• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Audio Processing Technology codec for Bluetooth (aptX)
3  *
4  * Copyright (C) 2017  Aurelien Jacobs <aurel@gnuage.org>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "config_components.h"
24 
25 #include "libavutil/channel_layout.h"
26 #include "aptx.h"
27 #include "codec_internal.h"
28 #include "encode.h"
29 
30 /*
31  * Half-band QMF analysis filter realized with a polyphase FIR filter.
32  * Split into 2 subbands and downsample by 2.
33  * So for each pair of samples that goes in, one sample goes out,
34  * split into 2 separate subbands.
35  */
36 av_always_inline
aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],const int32_t coeffs[NB_FILTERS][FILTER_TAPS],int shift,int32_t samples[NB_FILTERS],int32_t * low_subband_output,int32_t * high_subband_output)37 static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],
38                                         const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
39                                         int shift,
40                                         int32_t samples[NB_FILTERS],
41                                         int32_t *low_subband_output,
42                                         int32_t *high_subband_output)
43 {
44     int32_t subbands[NB_FILTERS];
45     int i;
46 
47     for (i = 0; i < NB_FILTERS; i++) {
48         aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]);
49         subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
50     }
51 
52     *low_subband_output  = av_clip_intp2(subbands[0] + subbands[1], 23);
53     *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23);
54 }
55 
56 /*
57  * Two stage QMF analysis tree.
58  * Split 4 input samples into 4 subbands and downsample by 4.
59  * So for each group of 4 samples that goes in, one sample goes out,
60  * split into 4 separate subbands.
61  */
aptx_qmf_tree_analysis(QMFAnalysis * qmf,int32_t samples[4],int32_t subband_samples[4])62 static void aptx_qmf_tree_analysis(QMFAnalysis *qmf,
63                                    int32_t samples[4],
64                                    int32_t subband_samples[4])
65 {
66     int32_t intermediate_samples[4];
67     int i;
68 
69     /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */
70     for (i = 0; i < 2; i++)
71         aptx_qmf_polyphase_analysis(qmf->outer_filter_signal,
72                                     aptx_qmf_outer_coeffs, 23,
73                                     &samples[2*i],
74                                     &intermediate_samples[0+i],
75                                     &intermediate_samples[2+i]);
76 
77     /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */
78     for (i = 0; i < 2; i++)
79         aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i],
80                                     aptx_qmf_inner_coeffs, 23,
81                                     &intermediate_samples[2*i],
82                                     &subband_samples[2*i+0],
83                                     &subband_samples[2*i+1]);
84 }
85 
86 av_always_inline
aptx_bin_search(int32_t value,int32_t factor,const int32_t * intervals,int32_t nb_intervals)87 static int32_t aptx_bin_search(int32_t value, int32_t factor,
88                                const int32_t *intervals, int32_t nb_intervals)
89 {
90     int32_t idx = 0;
91     int i;
92 
93     for (i = nb_intervals >> 1; i > 0; i >>= 1)
94         if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24))
95             idx += i;
96 
97     return idx;
98 }
99 
aptx_quantize_difference(Quantize * quantize,int32_t sample_difference,int32_t dither,int32_t quantization_factor,ConstTables * tables)100 static void aptx_quantize_difference(Quantize *quantize,
101                                      int32_t sample_difference,
102                                      int32_t dither,
103                                      int32_t quantization_factor,
104                                      ConstTables *tables)
105 {
106     const int32_t *intervals = tables->quantize_intervals;
107     int32_t quantized_sample, dithered_sample, parity_change;
108     int32_t d, mean, interval, inv, sample_difference_abs;
109     int64_t error;
110 
111     sample_difference_abs = FFABS(sample_difference);
112     sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1);
113 
114     quantized_sample = aptx_bin_search(sample_difference_abs >> 4,
115                                        quantization_factor,
116                                        intervals, tables->tables_size);
117 
118     d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23);
119     d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23);
120 
121     intervals += quantized_sample;
122     mean = (intervals[1] + intervals[0]) / 2;
123     interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1);
124 
125     dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32);
126     error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor);
127     quantize->error = FFABS(rshift64(error, 23));
128 
129     parity_change = quantized_sample;
130     if (error < 0)
131         quantized_sample--;
132     else
133         parity_change--;
134 
135     inv = -(sample_difference < 0);
136     quantize->quantized_sample               = quantized_sample ^ inv;
137     quantize->quantized_sample_parity_change = parity_change    ^ inv;
138 }
139 
aptx_encode_channel(Channel * channel,int32_t samples[4],int hd)140 static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd)
141 {
142     int32_t subband_samples[4];
143     int subband;
144     aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples);
145     ff_aptx_generate_dither(channel);
146     for (subband = 0; subband < NB_SUBBANDS; subband++) {
147         int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23);
148         aptx_quantize_difference(&channel->quantize[subband], diff,
149                                  channel->dither[subband],
150                                  channel->invert_quantize[subband].quantization_factor,
151                                  &ff_aptx_quant_tables[hd][subband]);
152     }
153 }
154 
