1 /*
2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4 * Copyright (c) 2009 Jimmy Christensen
5 *
6 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 /**
26 * @file
27 * OpenEXR decoder
28 * @author Jimmy Christensen
29 *
30 * For more information on the OpenEXR format, visit:
31 * http://openexr.com/
32 */
33
34 #include <float.h>
35 #include <zlib.h>
36
37 #include "libavutil/avassert.h"
38 #include "libavutil/common.h"
39 #include "libavutil/imgutils.h"
40 #include "libavutil/intfloat.h"
41 #include "libavutil/avstring.h"
42 #include "libavutil/opt.h"
43 #include "libavutil/color_utils.h"
44
45 #include "avcodec.h"
46 #include "bytestream.h"
47
48 #if HAVE_BIGENDIAN
49 #include "bswapdsp.h"
50 #endif
51
52 #include "codec_internal.h"
53 #include "exrdsp.h"
54 #include "get_bits.h"
55 #include "internal.h"
56 #include "half2float.h"
57 #include "mathops.h"
58 #include "thread.h"
59
60 enum ExrCompr {
61 EXR_RAW,
62 EXR_RLE,
63 EXR_ZIP1,
64 EXR_ZIP16,
65 EXR_PIZ,
66 EXR_PXR24,
67 EXR_B44,
68 EXR_B44A,
69 EXR_DWAA,
70 EXR_DWAB,
71 EXR_UNKN,
72 };
73
74 enum ExrPixelType {
75 EXR_UINT,
76 EXR_HALF,
77 EXR_FLOAT,
78 EXR_UNKNOWN,
79 };
80
81 enum ExrTileLevelMode {
82 EXR_TILE_LEVEL_ONE,
83 EXR_TILE_LEVEL_MIPMAP,
84 EXR_TILE_LEVEL_RIPMAP,
85 EXR_TILE_LEVEL_UNKNOWN,
86 };
87
88 enum ExrTileLevelRound {
89 EXR_TILE_ROUND_UP,
90 EXR_TILE_ROUND_DOWN,
91 EXR_TILE_ROUND_UNKNOWN,
92 };
93
94 typedef struct HuffEntry {
95 uint8_t len;
96 uint16_t sym;
97 uint32_t code;
98 } HuffEntry;
99
100 typedef struct EXRChannel {
101 int xsub, ysub;
102 enum ExrPixelType pixel_type;
103 } EXRChannel;
104
105 typedef struct EXRTileAttribute {
106 int32_t xSize;
107 int32_t ySize;
108 enum ExrTileLevelMode level_mode;
109 enum ExrTileLevelRound level_round;
110 } EXRTileAttribute;
111
112 typedef struct EXRThreadData {
113 uint8_t *uncompressed_data;
114 int uncompressed_size;
115
116 uint8_t *tmp;
117 int tmp_size;
118
119 uint8_t *bitmap;
120 uint16_t *lut;
121
122 uint8_t *ac_data;
123 unsigned ac_size;
124
125 uint8_t *dc_data;
126 unsigned dc_size;
127
128 uint8_t *rle_data;
129 unsigned rle_size;
130
131 uint8_t *rle_raw_data;
132 unsigned rle_raw_size;
133
134 float block[3][64];
135
136 int ysize, xsize;
137
138 int channel_line_size;
139
140 int run_sym;
141 HuffEntry *he;
142 uint64_t *freq;
143 VLC vlc;
144 } EXRThreadData;
145
146 typedef struct EXRContext {
147 AVClass *class;
148 AVFrame *picture;
149 AVCodecContext *avctx;
150 ExrDSPContext dsp;
151
152 #if HAVE_BIGENDIAN
153 BswapDSPContext bbdsp;
154 #endif
155
156 enum ExrCompr compression;
157 enum ExrPixelType pixel_type;
158 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
159 const AVPixFmtDescriptor *desc;
160
161 int w, h;
162 uint32_t sar;
163 int32_t xmax, xmin;
164 int32_t ymax, ymin;
165 uint32_t xdelta, ydelta;
166
167 int scan_lines_per_block;
168
169 EXRTileAttribute tile_attr; /* header data attribute of tile */
170 int is_tile; /* 0 if scanline, 1 if tile */
171 int is_multipart;
172 int current_part;
173
174 int is_luma;/* 1 if there is an Y plane */
175
176 GetByteContext gb;
177 const uint8_t *buf;
178 int buf_size;
179
180 EXRChannel *channels;
181 int nb_channels;
182 int current_channel_offset;
183 uint32_t chunk_count;
184
185 EXRThreadData *thread_data;
186
187 const char *layer;
188 int selected_part;
189
190 enum AVColorTransferCharacteristic apply_trc_type;
191 float gamma;
192 union av_intfloat32 gamma_table[65536];
193
194 uint32_t mantissatable[2048];
195 uint32_t exponenttable[64];
