
254 QUANT_8 = 5,
255 QUANT_10 = 6,
256 QUANT_12 = 7,
257 QUANT_16 = 8,
258 QUANT_20 = 9,
259 QUANT_24 = 10,
260 QUANT_32 = 11,
261 QUANT_40 = 12,
262 QUANT_48 = 13,
263 QUANT_64 = 14,
264 QUANT_80 = 15,
265 QUANT_96 = 16,
266 QUANT_128 = 17,
267 QUANT_160 = 18,
268 QUANT_192 = 19,
269 QUANT_256 = 20
270 };
271
272 /**
273 * @brief The number of levels use by an ASTC quantization method.
274 *
275 * @param method The quantization method
276 *
277 * @return The number of levels used by @c method.
278 */
get_quant_level(quant_method method)279 static inline unsigned int get_quant_level(quant_method method)
280 {
281 switch (method)
282 {
283 case QUANT_2: return 2;
284 case QUANT_3: return 3;
285 case QUANT_4: return 4;
286 case QUANT_5: return 5;
287 case QUANT_6: return 6;
288 case QUANT_8: return 8;
289 case QUANT_10: return 10;
290 case QUANT_12: return 12;
291 case QUANT_16: return 16;
292 case QUANT_20: return 20;
293 case QUANT_24: return 24;
294 case QUANT_32: return 32;
295 case QUANT_40: return 40;
296 case QUANT_48: return 48;
297 case QUANT_64: return 64;
298 case QUANT_80: return 80;
299 case QUANT_96: return 96;
300 case QUANT_128: return 128;
301 case QUANT_160: return 160;
302 case QUANT_192: return 192;
303 case QUANT_256: return 256;
304 }
305
306 // Unreachable - the enum is fully described
307 return 0;
308 }
309
310 /**
311 * @brief Computed metrics about a partition in a block.
312 */
313 struct partition_metrics
314 {
315 /** @brief The error-weighted average color in the partition. */
316 vfloat4 avg;
317
318 /** @brief The dominant error-weighted direction in the partition. */
319 vfloat4 dir;
320 };
321
322 /**
323 * @brief Computed lines for a a three component analysis.
324 */
325 struct partition_lines3
326 {
327 /** @brief Line for uncorrelated chroma. */
328 line3 uncor_line;
329
330 /** @brief Line for correlated chroma, passing though the origin. */
331 line3 samec_line;
332
333 /** @brief Post-processed line for uncorrelated chroma. */
334 processed_line3 uncor_pline;
335
336 /** @brief Post-processed line for correlated chroma, passing though the origin. */
337 processed_line3 samec_pline;
338
339 /**
340 * @brief The length of the line for uncorrelated chroma.
341 *
342 * This is used for both the uncorrelated and same chroma lines - they are normally very similar
343 * and only used for the relative ranking of partitionings against one another.
344 */
345 float line_length;
346 };
347
348 /**
349 * @brief The partition information for a single partition.
350 *
351 * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this
352 * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely
353 * empty partitions. These are both valid encodings, but astcenc will skip both during compression
354 * as they are not useful.
355 */
356 struct partition_info
357 {
358 /** @brief The number of partitions in this partitioning. */
359 uint16_t partition_count;
360
361 /** @brief The index (seed) of this partitioning. */
362 uint16_t partition_index;
363
364 /**
365 * @brief The number of texels in each partition.
366 *
367 * Note that some seeds result in zero texels assigned to a partition. These are valid, but are
368 * skipped by this compressor as there is no point spending bits encoding an unused endpoints.
369 */
370 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS];
371
372 /** @brief The partition of each texel in the block. */
373 uint8_t partition_of_texel[BLOCK_MAX_TEXELS];
374
375 /** @brief The list of texels in each partition. */
376 uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS];
377 };
378
379 /**
380 * @brief The weight grid information for a single decimation pattern.
381 *
382 * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids
383 * that are interpolated during decompression to assign a with to a texel. Storing fewer weights
384 * can free up a substantial amount of bits that we can then spend on more useful things, such as
385 * more accurate endpoints and weights, or additional partitions.
386 *
387 * This data structure is used to store information about a single weight grid decimation pattern,
388 * for a single block size.
389 */
390 struct decimation_info
391 {
392 /** @brief The total number of texels in the block. */
393 uint8_t texel_count;
394
395 /** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */
396 uint8_t max_texel_weight_count;
397
398 /** @brief The total number of weights stored. */
399 uint8_t weight_count;
400
401 /** @brief The number of stored weights in the X dimension. */
402 uint8_t weight_x;
403
404 /** @brief The number of stored weights in the Y dimension. */
405 uint8_t weight_y;
406
407 /** @brief The number of stored weights in the Z dimension. */
408 uint8_t weight_z;
409
410 /**
411 * @brief The number of weights that contribute to each texel.
412 * Value is between 1 and 4.
413 */
414 uint8_t texel_weight_count[BLOCK_MAX_TEXELS];
415
416 /**
417 * @brief The weight index of the N weights that are interpolated for each texel.
418 * Stored transposed to improve vectorization.
419 */
420 uint8_t texel_weights_tr[4][BLOCK_MAX_TEXELS];
421
422 /**
423 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
424 * Value is between 0 and 16, stored transposed to improve vectorization.
425 */
426 uint8_t texel_weight_contribs_int_tr[4][BLOCK_MAX_TEXELS];
427
428 /**
429 * @brief The bilinear contribution of the N weights that are interpolated for each texel.
430 * Value is between 0 and 1, stored transposed to improve vectorization.
431 */
432 ASTCENC_ALIGNAS float texel_weight_contribs_float_tr[4][BLOCK_MAX_TEXELS];
433
434 /** @brief The number of texels that each stored weight contributes to. */
435 uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS];
436
437 /**
438 * @brief The list of texels that use a specific weight index.
439 * Stored transposed to improve vectorization.
440 */
441 uint8_t weight_texels_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
442
443 /**
444 * @brief The bilinear contribution to the N texels that use each weight.
445 * Value is between 0 and 1, stored transposed to improve vectorization.
446 */
447 ASTCENC_ALIGNAS float weights_texel_contribs_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
448
449 /**
450 * @brief The bilinear contribution to the Nth texel that uses each weight.
451 * Value is between 0 and 1, stored transposed to improve vectorization.
452 */
453 float texel_contrib_for_weight[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
454 };
455
456 /**
457 * @brief Metadata for single block mode for a specific block size.
458 */
459 struct block_mode
460 {
461 /** @brief The block mode index in the ASTC encoded form. */
462 uint16_t mode_index;
463
464 /** @brief The decimation mode index in the compressor reindexed list. */
465 uint8_t decimation_mode;
466
467 /** @brief The weight quantization used by this block mode. */
468 uint8_t quant_mode;
469
470 /** @brief The weight quantization used by this block mode. */
471 uint8_t weight_bits;
472
473 /** @brief Is a dual weight plane used by this block mode? */
474 uint8_t is_dual_plane : 1;
475
476 /**
477 * @brief Get the weight quantization used by this block mode.
478 *
479 * @return The quantization level.
480 */
get_weight_quant_modeblock_mode481 inline quant_method get_weight_quant_mode() const
482 {
483 return static_cast<quant_method>(this->quant_mode);
484 }
485 };
486
487 /**
488 * @brief Metadata for single decimation mode for a specific block size.
489 */
490 struct decimation_mode
491 {
492 /** @brief The max weight precision for 1 plane, or -1 if not supported. */
493 int8_t maxprec_1plane;
494
495 /** @brief The max weight precision for 2 planes, or -1 if not supported. */
496 int8_t maxprec_2planes;
497
498 /**
499 * @brief Bitvector indicating weight quant modes used by active 1 plane block modes.
500 *
501 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
502 */
503 uint16_t refprec_1plane;
504
505 /**
506 * @brief Bitvector indicating weight quant methods used by active 2 plane block modes.
507 *
508 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
509 */
510 uint16_t refprec_2planes;
511
512 /**
513 * @brief Set a 1 plane weight quant as active.
514 *
515 * @param weight_quant The quant method to set.
516 */
set_ref_1planedecimation_mode517 void set_ref_1plane(quant_method weight_quant)
518 {
519 refprec_1plane |= (1 << weight_quant);
520 }
521
522 /**
523 * @brief Test if this mode is active below a given 1 plane weight quant (inclusive).
524 *
525 * @param max_weight_quant The max quant method to test.
526 */
is_ref_1planedecimation_mode527 bool is_ref_1plane(quant_method max_weight_quant) const
528 {
529 uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
530 return (refprec_1plane & mask) != 0;
531 }
532
533 /**
534 * @brief Set a 2 plane weight quant as active.
535 *
536 * @param weight_quant The quant method to set.
537 */
set_ref_2planedecimation_mode538 void set_ref_2plane(quant_method weight_quant)
539 {
540 refprec_2planes |= static_cast<uint16_t>(1 << weight_quant);
541 }
542
543 /**
544 * @brief Test if this mode is active below a given 2 plane weight quant (inclusive).
545 *
546 * @param max_weight_quant The max quant method to test.
547 */
is_ref_2planedecimation_mode548 bool is_ref_2plane(quant_method max_weight_quant) const
549 {
550 uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
551 return (refprec_2planes & mask) != 0;
552 }
553 };
554
555 /**
556 * @brief Data tables for a single block size.
557 *
558 * The decimation tables store the information to apply weight grid dimension reductions. We only
559 * store the decimation modes that are actually needed by the current context; many of the possible
560 * modes will be unused (too many weights for the current block size or disabled by heuristics). The
561 * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and
562 * @c decimation_tables arrays store the active modes contiguously at the start of the array. These
563 * entries are not stored in any particular order.