aptx_insert_sync(Channel channels[NB_CHANNELS],int32_t * idx)155 static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx)
156 {
157     if (aptx_check_parity(channels, idx)) {
158         int i;
159         Channel *c;
160         static const int map[] = { 1, 2, 0, 3 };
161         Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]];
162         for (c = &channels[NB_CHANNELS-1]; c >= channels; c--)
163             for (i = 0; i < NB_SUBBANDS; i++)
164                 if (c->quantize[map[i]].error < min->error)
165                     min = &c->quantize[map[i]];
166 
167         /* Forcing the desired parity is done by offsetting by 1 the quantized
168          * sample from the subband featuring the smallest quantization error. */
169         min->quantized_sample = min->quantized_sample_parity_change;
170     }
171 }
172 
aptx_pack_codeword(Channel * channel)173 static uint16_t aptx_pack_codeword(Channel *channel)
174 {
175     int32_t parity = aptx_quantized_parity(channel);
176     return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13)
177          | (((channel->quantize[2].quantized_sample & 0x03)         ) << 11)
178          | (((channel->quantize[1].quantized_sample & 0x0F)         ) <<  7)
179          | (((channel->quantize[0].quantized_sample & 0x7F)         ) <<  0);
180 }
181 
aptxhd_pack_codeword(Channel * channel)182 static uint32_t aptxhd_pack_codeword(Channel *channel)
183 {
184     int32_t parity = aptx_quantized_parity(channel);
185     return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19)
186          | (((channel->quantize[2].quantized_sample & 0x00F)         ) << 15)
187          | (((channel->quantize[1].quantized_sample & 0x03F)         ) <<  9)
188          | (((channel->quantize[0].quantized_sample & 0x1FF)         ) <<  0);
189 }
190 
aptx_encode_samples(AptXContext * ctx,int32_t samples[NB_CHANNELS][4],uint8_t * output)191 static void aptx_encode_samples(AptXContext *ctx,
192                                 int32_t samples[NB_CHANNELS][4],
193                                 uint8_t *output)
194 {
195     int channel;
196     for (channel = 0; channel < NB_CHANNELS; channel++)
197         aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd);
198 
199     aptx_insert_sync(ctx->channels, &ctx->sync_idx);
200 
201     for (channel = 0; channel < NB_CHANNELS; channel++) {
202         ff_aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
203         if (ctx->hd)
204             AV_WB24(output + 3*channel,
205                     aptxhd_pack_codeword(&ctx->channels[channel]));
206         else
207             AV_WB16(output + 2*channel,
208                     aptx_pack_codeword(&ctx->channels[channel]));
209     }
210 }
211 
aptx_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)212 static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
213                              const AVFrame *frame, int *got_packet_ptr)
214 {
215     AptXContext *s = avctx->priv_data;
216     int pos, ipos, channel, sample, output_size, ret;
217 
218     if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
219         return ret;
220 
221     output_size = s->block_size * frame->nb_samples/4;
222     if ((ret = ff_get_encode_buffer(avctx, avpkt, output_size, 0)) < 0)
223         return ret;
224 
225     for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) {
226         int32_t samples[NB_CHANNELS][4];
227 
228         for (channel = 0; channel < NB_CHANNELS; channel++)
229             for (sample = 0; sample < 4; sample++)
230                 samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8;
231 
232         aptx_encode_samples(s, samples, avpkt->data + pos);
233     }
234 
235     ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration);
236     *got_packet_ptr = 1;
237     return 0;
238 }
239 
aptx_close(AVCodecContext * avctx)240 static av_cold int aptx_close(AVCodecContext *avctx)
241 {
242     AptXContext *s = avctx->priv_data;
243     ff_af_queue_close(&s->afq);
244     return 0;
245 }
246 
247 #if CONFIG_APTX_ENCODER
248 const FFCodec ff_aptx_encoder = {
249     .p.name                = "aptx",
250     .p.long_name           = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
251     .p.type                = AVMEDIA_TYPE_AUDIO,
252     .p.id                  = AV_CODEC_ID_APTX,
253     .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME,
254     .priv_data_size        = sizeof(AptXContext),
255     .init                  = ff_aptx_init,
256     FF_CODEC_ENCODE_CB(aptx_encode_frame),
257     .close                 = aptx_close,
258     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
259 #if FF_API_OLD_CHANNEL_LAYOUT
260     .p.channel_layouts     = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
261 #endif
262     .p.ch_layouts          = (const AVChannelLayout[]) { AV_CHANNEL_LAYOUT_STEREO, { 0 } },
263     .p.sample_fmts         = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
264                                                              AV_SAMPLE_FMT_NONE },
265     .p.supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
266 };
267 #endif
268 
269 #if CONFIG_APTX_HD_ENCODER
270 const FFCodec ff_aptx_hd_encoder = {
271     .p.name                = "aptx_hd",
272     .p.long_name           = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
273     .p.type                = AVMEDIA_TYPE_AUDIO,
274     .p.id                  = AV_CODEC_ID_APTX_HD,
275     .p.capabilities        = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME,
276     .priv_data_size        = sizeof(AptXContext),
277     .init                  = ff_aptx_init,
278     FF_CODEC_ENCODE_CB(aptx_encode_frame),
279     .close                 = aptx_close,
280     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
281 #if FF_API_OLD_CHANNEL_LAYOUT
282     .p.channel_layouts     = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
283 #endif
284     .p.ch_layouts          = (const AVChannelLayout[]) { AV_CHANNEL_LAYOUT_STEREO, { 0 } },
285     .p.sample_fmts         = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
286                                                              AV_SAMPLE_FMT_NONE },
287     .p.supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
288 };
289 #endif
290