196 uint16_t offsettable[64];
197 } EXRContext;
198
zip_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)199 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
200 int uncompressed_size, EXRThreadData *td)
201 {
202 unsigned long dest_len = uncompressed_size;
203
204 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
205 dest_len != uncompressed_size)
206 return AVERROR_INVALIDDATA;
207
208 av_assert1(uncompressed_size % 2 == 0);
209
210 s->dsp.predictor(td->tmp, uncompressed_size);
211 s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
212
213 return 0;
214 }
215
rle(uint8_t * dst,const uint8_t * src,int compressed_size,int uncompressed_size)216 static int rle(uint8_t *dst, const uint8_t *src,
217 int compressed_size, int uncompressed_size)
218 {
219 uint8_t *d = dst;
220 const int8_t *s = src;
221 int ssize = compressed_size;
222 int dsize = uncompressed_size;
223 uint8_t *dend = d + dsize;
224 int count;
225
226 while (ssize > 0) {
227 count = *s++;
228
229 if (count < 0) {
230 count = -count;
231
232 if ((dsize -= count) < 0 ||
233 (ssize -= count + 1) < 0)
234 return AVERROR_INVALIDDATA;
235
236 while (count--)
237 *d++ = *s++;
238 } else {
239 count++;
240
241 if ((dsize -= count) < 0 ||
242 (ssize -= 2) < 0)
243 return AVERROR_INVALIDDATA;
244
245 while (count--)
246 *d++ = *s;
247
248 s++;
249 }
250 }
251
252 if (dend != d)
253 return AVERROR_INVALIDDATA;
254
255 return 0;
256 }
257
rle_uncompress(EXRContext * ctx,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)258 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
259 int uncompressed_size, EXRThreadData *td)
260 {
261 rle(td->tmp, src, compressed_size, uncompressed_size);
262
263 av_assert1(uncompressed_size % 2 == 0);
264
265 ctx->dsp.predictor(td->tmp, uncompressed_size);
266 ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
267
268 return 0;
269 }
270
271 #define USHORT_RANGE (1 << 16)
272 #define BITMAP_SIZE (1 << 13)
273
reverse_lut(const uint8_t * bitmap,uint16_t * lut)274 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
275 {
276 int i, k = 0;
277
278 for (i = 0; i < USHORT_RANGE; i++)
279 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
280 lut[k++] = i;
281
282 i = k - 1;
283
284 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
285
286 return i;
287 }
288
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)289 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
290 {
291 int i;
292
293 for (i = 0; i < dsize; ++i)
294 dst[i] = lut[dst[i]];
295 }
296
297 #define HUF_ENCBITS 16 // literal (value) bit length
298 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
299
huf_canonical_code_table(uint64_t * freq)300 static void huf_canonical_code_table(uint64_t *freq)
301 {
302 uint64_t c, n[59] = { 0 };
303 int i;
304
305 for (i = 0; i < HUF_ENCSIZE; i++)
306 n[freq[i]] += 1;
307
308 c = 0;
309 for (i = 58; i > 0; --i) {
310 uint64_t nc = ((c + n[i]) >> 1);
311 n[i] = c;
312 c = nc;
313 }
314
315 for (i = 0; i < HUF_ENCSIZE; ++i) {
316 int l = freq[i];
317
318 if (l > 0)
319 freq[i] = l | (n[l]++ << 6);
320 }
321 }
322
323 #define SHORT_ZEROCODE_RUN 59
324 #define LONG_ZEROCODE_RUN 63
325 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
326 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
327
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * freq)328 static int huf_unpack_enc_table(GetByteContext *gb,
329 int32_t im, int32_t iM, uint64_t *freq)
330 {
331 GetBitContext gbit;
332 int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
333 if (ret < 0)
334 return ret;