564 *
565 * The block mode tables store the unpacked block mode settings. Block modes are stored in the
566 * compressed block as an 11 bit field, but for any given block size and set of compressor
567 * heuristics, only a subset of the block modes will be used. The actual number of block modes
568 * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes
569 * contiguously at the start of the array. These entries are stored in incrementing "packed" value
570 * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data
571 * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the
572 * actual remapped array index.
573 */
574 struct block_size_descriptor
575 {
576 /** @brief The block X dimension, in texels. */
577 uint8_t xdim;
578
579 /** @brief The block Y dimension, in texels. */
580 uint8_t ydim;
581
582 /** @brief The block Z dimension, in texels. */
583 uint8_t zdim;
584
585 /** @brief The block total texel count. */
586 uint8_t texel_count;
587
588 /**
589 * @brief The number of stored decimation modes which are "always" modes.
590 *
591 * Always modes are stored at the start of the decimation_modes list.
592 */
593 unsigned int decimation_mode_count_always;
594
595 /** @brief The number of stored decimation modes for selected encodings. */
596 unsigned int decimation_mode_count_selected;
597
598 /** @brief The number of stored decimation modes for any encoding. */
599 unsigned int decimation_mode_count_all;
600
601 /**
602 * @brief The number of stored block modes which are "always" modes.
603 *
604 * Always modes are stored at the start of the block_modes list.
605 */
606 unsigned int block_mode_count_1plane_always;
607
608 /** @brief The number of stored block modes for active 1 plane encodings. */
609 unsigned int block_mode_count_1plane_selected;
610
611 /** @brief The number of stored block modes for active 1 and 2 plane encodings. */
612 unsigned int block_mode_count_1plane_2plane_selected;
613
614 /** @brief The number of stored block modes for any encoding. */
615 unsigned int block_mode_count_all;
616
617 /** @brief The number of selected partitionings for 1/2/3/4 partitionings. */
618 unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS];
619
620 /** @brief The number of partitionings for 1/2/3/4 partitionings. */
621 unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS];
622
623 /** @brief The active decimation modes, stored in low indices. */
624 decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES];
625
626 /** @brief The active decimation tables, stored in low indices. */
627 ASTCENC_ALIGNAS decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES];
628
629 /** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */
630 uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES];
631
632 /** @brief The active block modes, stored in low indices. */
633 block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES];
634
635 /** @brief The active partition tables, stored in low indices per-count. */
636 partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1];
637
638 /**
639 * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active.
640 *
641 * Indexed by partition_count - 2, containing 2, 3 and 4 partitions.
642 */
643 uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS];
644
645 /** @brief The active texels for k-means partition selection. */
646 uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS];
647
648 /**
649 * @brief The canonical 2-partition coverage pattern used during block partition search.
650 *
651 * Indexed by remapped index, not physical index.
652 */
653 uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2];
654
655 /**
656 * @brief The canonical 3-partition coverage pattern used during block partition search.
657 *
658 * Indexed by remapped index, not physical index.
659 */
660 uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3];
661
662 /**
663 * @brief The canonical 4-partition coverage pattern used during block partition search.
664 *
665 * Indexed by remapped index, not physical index.
666 */
667 uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4];
668
669 /**
670 * @brief Get the block mode structure for index @c block_mode.
671 *
672 * This function can only return block modes that are enabled by the current compressor config.
673 * Decompression from an arbitrary source should not use this without first checking that the
674 * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE.
675 *
676 * @param block_mode The packed block mode index.
677 *
678 * @return The block mode structure.
679 */
get_block_modeblock_size_descriptor680 const block_mode& get_block_mode(unsigned int block_mode) const
681 {
682 unsigned int packed_index = this->block_mode_packed_index[block_mode];
683 assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all);
684 return this->block_modes[packed_index];
685 }
686
687 /**
688 * @brief Get the decimation mode structure for index @c decimation_mode.
689 *
690 * This function can only return decimation modes that are enabled by the current compressor
691 * config. The mode array is stored packed, but this is only ever indexed by the packed index
692 * stored in the @c block_mode and never exists in an unpacked form.
693 *
694 * @param decimation_mode The packed decimation mode index.
695 *
696 * @return The decimation mode structure.
697 */
get_decimation_modeblock_size_descriptor698 const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const
699 {
700 return this->decimation_modes[decimation_mode];
701 }
702
703 /**
704 * @brief Get the decimation info structure for index @c decimation_mode.
705 *
706 * This function can only return decimation modes that are enabled by the current compressor
707 * config. The mode array is stored packed, but this is only ever indexed by the packed index
708 * stored in the @c block_mode and never exists in an unpacked form.
709 *
710 * @param decimation_mode The packed decimation mode index.
711 *
712 * @return The decimation info structure.
713 */
get_decimation_infoblock_size_descriptor714 const decimation_info& get_decimation_info(unsigned int decimation_mode) const
715 {
716 return this->decimation_tables[decimation_mode];
717 }
718
719 /**
720 * @brief Get the partition info table for a given partition count.
721 *
722 * @param partition_count The number of partitions we want the table for.
723 *
724 * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part).
725 */
get_partition_tableblock_size_descriptor726 const partition_info* get_partition_table(unsigned int partition_count) const
727 {
728 if (partition_count == 1)
729 {
730 partition_count = 5;
731 }
732 unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS;
733 return this->partitionings + index;
734 }
735
736 /**
737 * @brief Get the partition info structure for a given partition count and seed.
738 *
739 * @param partition_count The number of partitions we want the info for.
740 * @param index The partition seed (between 0 and 1023).
741 *
742 * @return The partition info structure.
743 */
get_partition_infoblock_size_descriptor744 const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const
745 {
746 unsigned int packed_index = 0;
747 if (partition_count >= 2)
748 {
749 packed_index = this->partitioning_packed_index[partition_count - 2][index];
750 }
751
752 assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
753 auto& result = get_partition_table(partition_count)[packed_index];
754 assert(index == result.partition_index);
755 return result;
756 }
757
758 /**
759 * @brief Get the partition info structure for a given partition count and seed.
760 *
761 * @param partition_count The number of partitions we want the info for.
762 * @param packed_index The raw array offset.
763 *
764 * @return The partition info structure.
765 */
get_raw_partition_infoblock_size_descriptor766 const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const
767 {
768 assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
769 auto& result = get_partition_table(partition_count)[packed_index];
770 return result;
771 }
772 };
773
774 /**
775 * @brief The image data for a single block.
776 *
777 * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy
778 * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR
779 * data is stored as direct UNORM data, HDR data is stored as LNS data.
780 *
781 * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during
782 * decompression. The current compressor will always use HDR endpoint formats when in HDR mode.
783 */
784 struct image_block
785 {
786 /** @brief The input (compress) or output (decompress) data for the red color component. */
787 ASTCENC_ALIGNAS float data_r[BLOCK_MAX_TEXELS];
788
789 /** @brief The input (compress) or output (decompress) data for the green color component. */
790 ASTCENC_ALIGNAS float data_g[BLOCK_MAX_TEXELS];
791
792 /** @brief The input (compress) or output (decompress) data for the blue color component. */
793 ASTCENC_ALIGNAS float data_b[BLOCK_MAX_TEXELS];
794
795 /** @brief The input (compress) or output (decompress) data for the alpha color component. */
796 ASTCENC_ALIGNAS float data_a[BLOCK_MAX_TEXELS];
797
798 mutable partition_metrics pms[BLOCK_MAX_PARTITIONS];
799
800 /** @brief The number of texels in the block. */
801 uint8_t texel_count;
802
803 /** @brief The original data for texel 0 for constant color block encoding. */
804 vfloat4 origin_texel;
805
806 /** @brief The min component value of all texels in the block. */
807 vfloat4 data_min;
808
809 /** @brief The mean component value of all texels in the block. */
810 vfloat4 data_mean;
811
812 /** @brief The max component value of all texels in the block. */
813 vfloat4 data_max;
814
815 /** @brief The relative error significance of the color channels. */
816 vfloat4 channel_weight;
817
818 /** @brief Is this grayscale block where R == G == B for all texels? */
819 bool grayscale;
820
821 /** @brief Is the eventual decode using decode_unorm8 rounding? */
822 bool decode_unorm8;
823
824 /** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */
825 uint8_t rgb_lns[BLOCK_MAX_TEXELS];
826
827 /** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */
828 uint8_t alpha_lns[BLOCK_MAX_TEXELS];
829
830 /** @brief The X position of this block in the input or output image. */
831 unsigned int xpos;
832
833 /** @brief The Y position of this block in the input or output image. */
834 unsigned int ypos;
835
836 /** @brief The Z position of this block in the input or output image. */
837 unsigned int zpos;
838
839 /**
840 * @brief Get an RGBA texel value from the data.
841 *
842 * @param index The texel index.
843 *
844 * @return The texel in RGBA component ordering.
845 */
texelimage_block846 inline vfloat4 texel(unsigned int index) const
847 {
848 return vfloat4(data_r[index],
849 data_g[index],
850 data_b[index],
851 data_a[index]);
852 }
853
854 /**
855 * @brief Get an RGB texel value from the data.
856 *
857 * @param index The texel index.
858 *
859 * @return The texel in RGB0 component ordering.
860 */
texel3image_block861 inline vfloat4 texel3(unsigned int index) const
862 {
863 return vfloat3(data_r[index],
864 data_g[index],
865 data_b[index]);
866 }
867
868 /**
869 * @brief Get the default alpha value for endpoints that don't store it.
870 *
871 * The default depends on whether the alpha endpoint is LDR or HDR.
872 *
873 * @return The alpha value in the scaled range used by the compressor.
874 */
get_default_alphaimage_block875 inline float get_default_alpha() const
876 {
877 return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF);
878 }
879
880 /**
881 * @brief Test if a single color channel is constant across the block.
882 *
883 * Constant color channels are easier to compress as interpolating between two identical colors
884 * always returns the same value, irrespective of the weight used. They therefore can be ignored
885 * for the purposes of weight selection and use of a second weight plane.