335
336 for (; im <= iM; im++) {
337 uint64_t l = freq[im] = get_bits(&gbit, 6);
338
339 if (l == LONG_ZEROCODE_RUN) {
340 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
341
342 if (im + zerun > iM + 1)
343 return AVERROR_INVALIDDATA;
344
345 while (zerun--)
346 freq[im++] = 0;
347
348 im--;
349 } else if (l >= SHORT_ZEROCODE_RUN) {
350 int zerun = l - SHORT_ZEROCODE_RUN + 2;
351
352 if (im + zerun > iM + 1)
353 return AVERROR_INVALIDDATA;
354
355 while (zerun--)
356 freq[im++] = 0;
357
358 im--;
359 }
360 }
361
362 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
363 huf_canonical_code_table(freq);
364
365 return 0;
366 }
367
huf_build_dec_table(EXRContext * s,EXRThreadData * td,int im,int iM)368 static int huf_build_dec_table(EXRContext *s,
369 EXRThreadData *td, int im, int iM)
370 {
371 int j = 0;
372
373 td->run_sym = -1;
374 for (int i = im; i < iM; i++) {
375 td->he[j].sym = i;
376 td->he[j].len = td->freq[i] & 63;
377 td->he[j].code = td->freq[i] >> 6;
378 if (td->he[j].len > 32) {
379 avpriv_request_sample(s->avctx, "Too big code length");
380 return AVERROR_PATCHWELCOME;
381 }
382 if (td->he[j].len > 0)
383 j++;
384 else
385 td->run_sym = i;
386 }
387
388 if (im > 0)
389 td->run_sym = 0;
390 else if (iM < 65535)
391 td->run_sym = 65535;
392
393 if (td->run_sym == -1) {
394 avpriv_request_sample(s->avctx, "No place for run symbol");
395 return AVERROR_PATCHWELCOME;
396 }
397
398 td->he[j].sym = td->run_sym;
399 td->he[j].len = td->freq[iM] & 63;
400 if (td->he[j].len > 32) {
401 avpriv_request_sample(s->avctx, "Too big code length");
402 return AVERROR_PATCHWELCOME;
403 }
404 td->he[j].code = td->freq[iM] >> 6;
405 j++;
406
407 ff_free_vlc(&td->vlc);
408 return ff_init_vlc_sparse(&td->vlc, 12, j,
409 &td->he[0].len, sizeof(td->he[0]), sizeof(td->he[0].len),
410 &td->he[0].code, sizeof(td->he[0]), sizeof(td->he[0].code),
411 &td->he[0].sym, sizeof(td->he[0]), sizeof(td->he[0].sym), 0);
412 }
413
huf_decode(VLC * vlc,GetByteContext * gb,int nbits,int run_sym,int no,uint16_t * out)414 static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym,
415 int no, uint16_t *out)
416 {
417 GetBitContext gbit;
418 int oe = 0;
419
420 init_get_bits(&gbit, gb->buffer, nbits);
421 while (get_bits_left(&gbit) > 0 && oe < no) {
422 uint16_t x = get_vlc2(&gbit, vlc->table, 12, 3);
423
424 if (x == run_sym) {
425 int run = get_bits(&gbit, 8);
426 uint16_t fill;
427
428 if (oe == 0 || oe + run > no)
429 return AVERROR_INVALIDDATA;
430
431 fill = out[oe - 1];
432
433 while (run-- > 0)
434 out[oe++] = fill;
435 } else {
436 out[oe++] = x;
437 }
438 }
439
440 return 0;
441 }
442
huf_uncompress(EXRContext * s,EXRThreadData * td,GetByteContext * gb,uint16_t * dst,int dst_size)443 static int huf_uncompress(EXRContext *s,
444 EXRThreadData *td,
445 GetByteContext *gb,
446 uint16_t *dst, int dst_size)
447 {
448 int32_t im, iM;
449 uint32_t nBits;
450 int ret;
451
452 im = bytestream2_get_le32(gb);
453 iM = bytestream2_get_le32(gb);
454 bytestream2_skip(gb, 4);
455 nBits = bytestream2_get_le32(gb);
456 if (im < 0 || im >= HUF_ENCSIZE ||
457 iM < 0 || iM >= HUF_ENCSIZE)
458 return AVERROR_INVALIDDATA;
459
460 bytestream2_skip(gb, 4);
461
462 if (!td->freq)
463 td->freq = av_malloc_array(HUF_ENCSIZE, sizeof(*td->freq));
464 if (!td->he)
465 td->he = av_calloc(HUF_ENCSIZE, sizeof(*td->he));
466 if (!td->freq || !td->he) {
467 ret = AVERROR(ENOMEM);
468 return ret;
469 }
470
471 memset(td->freq, 0, sizeof(*td->freq) * HUF_ENCSIZE);
472 if ((ret = huf_unpack_enc_table(gb, im, iM, td->freq)) < 0)
473 return ret;
474
475 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
476 ret = AVERROR_INVALIDDATA;
477 return ret;
478 }
479
480 if ((ret = huf_build_dec_table(s, td, im, iM)) < 0)
481 return ret;
482 return huf_decode(&td->vlc, gb, nBits, td->run_sym, dst_size, dst);
483 }
484
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)485 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
486 {
487 int16_t ls = l;
488 int16_t hs = h;
489 int hi = hs;
490 int ai = ls + (hi & 1) + (hi >> 1);
491 int16_t as = ai;
492 int16_t bs = ai - hi;
493
494 *a = as;
495 *b = bs;
496 }
497
498 #define NBITS 16
499 #define A_OFFSET (1 << (NBITS - 1))
500 #define MOD_MASK ((1 << NBITS) - 1)
501
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)502 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
503 {
504 int m = l;
505 int d = h;
506 int bb = (m - (d >> 1)) & MOD_MASK;
507 int aa = (d + bb - A_OFFSET) & MOD_MASK;
508 *b = bb;
509 *a = aa;
510 }
511
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)512 static void wav_decode(uint16_t *in, int nx, int ox,
513 int ny, int oy, uint16_t mx)
514 {
515 int w14 = (mx < (1 << 14));
516 int n = (nx > ny) ? ny : nx;
517 int p = 1;
518 int p2;
519
520 while (p <= n)
521 p <<= 1;
522
523 p >>= 1;
524 p2 = p;
525 p >>= 1;
526
527 while (p >= 1) {
528 uint16_t *py = in;
529 uint16_t *ey = in + oy * (ny - p2);
530 uint16_t i00, i01, i10, i11;
531 int oy1 = oy * p;
532 int oy2 = oy * p2;
533 int ox1 = ox * p;
534 int ox2 = ox * p2;
535
536 for (; py <= ey; py += oy2) {
537 uint16_t *px = py;
538 uint16_t *ex = py + ox * (nx - p2);
539
540 for (; px <= ex; px += ox2) {
541 uint16_t *p01 = px + ox1;
542 uint16_t *p10 = px + oy1;
543 uint16_t *p11 = p10 + ox1;
544
545 if (w14) {
546 wdec14(*px, *p10, &i00, &i10);
547 wdec14(*p01, *p11, &i01, &i11);
548 wdec14(i00, i01, px, p01);
549 wdec14(i10, i11, p10, p11);
550 } else {
551 wdec16(*px, *p10, &i00, &i10);
552 wdec16(*p01, *p11, &i01, &i11);
553 wdec16(i00, i01, px, p01);
554 wdec16(i10, i11, p10, p11);
555 }
556 }
557
558 if (nx & p) {
559 uint16_t *p10 = px + oy1;
560
561 if (w14)
562 wdec14(*px, *p10, &i00, p10);
563 else
564 wdec16(*px, *p10, &i00, p10);
565
566 *px = i00;
567 }
568 }
569
570 if (ny & p) {
571 uint16_t *px = py;
572 uint16_t *ex = py + ox * (nx - p2);
573
574 for (; px <= ex; px += ox2) {
575 uint16_t *p01 = px + ox1;
576
577 if (w14)
578 wdec14(*px, *p01, &i00, p01);
579 else
580 wdec16(*px, *p01, &i00, p01);
581
582 *px = i00;
583 }
584 }
585
586 p2 = p;
587 p >>= 1;
588 }
589 }
590
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)591 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
592 int dsize, EXRThreadData *td)
593 {
594 GetByteContext gb;
595 uint16_t maxval, min_non_zero, max_non_zero;
596 uint16_t *ptr;
597 uint16_t *tmp = (uint16_t *)td->tmp;
598 uint16_t *out;
599 uint16_t *in;
600 int ret, i, j;
601 int pixel_half_size;/* 1 for half, 2 for float and uint32 */
602 EXRChannel *channel;
603 int tmp_offset;
604
605 if (!td->bitmap)
606 td->bitmap = av_malloc(BITMAP_SIZE);
607 if (!td->lut)
608 td->lut = av_malloc(1 << 17);
609 if (!td->bitmap || !td->lut) {
610 av_freep(&td->bitmap);
611 av_freep(&td->lut);
612 return AVERROR(ENOMEM);
613 }
614
615 bytestream2_init(&gb, src, ssize);
616 min_non_zero = bytestream2_get_le16(&gb);
617 max_non_zero = bytestream2_get_le16(&gb);
618
619 if (max_non_zero >= BITMAP_SIZE)
620 return AVERROR_INVALIDDATA;
621
622 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
623 if (min_non_zero <= max_non_zero)