886 *
887 * @return @c true if the channel is constant across the block, @c false otherwise.
888 */
is_constant_channelimage_block889 inline bool is_constant_channel(int channel) const
890 {
891 vmask4 lane_mask = vint4::lane_id() == vint4(channel);
892 vmask4 color_mask = this->data_min == this->data_max;
893 return any(lane_mask & color_mask);
894 }
895
896 /**
897 * @brief Test if this block is a luminance block with constant 1.0 alpha.
898 *
899 * @return @c true if the block is a luminance block , @c false otherwise.
900 */
is_luminanceimage_block901 inline bool is_luminance() const
902 {
903 float default_alpha = this->get_default_alpha();
904 bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
905 (this->data_max.lane<3>() == default_alpha);
906 return this->grayscale && alpha1;
907 }
908
909 /**
910 * @brief Test if this block is a luminance block with variable alpha.
911 *
912 * @return @c true if the block is a luminance + alpha block , @c false otherwise.
913 */
is_luminancealphaimage_block914 inline bool is_luminancealpha() const
915 {
916 float default_alpha = this->get_default_alpha();
917 bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
918 (this->data_max.lane<3>() == default_alpha);
919 return this->grayscale && !alpha1;
920 }
921 };
922
923 /**
924 * @brief Data structure storing the color endpoints for a block.
925 */
926 struct endpoints
927 {
928 /** @brief The number of partition endpoints stored. */
929 unsigned int partition_count;
930
931 /** @brief The colors for endpoint 0. */
932 vfloat4 endpt0[BLOCK_MAX_PARTITIONS];
933
934 /** @brief The colors for endpoint 1. */
935 vfloat4 endpt1[BLOCK_MAX_PARTITIONS];
936 };
937
938 /**
939 * @brief Data structure storing the color endpoints and weights.
940 */
941 struct endpoints_and_weights
942 {
943 /** @brief True if all active values in weight_error_scale are the same. */
944 bool is_constant_weight_error_scale;
945
946 /** @brief The color endpoints. */
947 endpoints ep;
948
949 /** @brief The ideal weight for each texel; may be undecimated or decimated. */
950 ASTCENC_ALIGNAS float weights[BLOCK_MAX_TEXELS];
951
952 /** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */
953 ASTCENC_ALIGNAS float weight_error_scale[BLOCK_MAX_TEXELS];
954 };
955
956 /**
957 * @brief Utility storing estimated errors from choosing particular endpoint encodings.
958 */
959 struct encoding_choice_errors
960 {
961 /** @brief Error of using LDR RGB-scale instead of complete endpoints. */
962 float rgb_scale_error;
963
964 /** @brief Error of using HDR RGB-scale instead of complete endpoints. */
965 float rgb_luma_error;
966
967 /** @brief Error of using luminance instead of RGB. */
968 float luminance_error;
969
970 /** @brief Error of discarding alpha and using a constant 1.0 alpha. */
971 float alpha_drop_error;
972
973 /** @brief Can we use delta offset encoding? */
974 bool can_offset_encode;
975
976 /** @brief Can we use blue contraction encoding? */
977 bool can_blue_contract;
978 };
979
980 /**
981 * @brief Preallocated working buffers, allocated per thread during context creation.
982 */
983 struct ASTCENC_ALIGNAS compression_working_buffers
984 {
985 /** @brief Ideal endpoints and weights for plane 1. */
986 endpoints_and_weights ei1;
987
988 /** @brief Ideal endpoints and weights for plane 2. */
989 endpoints_and_weights ei2;
990
991 /**
992 * @brief Decimated ideal weight values in the ~0-1 range.
993 *
994 * Note that values can be slightly below zero or higher than one due to
995 * endpoint extents being inside the ideal color representation.
996 *
997 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
998 */
999 ASTCENC_ALIGNAS float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS];
1000
1001 /**
1002 * @brief Decimated quantized weight values in the unquantized 0-64 range.
1003 *
1004 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
1005 */
1006 uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS];
1007
1008 /** @brief Error of the best encoding combination for each block mode. */
1009 ASTCENC_ALIGNAS float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES];
1010
1011 /** @brief The best color quant for each block mode. */
1012 uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES];
1013
1014 /** @brief The best color quant for each block mode if modes are the same and we have spare bits. */
1015 uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES];
1016
1017 /** @brief The best endpoint format for each partition. */
1018 uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS];
1019
1020 /** @brief The total bit storage needed for quantized weights for each block mode. */
1021 int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES];
1022
1023 /** @brief The cumulative error for quantized weights for each block mode. */
1024 float qwt_errors[WEIGHTS_MAX_BLOCK_MODES];
1025
1026 /** @brief The low weight value in plane 1 for each block mode. */
1027 float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES];
1028
1029 /** @brief The high weight value in plane 1 for each block mode. */
1030 float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES];
1031
1032 /** @brief The low weight value in plane 1 for each quant level and decimation mode. */
1033 float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1034
1035 /** @brief The high weight value in plane 1 for each quant level and decimation mode. */
1036 float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1037
1038 /** @brief The low weight value in plane 2 for each block mode. */
1039 float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES];
1040
1041 /** @brief The high weight value in plane 2 for each block mode. */
1042 float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES];
1043
1044 /** @brief The low weight value in plane 2 for each quant level and decimation mode. */
1045 float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1046
1047 /** @brief The high weight value in plane 2 for each quant level and decimation mode. */
1048 float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
1049 };
1050
1051 struct dt_init_working_buffers
1052 {
1053 uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
1054 uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
1055 uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
1056
1057 uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
1058 uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1059 uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
1060 };
1061
1062 /**
1063 * @brief Weight quantization transfer table.
1064 *
1065 * ASTC can store texel weights at many quantization levels, so for performance we store essential
1066 * information about each level as a precomputed data structure. Unquantized weights are integers
1067 * or floats in the range [0, 64].
1068 *
1069 * This structure provides a table, used to estimate the closest quantized weight for a given
1070 * floating-point weight. For each quantized weight, the corresponding unquantized values. For each
1071 * quantized weight, a previous-value and a next-value.
1072 */
1073 struct quant_and_transfer_table
1074 {
1075 /** @brief The unscrambled unquantized value. */
1076 uint8_t quant_to_unquant[32];
1077
1078 /** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */
1079 uint8_t scramble_map[32];
1080
1081 /** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */
1082 uint8_t unscramble_and_unquant_map[32];
1083
1084 /**
1085 * @brief A table of previous-and-next weights, indexed by the current unquantized value.
1086 * * bits 7:0 = previous-index, unquantized
1087 * * bits 15:8 = next-index, unquantized
1088 */
1089 uint16_t prev_next_values[65];
1090 };
1091
1092 /** @brief The precomputed quant and transfer table. */
1093 extern const quant_and_transfer_table quant_and_xfer_tables[12];
1094
1095 /** @brief The block is an error block, and will return error color or NaN. */
1096 static constexpr uint8_t SYM_BTYPE_ERROR { 0 };
1097
1098 /** @brief The block is a constant color block using FP16 colors. */
1099 static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 };
1100
1101 /** @brief The block is a constant color block using UNORM16 colors. */
1102 static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 };
1103
1104 /** @brief The block is a normal non-constant color block. */
1105 static constexpr uint8_t SYM_BTYPE_NONCONST { 3 };
1106
1107 /**
1108 * @brief A symbolic representation of a compressed block.
1109 *
1110 * The symbolic representation stores the unpacked content of a single
1111 * physical compressed block, in a form which is much easier to access for
1112 * the rest of the compressor code.
1113 */
1114 struct symbolic_compressed_block
1115 {
1116 /** @brief The block type, one of the @c SYM_BTYPE_* constants. */
1117 uint8_t block_type;
1118
1119 /** @brief The number of partitions; valid for @c NONCONST blocks. */
1120 uint8_t partition_count;
1121
1122 /** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */
1123 uint8_t color_formats_matched;
1124
1125 /** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */
1126 int8_t plane2_component;
1127
1128 /** @brief The block mode; valid for @c NONCONST blocks. */
1129 uint16_t block_mode;
1130
1131 /** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */
1132 uint16_t partition_index;
1133
1134 /** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */
1135 uint8_t color_formats[BLOCK_MAX_PARTITIONS];
1136
1137 /** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */
1138 quant_method quant_mode;
1139
1140 /** @brief The error of the current encoding; valid for @c NONCONST blocks. */
1141 float errorval;
1142
1143 // We can't have both of these at the same time
1144 union {
1145 /** @brief The constant color; valid for @c CONST blocks. */
1146 int constant_color[BLOCK_MAX_COMPONENTS];
1147
1148 /** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */
1149 uint8_t color_values[BLOCK_MAX_PARTITIONS][8];
1150 };
1151
1152 /** @brief The quantized and decimated weights.
1153 *
1154 * Weights are stored in the 0-64 unpacked range allowing them to be used
1155 * directly in encoding passes without per-use unpacking. Packing happens
1156 * when converting to/from the physical bitstream encoding.
1157 *
1158 * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET].
1159 */
1160 uint8_t weights[BLOCK_MAX_WEIGHTS];
1161
1162 /**
1163 * @brief Get the weight quantization used by this block mode.
1164 *
1165 * @return The quantization level.
1166 */
get_color_quant_modesymbolic_compressed_block1167 inline quant_method get_color_quant_mode() const
1168 {
1169 return this->quant_mode;
1170 }
1171 QualityProfile privateProfile;
1172 };
1173
1174 /**
1175 * @brief Parameter structure for @c compute_pixel_region_variance().
1176 *
1177 * This function takes a structure to avoid spilling arguments to the stack on every function
1178 * invocation, as there are a lot of parameters.