624 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
625 max_non_zero - min_non_zero + 1);
626 memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
627
628 maxval = reverse_lut(td->bitmap, td->lut);
629
630 bytestream2_skip(&gb, 4);
631 ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t));
632 if (ret)
633 return ret;
634
635 ptr = tmp;
636 for (i = 0; i < s->nb_channels; i++) {
637 channel = &s->channels[i];
638
639 if (channel->pixel_type == EXR_HALF)
640 pixel_half_size = 1;
641 else
642 pixel_half_size = 2;
643
644 for (j = 0; j < pixel_half_size; j++)
645 wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
646 td->xsize * pixel_half_size, maxval);
647 ptr += td->xsize * td->ysize * pixel_half_size;
648 }
649
650 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
651
652 out = (uint16_t *)td->uncompressed_data;
653 for (i = 0; i < td->ysize; i++) {
654 tmp_offset = 0;
655 for (j = 0; j < s->nb_channels; j++) {
656 channel = &s->channels[j];
657 if (channel->pixel_type == EXR_HALF)
658 pixel_half_size = 1;
659 else
660 pixel_half_size = 2;
661
662 in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
663 tmp_offset += pixel_half_size;
664
665 #if HAVE_BIGENDIAN
666 s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
667 #else
668 memcpy(out, in, td->xsize * 2 * pixel_half_size);
669 #endif
670 out += td->xsize * pixel_half_size;
671 }
672 }
673
674 return 0;
675 }
676
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)677 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
678 int compressed_size, int uncompressed_size,
679 EXRThreadData *td)
680 {
681 unsigned long dest_len, expected_len = 0;
682 const uint8_t *in = td->tmp;
683 uint8_t *out;
684 int c, i, j;
685
686 for (i = 0; i < s->nb_channels; i++) {
687 if (s->channels[i].pixel_type == EXR_FLOAT) {
688 expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
689 } else if (s->channels[i].pixel_type == EXR_HALF) {
690 expected_len += (td->xsize * td->ysize * 2);
691 } else {//UINT 32
692 expected_len += (td->xsize * td->ysize * 4);
693 }
694 }
695
696 dest_len = expected_len;
697
698 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
699 return AVERROR_INVALIDDATA;
700 } else if (dest_len != expected_len) {
701 return AVERROR_INVALIDDATA;
702 }
703
704 out = td->uncompressed_data;
705 for (i = 0; i < td->ysize; i++)
706 for (c = 0; c < s->nb_channels; c++) {
707 EXRChannel *channel = &s->channels[c];
708 const uint8_t *ptr[4];
709 uint32_t pixel = 0;
710
711 switch (channel->pixel_type) {
712 case EXR_FLOAT:
713 ptr[0] = in;
714 ptr[1] = ptr[0] + td->xsize;
715 ptr[2] = ptr[1] + td->xsize;
716 in = ptr[2] + td->xsize;
717
718 for (j = 0; j < td->xsize; ++j) {
719 uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
720 (*(ptr[1]++) << 16) |
721 (*(ptr[2]++) << 8);
722 pixel += diff;
723 bytestream_put_le32(&out, pixel);
724 }
725 break;
726 case EXR_HALF:
727 ptr[0] = in;
728 ptr[1] = ptr[0] + td->xsize;
729 in = ptr[1] + td->xsize;
730 for (j = 0; j < td->xsize; j++) {
731 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
732
733 pixel += diff;
734 bytestream_put_le16(&out, pixel);
735 }
736 break;
737 case EXR_UINT:
738 ptr[0] = in;
739 ptr[1] = ptr[0] + s->xdelta;
740 ptr[2] = ptr[1] + s->xdelta;
741 ptr[3] = ptr[2] + s->xdelta;
742 in = ptr[3] + s->xdelta;
743
744 for (j = 0; j < s->xdelta; ++j) {
745 uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
746 (*(ptr[1]++) << 16) |
747 (*(ptr[2]++) << 8 ) |
748 (*(ptr[3]++));
749 pixel += diff;
750 bytestream_put_le32(&out, pixel);