1179 */
1180 struct pixel_region_args
1181 {
1182 /** @brief The image to analyze. */
1183 const astcenc_image* img;
1184
1185 /** @brief The component swizzle pattern. */
1186 astcenc_swizzle swz;
1187
1188 /** @brief Should the algorithm bother with Z axis processing? */
1189 bool have_z;
1190
1191 /** @brief The kernel radius for alpha processing. */
1192 unsigned int alpha_kernel_radius;
1193
1194 /** @brief The X dimension of the working data to process. */
1195 unsigned int size_x;
1196
1197 /** @brief The Y dimension of the working data to process. */
1198 unsigned int size_y;
1199
1200 /** @brief The Z dimension of the working data to process. */
1201 unsigned int size_z;
1202
1203 /** @brief The X position of first src and dst data in the data set. */
1204 unsigned int offset_x;
1205
1206 /** @brief The Y position of first src and dst data in the data set. */
1207 unsigned int offset_y;
1208
1209 /** @brief The Z position of first src and dst data in the data set. */
1210 unsigned int offset_z;
1211
1212 /** @brief The working memory buffer. */
1213 vfloat4 *work_memory;
1214 };
1215
1216 /**
1217 * @brief Parameter structure for @c compute_averages_proc().
1218 */
1219 struct avg_args
1220 {
1221 /** @brief The arguments for the nested variance computation. */
1222 pixel_region_args arg;
1223
1224 /** @brief The image Stride dimensions. */
1225 unsigned int img_size_stride;
1226
1227 /** @brief The image X dimensions. */
1228 unsigned int img_size_x;
1229
1230 /** @brief The image Y dimensions. */
1231 unsigned int img_size_y;
1232
1233 /** @brief The image Z dimensions. */
1234 unsigned int img_size_z;
1235
1236 /** @brief The maximum working block dimensions in X and Y dimensions. */
1237 unsigned int blk_size_xy;
1238
1239 /** @brief The maximum working block dimensions in Z dimensions. */
1240 unsigned int blk_size_z;
1241
1242 /** @brief The working block memory size. */
1243 unsigned int work_memory_size;
1244 };
1245
1246 #if defined(ASTCENC_DIAGNOSTICS)
1247 /* See astcenc_diagnostic_trace header for details. */
1248 class TraceLog;
1249 #endif
1250
1251 /**
1252 * @brief The astcenc compression context.
1253 */
1254 struct astcenc_contexti
1255 {
1256 /** @brief The configuration this context was created with. */
1257 astcenc_config config;
1258
1259 /** @brief The thread count supported by this context. */
1260 unsigned int thread_count;
1261
1262 /** @brief The block size descriptor this context was created with. */
1263 block_size_descriptor* bsd;
1264
1265 /*
1266 * Fields below here are not needed in a decompress-only build, but some remain as they are
1267 * small and it avoids littering the code with #ifdefs. The most significant contributors to
1268 * large structure size are omitted.
1269 */
1270
1271 /** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */
1272 float* input_alpha_averages;
1273
1274 /** @brief The scratch working buffers, one per thread (see @c thread_count). */
1275 compression_working_buffers* working_buffers;
1276
1277 #if !defined(ASTCENC_DECOMPRESS_ONLY)
1278 /** @brief The pixel region and variance worker arguments. */
1279 avg_args avg_preprocess_args;
1280 #endif
1281
1282 #if defined(ASTCENC_DIAGNOSTICS)
1283 /**
1284 * @brief The diagnostic trace logger.
1285 *
1286 * Note that this is a singleton, so can only be used in single threaded mode. It only exists
1287 * here so we have a reference to close the file at the end of the capture.
1288 */
1289 TraceLog* trace_log;
1290 #endif
1291 };
1292
1293 /* ============================================================================
1294 Functionality for managing block sizes and partition tables.
1295 ============================================================================ */
1296
1297 /**
1298 * @brief Populate the block size descriptor for the target block size.
1299 *
1300 * This will also initialize the partition table metadata, which is stored as part of the BSD
1301 * structure.
1302 *
1303 * @param x_texels The number of texels in the block X dimension.
1304 * @param y_texels The number of texels in the block Y dimension.
1305 * @param z_texels The number of texels in the block Z dimension.
1306 * @param can_omit_modes Can we discard modes and partitionings that astcenc won't use?
1307 * @param partition_count_cutoff The partition count cutoff to use, if we can omit partitionings.
1308 * @param mode_cutoff The block mode percentile cutoff [0-1].
1309 * @param[out] bsd The descriptor to initialize.
1310 */
1311 #ifdef ASTC_CUSTOMIZED_ENABLE
1312 bool init_block_size_descriptor(
1313 #else
1314 void init_block_size_descriptor(
1315 #endif
1316 QualityProfile privateProfile,
1317 unsigned int x_texels,
1318 unsigned int y_texels,
1319 unsigned int z_texels,
1320 bool can_omit_modes,
1321 unsigned int partition_count_cutoff,
1322 float mode_cutoff,
1323 block_size_descriptor& bsd);
1324
1325 /**
1326 * @brief Populate the partition tables for the target block size.
1327 *
1328 * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before
1329 * calling this function.
1330 *
1331 * @param[out] bsd The block size information structure to populate.
1332 * @param can_omit_partitionings True if we can we drop partitionings that astcenc won't use.
1333 * @param partition_count_cutoff The partition count cutoff to use, if we can omit partitionings.
1334 */
1335 void init_partition_tables(
1336 block_size_descriptor& bsd,
1337 bool can_omit_partitionings,
1338 unsigned int partition_count_cutoff);
1339
1340 /**
1341 * @brief Get the percentile table for 2D block modes.
1342 *
1343 * This is an empirically determined prioritization of which block modes to use in the search in
1344 * terms of their centile (lower centiles = more useful).
1345 *
1346 * Returns a dynamically allocated array; caller must free with delete[].
1347 *
1348 * @param xdim The block x size.
1349 * @param ydim The block y size.
1350 *
1351 * @return The unpacked table.
1352 */
1353 const float* get_2d_percentile_table(
1354 unsigned int xdim,
1355 unsigned int ydim);
1356
1357 /**
1358 * @brief Query if a 2D block size is legal.
1359 *
1360 * @return True if legal, false otherwise.
1361 */
1362 bool is_legal_2d_block_size(
1363 unsigned int xdim,
1364 unsigned int ydim);
1365
1366 /**
1367 * @brief Query if a 3D block size is legal.
1368 *
1369 * @return True if legal, false otherwise.
1370 */
1371 bool is_legal_3d_block_size(
1372 unsigned int xdim,
1373 unsigned int ydim,
1374 unsigned int zdim);
1375
1376 /* ============================================================================
1377 Functionality for managing BISE quantization and unquantization.
1378 ============================================================================ */
1379
1380 /**
1381 * @brief The precomputed table for quantizing color values.
1382 *
1383 * Converts unquant value in 0-255 range into quant value in 0-255 range.
1384 * No BISE scrambling is applied at this stage.
1385 *
1386 * The BISE encoding results in ties where available quant<256> values are
1387 * equidistant the available quant<BISE> values. This table stores two values
1388 * for each input - one for use with a negative residual, and one for use with
1389 * a positive residual.
1390 *
1391 * Indexed by [quant_mode - 4][data_value * 2 + residual].
1392 */
1393 extern const uint8_t color_unquant_to_uquant_tables[17][512];
1394
1395 /**
1396 * @brief The precomputed table for packing quantized color values.
1397 *
1398 * Converts quant value in 0-255 range into packed quant value in 0-N range,
1399 * with BISE scrambling applied.
1400 *
1401 * Indexed by [quant_mode - 4][data_value].
1402 */
1403 extern const uint8_t color_uquant_to_scrambled_pquant_tables[17][256];
1404
1405 /**
1406 * @brief The precomputed table for unpacking color values.
1407 *
1408 * Converts quant value in 0-N range into unpacked value in 0-255 range,
1409 * with BISE unscrambling applied.
1410 *
1411 * Indexed by [quant_mode - 4][data_value].
1412 */
1413 extern const uint8_t* color_scrambled_pquant_to_uquant_tables[17];
1414
1415 /**
1416 * @brief The precomputed quant mode storage table.
1417 *
1418 * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and
1419 * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot
1420 * ever fit in the supplied storage size.
1421 */
1422 extern const int8_t quant_mode_table[10][128];
1423
1424 /**
1425 * @brief Encode a packed string using BISE.
1426 *
1427 * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can
1428 * start storing strings in a block at arbitrary bit offsets in the encoded data.
1429 *
1430 * @param quant_level The BISE alphabet size.
1431 * @param character_count The number of characters in the string.
1432 * @param input_data The unpacked string, one byte per character.
1433 * @param[in,out] output_data The output packed string.
1434 * @param bit_offset The starting offset in the output storage.
1435 */
1436 void encode_ise(
1437 quant_method quant_level,
1438 unsigned int character_count,
1439 const uint8_t* input_data,
1440 uint8_t* output_data,
1441 unsigned int bit_offset);
1442
1443 /**
1444 * @brief Decode a packed string using BISE.
1445 *
1446 * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start
1447 * strings at arbitrary bit offsets in the encoded data.
1448 *
1449 * @param quant_level The BISE alphabet size.
1450 * @param character_count The number of characters in the string.
1451 * @param input_data The packed string.
1452 * @param[in,out] output_data The output storage, one byte per character.
1453 * @param bit_offset The starting offset in the output storage.
1454 */
1455 void decode_ise(
1456 quant_method quant_level,
1457 unsigned int character_count,
1458 const uint8_t* input_data,
1459 uint8_t* output_data,
1460 unsigned int bit_offset);
1461
1462 /**
1463 * @brief Return the number of bits needed to encode an ISE sequence.
1464 *
1465 * This implementation assumes that the @c quant level is untrusted, given it may come from random
1466 * data being decompressed, so we return an arbitrary unencodable size if that is the case.
1467 *
1468 * @param character_count The number of items in the sequence.
1469 * @param quant_level The desired quantization level.
1470 *
1471 * @return The number of bits needed to encode the BISE string.
1472 */
1473 unsigned int get_ise_sequence_bitcount(
1474 unsigned int character_count,
1475 quant_method quant_level);
1476
1477 /* ============================================================================
1478 Functionality for managing color partitioning.
1479 ============================================================================ */
1480
1481 /**
1482 * @brief Compute averages and dominant directions for each partition in a 2 component texture.
1483 *
1484 * @param pi The partition info for the current trial.
1485 * @param blk The image block color data to be compressed.
1486 * @param component1 The first component included in the analysis.
1487 * @param component2 The second component included in the analysis.
1488 * @param[out] pm The output partition metrics.
1489 * - Only pi.partition_count array entries actually get initialized.
1490 * - Direction vectors @c pm.dir are not normalized.
1491 */
1492 void compute_avgs_and_dirs_2_comp(
1493 const partition_info& pi,
1494 const image_block& blk,
1495 unsigned int component1,
1496 unsigned int component2,
1497 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1498
1499 /**
1500 * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1501 *
1502 * @param pi The partition info for the current trial.
1503 * @param blk The image block color data to be compressed.
1504 * @param omitted_component The component excluded from the analysis.
1505 * @param[out] pm The output partition metrics.
1506 * - Only pi.partition_count array entries actually get initialized.
1507 * - Direction vectors @c pm.dir are not normalized.
1508 */
1509 void compute_avgs_and_dirs_3_comp(
1510 const partition_info& pi,
1511 const image_block& blk,
1512 unsigned int omitted_component,
1513 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1514
1515 /**
1516 * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1517 *
1518 * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is
1519 * always alpha, a common case during partition search.
1520 *
1521 * @param pi The partition info for the current trial.
1522 * @param blk The image block color data to be compressed.
1523 * @param[out] pm The output partition metrics.
1524 * - Only pi.partition_count array entries actually get initialized.
1525 * - Direction vectors @c pm.dir are not normalized.
1526 */
1527 void compute_avgs_and_dirs_3_comp_rgb(
1528 const partition_info& pi,
1529 const image_block& blk,
1530 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1531
1532 /**
1533 * @brief Compute averages and dominant directions for each partition in a 4 component texture.
1534 *
1535 * @param pi The partition info for the current trial.
1536 * @param blk The image block color data to be compressed.
1537 * @param[out] pm The output partition metrics.
1538 * - Only pi.partition_count array entries actually get initialized.
1539 * - Direction vectors @c pm.dir are not normalized.
1540 */
1541 void compute_avgs_and_dirs_4_comp(
1542 const partition_info& pi,
1543 const image_block& blk,
1544 partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1545
1546 /**
1547 * @brief Compute the RGB error for uncorrelated and same chroma projections.
1548 *
1549 * The output of compute averages and dirs is post processed to define two lines, both of which go
1550 * through the mean-color-value. One line has a direction defined by the dominant direction; this
1551 * is used to assess the error from using an uncorrelated color representation. The other line goes
1552 * through (0,0,0) and is used to assess the error from using an RGBS color representation.
1553 *
1554 * This function computes the squared error when using these two representations.
1555 *
1556 * @param pi The partition info for the current trial.
1557 * @param blk The image block color data to be compressed.
1558 * @param[in,out] plines Processed line inputs, and line length outputs.
1559 * @param[out] uncor_error The cumulative error for using the uncorrelated line.
1560 * @param[out] samec_error The cumulative error for using the same chroma line.
1561 */
1562 void compute_error_squared_rgb(
1563 const partition_info& pi,
1564 const image_block& blk,
1565 partition_lines3 plines[BLOCK_MAX_PARTITIONS],
1566 float& uncor_error,
1567 float& samec_error);
1568
1569 /**
1570 * @brief Compute the RGBA error for uncorrelated and same chroma projections.
1571 *
1572 * The output of compute averages and dirs is post processed to define two lines, both of which go
1573 * through the mean-color-value. One line has a direction defined by the dominant direction; this
1574 * is used to assess the error from using an uncorrelated color representation. The other line goes
1575 * through (0,0,0,1) and is used to assess the error from using an RGBS color representation.
1576 *
1577 * This function computes the squared error when using these two representations.
1578 *
1579 * @param pi The partition info for the current trial.
1580 * @param blk The image block color data to be compressed.
1581 * @param uncor_plines Processed uncorrelated partition lines for each partition.
1582 * @param samec_plines Processed same chroma partition lines for each partition.
1583 * @param[out] line_lengths The length of each components deviation from the line.
1584 * @param[out] uncor_error The cumulative error for using the uncorrelated line.
1585 * @param[out] samec_error The cumulative error for using the same chroma line.
1586 */
1587 void compute_error_squared_rgba(
1588 const partition_info& pi,
1589 const image_block& blk,
1590 const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS],
1591 const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS],
1592 float line_lengths[BLOCK_MAX_PARTITIONS],
1593 float& uncor_error,
1594 float& samec_error);
1595
1596 /**
1597 * @brief Find the best set of partitions to trial for a given block.
1598 *
1599 * On return the @c best_partitions list will contain the two best partition
1600 * candidates; one assuming data has uncorrelated chroma and one assuming the
1601 * data has correlated chroma. The best candidate is returned first in the list.
1602 *
1603 * @param bsd The block size information.
1604 * @param blk The image block color data to compress.
1605 * @param partition_count The number of partitions in the block.
1606 * @param partition_search_limit The number of candidate partition encodings to trial.
1607 * @param[out] best_partitions The best partition candidates.
1608 * @param requested_candidates The number of requested partitionings. May return fewer if
1609 * candidates are not available.
1610 *
1611 * @return The actual number of candidates returned.
1612 */
1613 unsigned int find_best_partition_candidates(
1614 const block_size_descriptor& bsd,
1615 const image_block& blk,
1616 unsigned int partition_count,
1617 unsigned int partition_search_limit,
1618 unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
1619 unsigned int requested_candidates);
1620
1621 /* ============================================================================
1622 Functionality for managing images and image related data.
1623 ============================================================================ */
1624
1625 /**
1626 * @brief Get a vector mask indicating lanes decompressing into a UNORM8 value.
1627 *
1628 * @param decode_mode The color profile for LDR_SRGB settings.
1629 * @param blk The image block for output image bitness settings.
1630 *
1631 * @return The component mask vector.
1632 */
get_u8_component_mask(astcenc_profile decode_mode,const image_block & blk)1633 static inline vmask4 get_u8_component_mask(
1634 astcenc_profile decode_mode,
1635 const image_block& blk
1636 ) {
1637 vmask4 u8_mask(false);
1638 // Decode mode writing to a unorm8 output value
1639 if (blk.decode_unorm8)
1640 {
1641 u8_mask = vmask4(true);
1642 }
1643 // SRGB writing to a unorm8 RGB value
1644 else if (decode_mode == ASTCENC_PRF_LDR_SRGB)
1645 {
1646 u8_mask = vmask4(true, true, true, false);
1647 }
1648
1649 return u8_mask;
1650 }
1651
1652 /**
1653 * @brief Setup computation of regional averages in an image.
1654 *
1655 * This must be done by only a single thread per image, before any thread calls
1656 * @c compute_averages().
1657 *
1658 * Results are written back into @c img->input_alpha_averages.
1659 *
1660 * @param img The input image data, also holds output data.
1661 * @param alpha_kernel_radius The kernel radius (in pixels) for alpha mods.
1662 * @param swz Input data component swizzle.
1663 * @param[out] ag The average variance arguments to init.
1664 *
1665 * @return The number of tasks in the processing stage.
1666 */
1667 unsigned int init_compute_averages(
1668 const astcenc_image& img,
1669 unsigned int alpha_kernel_radius,
1670 const astcenc_swizzle& swz,
1671 avg_args& ag);
1672
1673 /**
1674 * @brief Compute averages for a pixel region.
1675 *
1676 * The routine computes both in a single pass, using a summed-area table to decouple the running
1677 * time from the averaging/variance kernel size.
1678 *
1679 * @param[out] ctx The compressor context storing the output data.
1680 * @param arg The input parameter structure.
1681 */
1682 void compute_pixel_region_variance(
1683 astcenc_contexti& ctx,
1684 const pixel_region_args& arg);
1685 /**
1686 * @brief Load a single image block from the input image.
1687 *
1688 * @param decode_mode The compression color profile.
1689 * @param img The input image data.
1690 * @param[out] blk The image block to populate.
1691 * @param bsd The block size information.
1692 * @param xpos The block X coordinate in the input image.
1693 * @param ypos The block Y coordinate in the input image.
1694 * @param zpos The block Z coordinate in the input image.
1695 * @param swz The swizzle to apply on load.
1696 */
1697 void load_image_block(
1698 astcenc_profile decode_mode,
1699 const astcenc_image& img,
1700 image_block& blk,
1701 const block_size_descriptor& bsd,
1702 unsigned int xpos,
1703 unsigned int ypos,
1704 unsigned int zpos,
1705 const astcenc_swizzle& swz);
1706
1707 /**
1708 * @brief Load a single image block from the input image.
1709 *
1710 * This specialized variant can be used only if the block is 2D LDR U8 data,
1711 * with no swizzle.
1712 *
1713 * @param decode_mode The compression color profile.
1714 * @param img The input image data.
1715 * @param[out] blk The image block to populate.
1716 * @param bsd The block size information.
1717 * @param xpos The block X coordinate in the input image.
1718 * @param ypos The block Y coordinate in the input image.
1719 * @param zpos The block Z coordinate in the input image.
1720 * @param swz The swizzle to apply on load.
1721 */
1722 void load_image_block_fast_ldr(
1723 astcenc_profile decode_mode,
1724 const astcenc_image& img,
1725 image_block& blk,
1726 const block_size_descriptor& bsd,
1727 unsigned int xpos,
1728 unsigned int ypos,
1729 unsigned int zpos,
1730 const astcenc_swizzle& swz);
1731
1732 /**
1733 * @brief Store a single image block to the output image.