751 }
752 break;
753 default:
754 return AVERROR_INVALIDDATA;
755 }
756 }
757
758 return 0;
759 }
760
unpack_14(const uint8_t b[14],uint16_t s[16])761 static void unpack_14(const uint8_t b[14], uint16_t s[16])
762 {
763 unsigned short shift = (b[ 2] >> 2) & 15;
764 unsigned short bias = (0x20 << shift);
765 int i;
766
767 s[ 0] = (b[0] << 8) | b[1];
768
769 s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
770 s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
771 s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
772
773 s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
774 s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
775 s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
776 s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
777
778 s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
779 s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
780 s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
781 s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
782
783 s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
784 s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
785 s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
786 s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
787
788 for (i = 0; i < 16; ++i) {
789 if (s[i] & 0x8000)
790 s[i] &= 0x7fff;
791 else
792 s[i] = ~s[i];
793 }
794 }
795
unpack_3(const uint8_t b[3],uint16_t s[16])796 static void unpack_3(const uint8_t b[3], uint16_t s[16])
797 {
798 int i;
799
800 s[0] = (b[0] << 8) | b[1];
801
802 if (s[0] & 0x8000)
803 s[0] &= 0x7fff;
804 else
805 s[0] = ~s[0];
806
807 for (i = 1; i < 16; i++)
808 s[i] = s[0];
809 }
810
811
b44_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)812 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
813 int uncompressed_size, EXRThreadData *td) {
814 const int8_t *sr = src;
815 int stay_to_uncompress = compressed_size;
816 int nb_b44_block_w, nb_b44_block_h;
817 int index_tl_x, index_tl_y, index_out, index_tmp;
818 uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
819 int c, iY, iX, y, x;
820 int target_channel_offset = 0;
821
822 /* calc B44 block count */
823 nb_b44_block_w = td->xsize / 4;
824 if ((td->xsize % 4) != 0)
825 nb_b44_block_w++;
826
827 nb_b44_block_h = td->ysize / 4;
828 if ((td->ysize % 4) != 0)
829 nb_b44_block_h++;
830
831 for (c = 0; c < s->nb_channels; c++) {
832 if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
833 for (iY = 0; iY < nb_b44_block_h; iY++) {
834 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
835 if (stay_to_uncompress < 3) {
836 av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
837 return AVERROR_INVALIDDATA;
838 }
839
840 if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
841 unpack_3(sr, tmp_buffer);
842 sr += 3;
843 stay_to_uncompress -= 3;
844 } else {/* B44 Block */
845 if (stay_to_uncompress < 14) {
846 av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
847 return AVERROR_INVALIDDATA;
848 }
849 unpack_14(sr, tmp_buffer);
850 sr += 14;
851 stay_to_uncompress -= 14;
852 }
853
854 /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
855 index_tl_x = iX * 4;
856 index_tl_y = iY * 4;
857
858 for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
859 for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
860 index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
861 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
862 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
863 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
864 }
865 }
866 }