1734 *
1735 * @param[out] img The output image data.
1736 * @param blk The image block to export.
1737 * @param bsd The block size information.
1738 * @param xpos The block X coordinate in the input image.
1739 * @param ypos The block Y coordinate in the input image.
1740 * @param zpos The block Z coordinate in the input image.
1741 * @param swz The swizzle to apply on store.
1742 */
1743 void store_image_block(
1744 astcenc_image& img,
1745 const image_block& blk,
1746 const block_size_descriptor& bsd,
1747 unsigned int xpos,
1748 unsigned int ypos,
1749 unsigned int zpos,
1750 const astcenc_swizzle& swz);
1751
1752 /* ============================================================================
1753 Functionality for computing endpoint colors and weights for a block.
1754 ============================================================================ */
1755
1756 /**
1757 * @brief Compute ideal endpoint colors and weights for 1 plane of weights.
1758 *
1759 * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1760 * defines an exact position on the partition color line. We can then use these to assess the error
1761 * introduced by removing and quantizing the weight grid.
1762 *
1763 * @param blk The image block color data to compress.
1764 * @param pi The partition info for the current trial.
1765 * @param[out] ei The endpoint and weight values.
1766 */
1767 void compute_ideal_colors_and_weights_1plane(
1768 const image_block& blk,
1769 const partition_info& pi,
1770 endpoints_and_weights& ei);
1771
1772 /**
1773 * @brief Compute ideal endpoint colors and weights for 2 planes of weights.
1774 *
1775 * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1776 * defines an exact position on the partition color line. We can then use these to assess the error
1777 * introduced by removing and quantizing the weight grid.
1778 *
1779 * @param bsd The block size information.
1780 * @param blk The image block color data to compress.
1781 * @param plane2_component The component assigned to plane 2.
1782 * @param[out] ei1 The endpoint and weight values for plane 1.
1783 * @param[out] ei2 The endpoint and weight values for plane 2.
1784 */
1785 void compute_ideal_colors_and_weights_2planes(
1786 const block_size_descriptor& bsd,
1787 const image_block& blk,
1788 unsigned int plane2_component,
1789 endpoints_and_weights& ei1,
1790 endpoints_and_weights& ei2);
1791
1792 /**
1793 * @brief Compute the optimal unquantized weights for a decimation table.
1794 *
1795 * After computing ideal weights for the case for a complete weight grid, we we want to compute the
1796 * ideal weights for the case where weights exist only for some texels. We do this with a
1797 * steepest-descent grid solver which works as follows:
1798 *
1799 * First, for each actual weight, perform a weighted averaging of the texels affected by the weight.
1800 * Then, set step size to <some initial value> and attempt one step towards the original ideal
1801 * weight if it helps to reduce error.
1802 *
1803 * @param ei The non-decimated endpoints and weights.
1804 * @param di The selected weight decimation.
1805 * @param[out] dec_weight_ideal_value The ideal values for the decimated weight set.
1806 */
1807 void compute_ideal_weights_for_decimation(
1808 const endpoints_and_weights& ei,
1809 const decimation_info& di,
1810 float* dec_weight_ideal_value);
1811
1812 /**
1813 * @brief Compute the optimal quantized weights for a decimation table.
1814 *
1815 * We test the two closest weight indices in the allowed quantization range and keep the weight that
1816 * is the closest match.
1817 *
1818 * @param di The selected weight decimation.
1819 * @param low_bound The lowest weight allowed.
1820 * @param high_bound The highest weight allowed.
1821 * @param dec_weight_ideal_value The ideal weight set.
1822 * @param[out] dec_weight_quant_uvalue The output quantized weight as a float.
1823 * @param[out] dec_weight_uquant The output quantized weight as encoded int.
1824 * @param quant_level The desired weight quant level.
1825 */
1826 void compute_quantized_weights_for_decimation(
1827 const decimation_info& di,
1828 float low_bound,
1829 float high_bound,
1830 const float* dec_weight_ideal_value,
1831 float* dec_weight_quant_uvalue,
1832 uint8_t* dec_weight_uquant,
1833 quant_method quant_level);
1834
1835 /**
1836 * @brief Compute the error of a decimated weight set for 1 plane.
1837 *
1838 * After computing ideal weights for the case with one weight per texel, we want to compute the
1839 * error for decimated weight grids where weights are stored at a lower resolution. This function
1840 * computes the error of the reduced grid, compared to the full grid.
1841 *
1842 * @param eai The ideal weights for the full grid.
1843 * @param di The selected weight decimation.
1844 * @param dec_weight_quant_uvalue The quantized weights for the decimated grid.
1845 *
1846 * @return The accumulated error.
1847 */
1848 float compute_error_of_weight_set_1plane(
1849 const endpoints_and_weights& eai,
1850 const decimation_info& di,
1851 const float* dec_weight_quant_uvalue);
1852
1853 /**
1854 * @brief Compute the error of a decimated weight set for 2 planes.
1855 *
1856 * After computing ideal weights for the case with one weight per texel, we want to compute the
1857 * error for decimated weight grids where weights are stored at a lower resolution. This function
1858 * computes the error of the reduced grid, compared to the full grid.
1859 *
1860 * @param eai1 The ideal weights for the full grid and plane 1.
1861 * @param eai2 The ideal weights for the full grid and plane 2.
1862 * @param di The selected weight decimation.
1863 * @param dec_weight_quant_uvalue_plane1 The quantized weights for the decimated grid plane 1.
1864 * @param dec_weight_quant_uvalue_plane2 The quantized weights for the decimated grid plane 2.
1865 *
1866 * @return The accumulated error.
1867 */
1868 float compute_error_of_weight_set_2planes(
1869 const endpoints_and_weights& eai1,
1870 const endpoints_and_weights& eai2,
1871 const decimation_info& di,
1872 const float* dec_weight_quant_uvalue_plane1,
1873 const float* dec_weight_quant_uvalue_plane2);
1874
1875 /**
1876 * @brief Pack a single pair of color endpoints as effectively as possible.
1877 *
1878 * The user requests a base color endpoint mode in @c format, but the quantizer may choose a
1879 * delta-based representation. It will report back the format variant it actually used.
1880 *
1881 * @param color0 The input unquantized color0 endpoint for absolute endpoint pairs.
1882 * @param color1 The input unquantized color1 endpoint for absolute endpoint pairs.
1883 * @param rgbs_color The input unquantized RGBS variant endpoint for same chroma endpoints.
1884 * @param rgbo_color The input unquantized RGBS variant endpoint for HDR endpoints.
1885 * @param format The desired base format.
1886 * @param[out] output The output storage for the quantized colors/
1887 * @param quant_level The quantization level requested.
1888 *
1889 * @return The actual endpoint mode used.
1890 */
1891 uint8_t pack_color_endpoints(
1892 QualityProfile privateProfile,
1893 vfloat4 color0,
1894 vfloat4 color1,
1895 vfloat4 rgbs_color,
1896 vfloat4 rgbo_color,
1897 int format,
1898 uint8_t* output,
1899 quant_method quant_level);
1900
1901 /**
1902 * @brief Unpack a single pair of encoded endpoints.
1903 *
1904 * Endpoints must be unscrambled and converted into the 0-255 range before calling this functions.
1905 *
1906 * @param decode_mode The decode mode (LDR, HDR, etc).
1907 * @param format The color endpoint mode used.
1908 * @param input The raw array of encoded input integers. The length of this array
1909 * depends on @c format; it can be safely assumed to be large enough.
1910 * @param[out] rgb_hdr Is the endpoint using HDR for the RGB channels?
1911 * @param[out] alpha_hdr Is the endpoint using HDR for the A channel?
1912 * @param[out] output0 The output color for endpoint 0.
1913 * @param[out] output1 The output color for endpoint 1.
1914 */
1915 void unpack_color_endpoints(
1916 astcenc_profile decode_mode,
1917 int format,
1918 const uint8_t* input,
1919 bool& rgb_hdr,
1920 bool& alpha_hdr,
1921 vint4& output0,
1922 vint4& output1);
1923
1924 /**
1925 * @brief Unpack an LDR RGBA color that uses delta encoding.
1926 *
1927 * @param input0 The packed endpoint 0 color.
1928 * @param input1 The packed endpoint 1 color deltas.
1929 * @param[out] output0 The unpacked endpoint 0 color.
1930 * @param[out] output1 The unpacked endpoint 1 color.
1931 */
1932 void rgba_delta_unpack(
1933 vint4 input0,
1934 vint4 input1,
1935 vint4& output0,
1936 vint4& output1);
1937
1938 /**
1939 * @brief Unpack an LDR RGBA color that uses direct encoding.
1940 *
1941 * @param input0 The packed endpoint 0 color.
1942 * @param input1 The packed endpoint 1 color.
1943 * @param[out] output0 The unpacked endpoint 0 color.
1944 * @param[out] output1 The unpacked endpoint 1 color.
1945 */
1946 void rgba_unpack(
1947 vint4 input0,
1948 vint4 input1,
1949 vint4& output0,
1950 vint4& output1);
1951
1952 /**
1953 * @brief Unpack a set of quantized and decimated weights.
1954 *
1955 * TODO: Can we skip this for non-decimated weights now that the @c scb is
1956 * already storing unquantized weights?
1957 *
1958 * @param bsd The block size information.
1959 * @param scb The symbolic compressed encoding.
1960 * @param di The weight grid decimation table.
1961 * @param is_dual_plane @c true if this is a dual plane block, @c false otherwise.
1962 * @param[out] weights_plane1 The output array for storing the plane 1 weights.
1963 * @param[out] weights_plane2 The output array for storing the plane 2 weights.
1964 */
1965 void unpack_weights(
1966 const block_size_descriptor& bsd,
1967 const symbolic_compressed_block& scb,
1968 const decimation_info& di,
1969 bool is_dual_plane,
1970 int weights_plane1[BLOCK_MAX_TEXELS],
1971 int weights_plane2[BLOCK_MAX_TEXELS]);
1972
1973 /**
1974 * @brief Identify, for each mode, which set of color endpoint produces the best result.
1975 *
1976 * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding
1977 * combination for each. The modified quantization level can be used when all formats are the same,
1978 * as this frees up two additional bits of storage.
1979 *
1980 * @param pi The partition info for the current trial.
1981 * @param blk The image block color data to compress.
1982 * @param ep The ideal endpoints.
1983 * @param qwt_bitcounts Bit counts for different quantization methods.
1984 * @param qwt_errors Errors for different quantization methods.
1985 * @param tune_candidate_limit The max number of candidates to return, may be less.
1986 * @param start_block_mode The first block mode to inspect.
1987 * @param end_block_mode The last block mode to inspect.
1988 * @param[out] partition_format_specifiers The best formats per partition.
1989 * @param[out] block_mode The best packed block mode indexes.
1990 * @param[out] quant_level The best color quant level.
1991 * @param[out] quant_level_mod The best color quant level if endpoints are the same.
1992 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
1993 *
1994 * @return The actual number of candidate matches returned.
1995 */
1996 unsigned int compute_ideal_endpoint_formats(
1997 QualityProfile privateProfile,
1998 const partition_info& pi,
1999 const image_block& blk,
2000 const endpoints& ep,
2001 const int8_t* qwt_bitcounts,
2002 const float* qwt_errors,
2003 unsigned int tune_candidate_limit,
2004 unsigned int start_block_mode,
2005 unsigned int end_block_mode,
2006 uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
2007 int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
2008 quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
2009 quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
2010 compression_working_buffers& tmpbuf);
2011
2012 /**
2013 * @brief For a given 1 plane weight set recompute the endpoint colors.
2014 *
2015 * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
2016 * recompute the ideal colors for a specific weight set.
2017 *
2018 * @param blk The image block color data to compress.
2019 * @param pi The partition info for the current trial.
2020 * @param di The weight grid decimation table.
2021 * @param dec_weights_uquant The quantized weight set.
2022 * @param[in,out] ep The color endpoints (modifed in place).
2023 * @param[out] rgbs_vectors The RGB+scale vectors for LDR blocks.
2024 * @param[out] rgbo_vectors The RGB+offset vectors for HDR blocks.
2025 */
2026 void recompute_ideal_colors_1plane(
2027 const image_block& blk,
2028 const partition_info& pi,
2029 const decimation_info& di,
2030 const uint8_t* dec_weights_uquant,
2031 endpoints& ep,
2032 vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
2033 vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]);
2034
2035 /**
2036 * @brief For a given 2 plane weight set recompute the endpoint colors.
2037 *
2038 * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
2039 * recompute the ideal colors for a specific weight set.
2040 *
2041 * @param blk The image block color data to compress.
2042 * @param bsd The block_size descriptor.
2043 * @param di The weight grid decimation table.
2044 * @param dec_weights_uquant_plane1 The quantized weight set for plane 1.
2045 * @param dec_weights_uquant_plane2 The quantized weight set for plane 2.
2046 * @param[in,out] ep The color endpoints (modifed in place).
2047 * @param[out] rgbs_vector The RGB+scale color for LDR blocks.
2048 * @param[out] rgbo_vector The RGB+offset color for HDR blocks.
2049 * @param plane2_component The component assigned to plane 2.
2050 */
2051 void recompute_ideal_colors_2planes(
2052 const image_block& blk,
2053 const block_size_descriptor& bsd,
2054 const decimation_info& di,
2055 const uint8_t* dec_weights_uquant_plane1,
2056 const uint8_t* dec_weights_uquant_plane2,
2057 endpoints& ep,
2058 vfloat4& rgbs_vector,
2059 vfloat4& rgbo_vector,
2060 int plane2_component);
2061
2062 /**
2063 * @brief Expand the angular tables needed for the alternative to PCA that we use.
2064 */
2065 void prepare_angular_tables();
2066
2067 /**
2068 * @brief Compute the angular endpoints for one plane for each block mode.
2069 *
2070 * @param only_always Only consider block modes that are always enabled.
2071 * @param bsd The block size descriptor for the current trial.
2072 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
2073 * @param max_weight_quant The maximum block mode weight quantization allowed.
2074 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
2075 */
2076 void compute_angular_endpoints_1plane(
2077 QualityProfile privateProfile,
2078 bool only_always,
2079 const block_size_descriptor& bsd,
2080 const float* dec_weight_ideal_value,
2081 unsigned int max_weight_quant,
2082 compression_working_buffers& tmpbuf);
2083
2084 /**
2085 * @brief Compute the angular endpoints for two planes for each block mode.
2086 *
2087 * @param bsd The block size descriptor for the current trial.
2088 * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
2089 * @param max_weight_quant The maximum block mode weight quantization allowed.
2090 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
2091 */
2092 void compute_angular_endpoints_2planes(
2093 QualityProfile privateProfile,
2094 const block_size_descriptor& bsd,
2095 const float* dec_weight_ideal_value,
2096 unsigned int max_weight_quant,
2097 compression_working_buffers& tmpbuf);
2098
2099 /* ============================================================================
2100 Functionality for high level compression and decompression access.
2101 ============================================================================ */
2102
2103 /**
2104 * @brief Compress an image block into a physical block.
2105 *
2106 * @param ctx The compressor context and configuration.
2107 * @param blk The image block color data to compress.
2108 * @param[out] pcb The physical compressed block output.
2109 * @param[out] tmpbuf Preallocated scratch buffers for the compressor.
2110 */
2111 void compress_block(
2112 const astcenc_contexti& ctx,
2113 const image_block& blk,
2114 uint8_t pcb[16],
2115 #if QUALITY_CONTROL
2116 compression_working_buffers& tmpbuf,
2117 bool calQualityEnable,
2118 int32_t *mseBlock[RGBA_COM]
2119 #else
2120 compression_working_buffers& tmpbuf
2121 #endif
2122 );
2123
2124 /**
2125 * @brief Decompress a symbolic block in to an image block.
2126 *
2127 * @param decode_mode The decode mode (LDR, HDR, etc).
2128 * @param bsd The block size information.
2129 * @param xpos The X coordinate of the block in the overall image.
2130 * @param ypos The Y coordinate of the block in the overall image.
2131 * @param zpos The Z coordinate of the block in the overall image.
2132 * @param[out] blk The decompressed image block color data.
2133 */
2134 void decompress_symbolic_block(
2135 astcenc_profile decode_mode,
2136 const block_size_descriptor& bsd,
2137 int xpos,
2138 int ypos,
2139 int zpos,
2140 const symbolic_compressed_block& scb,
2141 image_block& blk);
2142
2143 /**
2144 * @brief Compute the error between a symbolic block and the original input data.
2145 *
2146 * This function is specialized for 2 plane and 1 partition search.
2147 *
2148 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2149 *
2150 * @param config The compressor config.
2151 * @param bsd The block size information.
2152 * @param scb The symbolic compressed encoding.
2153 * @param blk The original image block color data.
2154 *
2155 * @return Returns the computed error, or a negative value if the encoding
2156 * should be rejected for any reason.
2157 */
2158 float compute_symbolic_block_difference_2plane(
2159 const astcenc_config& config,
2160 const block_size_descriptor& bsd,
2161 const symbolic_compressed_block& scb,
2162 const image_block& blk);
2163
2164 /**
2165 * @brief Compute the error between a symbolic block and the original input data.
2166 *
2167 * This function is specialized for 1 plane and N partition search.
2168 *
2169 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2170 *
2171 * @param config The compressor config.
2172 * @param bsd The block size information.
2173 * @param scb The symbolic compressed encoding.
2174 * @param blk The original image block color data.
2175 *
2176 * @return Returns the computed error, or a negative value if the encoding
2177 * should be rejected for any reason.
2178 */
2179 float compute_symbolic_block_difference_1plane(
2180 const astcenc_config& config,
2181 const block_size_descriptor& bsd,
2182 const symbolic_compressed_block& scb,
2183 const image_block& blk);
2184
2185 /**
2186 * @brief Compute the error between a symbolic block and the original input data.
2187 *
2188 * This function is specialized for 1 plane and 1 partition search.
2189 *
2190 * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2191 *
2192 * @param config The compressor config.
2193 * @param bsd The block size information.
2194 * @param scb The symbolic compressed encoding.
2195 * @param blk The original image block color data.
2196 *
2197 * @return Returns the computed error, or a negative value if the encoding
2198 * should be rejected for any reason.
2199 */
2200 float compute_symbolic_block_difference_1plane_1partition(
2201 const astcenc_config& config,
2202 const block_size_descriptor& bsd,
2203 const symbolic_compressed_block& scb,
2204 const image_block& blk);
2205
2206 /**
2207 * @brief Convert a symbolic representation into a binary physical encoding.
2208 *
2209 * It is assumed that the symbolic encoding is valid and encodable, or
2210 * previously flagged as an error block if an error color it to be encoded.
2211 *
2212 * @param bsd The block size information.
2213 * @param scb The symbolic representation.
2214 * @param[out] pcb The physical compressed block output.
2215 */
2216 void symbolic_to_physical(
2217 const block_size_descriptor& bsd,
2218 const symbolic_compressed_block& scb,
2219 uint8_t pcb[16]);
2220
2221 /**
2222 * @brief Convert a binary physical encoding into a symbolic representation.
2223 *
2224 * This function can cope with arbitrary input data; output blocks will be
2225 * flagged as an error block if the encoding is invalid.
2226 *
2227 * @param bsd The block size information.
2228 * @param pcb The physical compresesd block input.
2229 * @param[out] scb The output symbolic representation.