867 }
868 target_channel_offset += 2;
869 } else {/* Float or UINT 32 channel */
870 if (stay_to_uncompress < td->ysize * td->xsize * 4) {
871 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
872 return AVERROR_INVALIDDATA;
873 }
874
875 for (y = 0; y < td->ysize; y++) {
876 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
877 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
878 sr += td->xsize * 4;
879 }
880 target_channel_offset += 4;
881
882 stay_to_uncompress -= td->ysize * td->xsize * 4;
883 }
884 }
885
886 return 0;
887 }
888
ac_uncompress(EXRContext * s,GetByteContext * gb,float * block)889 static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
890 {
891 int ret = 0, n = 1;
892
893 while (n < 64) {
894 uint16_t val = bytestream2_get_ne16(gb);
895
896 if (val == 0xff00) {
897 n = 64;
898 } else if ((val >> 8) == 0xff) {
899 n += val & 0xff;
900 } else {
901 ret = n;
902 block[ff_zigzag_direct[n]] = av_int2float(half2float(val,
903 s->mantissatable,
904 s->exponenttable,
905 s->offsettable));
906 n++;
907 }
908 }
909
910 return ret;
911 }
912
idct_1d(float * blk,int step)913 static void idct_1d(float *blk, int step)
914 {
915 const float a = .5f * cosf( M_PI / 4.f);
916 const float b = .5f * cosf( M_PI / 16.f);
917 const float c = .5f * cosf( M_PI / 8.f);
918 const float d = .5f * cosf(3.f*M_PI / 16.f);
919 const float e = .5f * cosf(5.f*M_PI / 16.f);
920 const float f = .5f * cosf(3.f*M_PI / 8.f);
921 const float g = .5f * cosf(7.f*M_PI / 16.f);
922
923 float alpha[4], beta[4], theta[4], gamma[4];
924
925 alpha[0] = c * blk[2 * step];
926 alpha[1] = f * blk[2 * step];
927 alpha[2] = c * blk[6 * step];
928 alpha[3] = f * blk[6 * step];
929
930 beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step];
931 beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step];
932 beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step];
933 beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step];
934
935 theta[0] = a * (blk[0 * step] + blk[4 * step]);
936 theta[3] = a * (blk[0 * step] - blk[4 * step]);
937
938 theta[1] = alpha[0] + alpha[3];
939 theta[2] = alpha[1] - alpha[2];
940
941 gamma[0] = theta[0] + theta[1];
942 gamma[1] = theta[3] + theta[2];
943 gamma[2] = theta[3] - theta[2];
944 gamma[3] = theta[0] - theta[1];
945
946 blk[0 * step] = gamma[0] + beta[0];
947 blk[1 * step] = gamma[1] + beta[1];
948 blk[2 * step] = gamma[2] + beta[2];
949 blk[3 * step] = gamma[3] + beta[3];
950
951 blk[4 * step] = gamma[3] - beta[3];
952 blk[5 * step] = gamma[2] - beta[2];
953 blk[6 * step] = gamma[1] - beta[1];
954 blk[7 * step] = gamma[0] - beta[0];
955 }
956
dct_inverse(float * block)957 static void dct_inverse(float *block)
958 {
959 for (int i = 0; i < 8; i++)
960 idct_1d(block + i, 8);
961
962 for (int i = 0; i < 8; i++) {
963 idct_1d(block, 1);
964 block += 8;
965 }
966 }
967
convert(float y,float u,float v,float * b,float * g,float * r)968 static void convert(float y, float u, float v,
969 float *b, float *g, float *r)
970 {
971 *r = y + 1.5747f * v;
972 *g = y - 0.1873f * u - 0.4682f * v;
973 *b = y + 1.8556f * u;
974 }
975
to_linear(float x,float scale)976 static float to_linear(float x, float scale)
977 {
978 float ax = fabsf(x);
979
980 if (ax <= 1.f) {
981 return FFSIGN(x) * powf(ax, 2.2f * scale);
982 } else {
983 const float log_base = expf(2.2f * scale);
984
985 return FFSIGN(x) * powf(log_base, ax - 1.f);
986 }
987 }
988
dwa_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)989 static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