2230 */
2231 void physical_to_symbolic(
2232 const block_size_descriptor& bsd,
2233 const uint8_t pcb[16],
2234 symbolic_compressed_block& scb);
2235
2236 /* ============================================================================
2237 Platform-specific functions.
2238 ============================================================================ */
2239 /**
2240 * @brief Allocate an aligned memory buffer.
2241 *
2242 * Allocated memory must be freed by aligned_free.
2243 *
2244 * @param size The desired buffer size.
2245 * @param align The desired buffer alignment; must be 2^N, may be increased
2246 * by the implementation to a minimum allowable alignment.
2247 *
2248 * @return The memory buffer pointer or nullptr on allocation failure.
2249 */
2250 template<typename T>
aligned_malloc(size_t size,size_t align)2251 T* aligned_malloc(size_t size, size_t align)
2252 {
2253 void* ptr;
2254 int error = 0;
2255
2256 // Don't allow this to under-align a type
2257 size_t min_align = astc::max(alignof(T), sizeof(void*));
2258 size_t real_align = astc::max(min_align, align);
2259
2260 #if defined(_WIN32)
2261 ptr = _aligned_malloc(size, real_align);
2262 #else
2263 error = posix_memalign(&ptr, real_align, size);
2264 #endif
2265
2266 if (error || (!ptr))
2267 {
2268 return nullptr;
2269 }
2270
2271 return static_cast<T*>(ptr);
2272 }
2273
2274 /**
2275 * @brief Free an aligned memory buffer.
2276 *
2277 * @param ptr The buffer to free.
2278 */
2279 template<typename T>
aligned_free(T * ptr)2280 void aligned_free(T* ptr)
2281 {
2282 #if defined(_WIN32)
2283 _aligned_free(ptr);
2284 #else
2285 free(ptr);
2286 #endif
2287 }
2288
2289 #ifdef ASTC_CUSTOMIZED_ENABLE
2290 #ifdef BUILD_HMOS_SDK
2291 #if defined(_WIN32) && !defined(__CYGWIN__)
2292 const LPCSTR g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dll";
2293 #elif defined(__APPLE__)
2294 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.dylib";
2295 #else
2296 const std::string g_astcCustomizedSo = "../../hms/toolchains/lib/libastcCustomizedEncode.so";
2297 #endif
2298 #else
2299 #ifdef SUT_PATH_X64
2300 const std::string g_astcCustomizedSo = "/system/lib64/module/hms/graphic/libastcCustomizedEncode.z.so";
2301 #else
2302 const std::string g_astcCustomizedSo = "/system/lib/module/hms/graphic/libastcCustomizedEncode.z.so";
2303 #endif
2304 #endif
2305 using IsCustomizedBlockMode = bool (*)(const int);
2306 using CustomizedMaxPartitions = int (*)();
2307 using CustomizedBlockMode = int (*)();
2308
2309 class AstcCustomizedSoManager
2310 {
2311 public:
AstcCustomizedSoManager()2312 AstcCustomizedSoManager()
2313 {
2314 astcCustomizedSoOpened_ = false;
2315 astcCustomizedSoHandle_ = nullptr;
2316 isCustomizedBlockModeFunc_ = nullptr;
2317 customizedMaxPartitionsFunc_ = nullptr;
2318 customizedBlockModeFunc_ = nullptr;
2319 }
~AstcCustomizedSoManager()2320 ~AstcCustomizedSoManager()
2321 {
2322 if (!astcCustomizedSoOpened_ || astcCustomizedSoHandle_ == nullptr)
2323 {
2324 ASTCENC_DEBUG("astcenc customized so is not opened when dlclose!");
2325 return;
2326 }
2327 #if defined(_WIN32) && !defined(__CYGWIN__)
2328 if (!FreeLibrary(astcCustomizedSoHandle_))
2329 {
2330 ASTCENC_ERROR("astc dll FreeLibrary failed: %{public}s", g_astcCustomizedSo);
2331 }
2332 #else
2333 if (dlclose(astcCustomizedSoHandle_) != 0)
2334 {
2335 ASTCENC_ERROR("astcenc so dlclose failed: %{public}s", g_astcCustomizedSo.c_str());
2336 }
2337 #endif
2338 }
2339 IsCustomizedBlockMode isCustomizedBlockModeFunc_;
2340 CustomizedMaxPartitions customizedMaxPartitionsFunc_;
2341 CustomizedBlockMode customizedBlockModeFunc_;
LoadSutCustomizedSo()2342 bool LoadSutCustomizedSo()
2343 {
2344 std::lock_guard<std::mutex> lock(astcCustomizedSoMutex_);
2345 if (!astcCustomizedSoOpened_)
2346 {
2347 #if defined(_WIN32) && !defined(__CYGWIN__)
2348 if ((_access(g_astcCustomizedSo, 0) == -1))
2349 {
2350 ASTCENC_WARN("astc customized dll(%{public}s) is not found!", g_astcCustomizedSo);
2351 return false;
2352 }
2353 astcCustomizedSoHandle_ = LoadLibrary(g_astcCustomizedSo);
2354 if (astcCustomizedSoHandle_ == nullptr)
2355 {
2356 ASTCENC_ERROR("astc libAstcCustomizedEnc LoadLibrary failed!");
2357 return false;
2358 }
2359 isCustomizedBlockModeFunc_ =
2360 reinterpret_cast<IsCustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2361 "IsCustomizedBlockMode"));
2362 if (isCustomizedBlockModeFunc_ == nullptr)
2363 {
2364 ASTCENC_ERROR("astc isCustomizedBlockModeFunc_ GetProcAddress failed!");
2365 if (!FreeLibrary(astcCustomizedSoHandle_))
2366 {
2367 ASTCENC_ERROR("astc isCustomizedBlockModeFunc_ FreeLibrary failed!");
2368 }
2369 return false;
2370 }
2371 customizedMaxPartitionsFunc_ =
2372 reinterpret_cast<CustomizedMaxPartitions>(GetProcAddress(astcCustomizedSoHandle_,
2373 "CustomizedMaxPartitions"));
2374 if (customizedMaxPartitionsFunc_ == nullptr)
2375 {
2376 ASTCENC_ERROR("astc customizedMaxPartitionsFunc_ GetProcAddress failed!");
2377 if (!FreeLibrary(astcCustomizedSoHandle_))
2378 {
2379 ASTCENC_ERROR("astc customizedMaxPartitionsFunc_ FreeLibrary failed!");
2380 }
2381 return false;
2382 }
2383 customizedBlockModeFunc_ =
2384 reinterpret_cast<CustomizedBlockMode>(GetProcAddress(astcCustomizedSoHandle_,
2385 "CustomizedBlockMode"));
2386 if (customizedBlockModeFunc_ == nullptr)
2387 {
2388 ASTCENC_ERROR("astc customizedBlockModeFunc_ GetProcAddress failed!");
2389 if (!FreeLibrary(astcCustomizedSoHandle_))
2390 {
2391 ASTCENC_ERROR("astc customizedBlockModeFunc_ FreeLibrary failed!");
2392 }
2393 return false;
2394 }
2395 ASTCENC_INFO("astcenc customized dll load success: %{public}s!", g_astcCustomizedSo);
2396 #else
2397 if (access(g_astcCustomizedSo.c_str(), F_OK) == -1)
2398 {
2399 ASTCENC_WARN("astc customized so(%{public}s) is not found!", g_astcCustomizedSo.c_str());
2400 return false;
2401 }
2402 astcCustomizedSoHandle_ = dlopen(g_astcCustomizedSo.c_str(), 1);
2403 if (astcCustomizedSoHandle_ == nullptr)
2404 {
2405 ASTCENC_ERROR("astc libAstcCustomizedEnc dlopen failed!");
2406 return false;
2407 }
2408 isCustomizedBlockModeFunc_ =
2409 reinterpret_cast<IsCustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2410 "IsCustomizedBlockMode"));
2411 if (isCustomizedBlockModeFunc_ == nullptr)
2412 {
2413 ASTCENC_ERROR("astc isCustomizedBlockModeFunc_ dlsym failed!");
2414 dlclose(astcCustomizedSoHandle_);
2415 astcCustomizedSoHandle_ = nullptr;
2416 return false;
2417 }
2418 customizedMaxPartitionsFunc_ =
2419 reinterpret_cast<CustomizedMaxPartitions>(dlsym(astcCustomizedSoHandle_,
2420 "CustomizedMaxPartitions"));
2421 if (customizedMaxPartitionsFunc_ == nullptr)
2422 {
2423 ASTCENC_ERROR("astc customizedMaxPartitionsFunc_ dlsym failed!");
2424 dlclose(astcCustomizedSoHandle_);
2425 astcCustomizedSoHandle_ = nullptr;
2426 return false;
2427 }
2428 customizedBlockModeFunc_ =
2429 reinterpret_cast<CustomizedBlockMode>(dlsym(astcCustomizedSoHandle_,
2430 "CustomizedBlockMode"));
2431 if (customizedBlockModeFunc_ == nullptr)
2432 {
2433 ASTCENC_ERROR("astc customizedBlockModeFunc_ dlsym failed!");
2434 dlclose(astcCustomizedSoHandle_);
2435 astcCustomizedSoHandle_ = nullptr;
2436 return false;
2437 }
2438 ASTCENC_INFO("astcenc customized so dlopen success: %{public}s", g_astcCustomizedSo.c_str());
2439 #endif
2440 astcCustomizedSoOpened_ = true;
2441 }
2442 return true;
2443 }
2444 private:
2445 bool astcCustomizedSoOpened_;
2446 #if defined(_WIN32) && !defined(__CYGWIN__)
2447 HINSTANCE astcCustomizedSoHandle_;
2448 #else
2449 void *astcCustomizedSoHandle_;
2450 #endif
2451 std::mutex astcCustomizedSoMutex_;
2452 };
2453 extern AstcCustomizedSoManager g_astcCustomizedSoManager;
2454 #endif
2455
2456 #endif
2457