990 int uncompressed_size, EXRThreadData *td)
991 {
992 int64_t version, lo_usize, lo_size;
993 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
994 int64_t ac_count, dc_count, ac_compression;
995 const int dc_w = td->xsize >> 3;
996 const int dc_h = td->ysize >> 3;
997 GetByteContext gb, agb;
998 int skip, ret;
999
1000 if (compressed_size <= 88)
1001 return AVERROR_INVALIDDATA;
1002
1003 version = AV_RL64(src + 0);
1004 if (version != 2)
1005 return AVERROR_INVALIDDATA;
1006
1007 lo_usize = AV_RL64(src + 8);
1008 lo_size = AV_RL64(src + 16);
1009 ac_size = AV_RL64(src + 24);
1010 dc_size = AV_RL64(src + 32);
1011 rle_csize = AV_RL64(src + 40);
1012 rle_usize = AV_RL64(src + 48);
1013 rle_raw_size = AV_RL64(src + 56);
1014 ac_count = AV_RL64(src + 64);
1015 dc_count = AV_RL64(src + 72);
1016 ac_compression = AV_RL64(src + 80);
1017
1018 if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1019 || ac_count > (uint64_t)INT_MAX/2
1020 )
1021 return AVERROR_INVALIDDATA;
1022
1023 bytestream2_init(&gb, src + 88, compressed_size - 88);
1024 skip = bytestream2_get_le16(&gb);
1025 if (skip < 2)
1026 return AVERROR_INVALIDDATA;
1027
1028 bytestream2_skip(&gb, skip - 2);
1029
1030 if (lo_size > 0) {
1031 if (lo_usize > uncompressed_size)
1032 return AVERROR_INVALIDDATA;
1033 bytestream2_skip(&gb, lo_size);
1034 }
1035
1036 if (ac_size > 0) {
1037 unsigned long dest_len;
1038 GetByteContext agb = gb;
1039
1040 if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
1041 return AVERROR_INVALIDDATA;
1042
1043 dest_len = ac_count * 2LL;
1044
1045 av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
1046 if (!td->ac_data)
1047 return AVERROR(ENOMEM);
1048
1049 switch (ac_compression) {
1050 case 0:
1051 ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
1052 if (ret < 0)
1053 return ret;
1054 break;
1055 case 1:
1056 if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
1057 dest_len != ac_count * 2LL)
1058 return AVERROR_INVALIDDATA;
1059 break;
1060 default:
1061 return AVERROR_INVALIDDATA;
1062 }
1063
1064 bytestream2_skip(&gb, ac_size);
1065 }
1066
1067 {
1068 unsigned long dest_len;
1069 GetByteContext agb = gb;
1070
1071 if (dc_count != dc_w * dc_h * 3)
1072 return AVERROR_INVALIDDATA;
1073
1074 dest_len = dc_count * 2LL;
1075
1076 av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
1077 if (!td->dc_data)
1078 return AVERROR(ENOMEM);
1079
1080 if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
1081 (dest_len != dc_count * 2LL))
1082 return AVERROR_INVALIDDATA;
1083
1084 s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
1085 s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
1086
1087 bytestream2_skip(&gb, dc_size);
1088 }
1089
1090 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1091 unsigned long dest_len = rle_usize;
1092
1093 av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
1094 if (!td->rle_data)
1095 return AVERROR(ENOMEM);
1096
1097 av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
1098 if (!td->rle_raw_data)
1099 return AVERROR(ENOMEM);
1100
1101 if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
1102 (dest_len != rle_usize))
1103 return AVERROR_INVALIDDATA;
1104
1105 ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
1106 if (ret < 0)
1107 return ret;
1108 bytestream2_skip(&gb, rle_csize);
1109 }
1110
1111 bytestream2_init(&agb, td->ac_data, ac_count * 2);
1112
1113 for (int y = 0; y < td->ysize; y += 8) {
1114 for (int x = 0; x < td->xsize; x += 8) {
1115 memset(td->block, 0, sizeof(td->block));
1116
1117 for (int j = 0; j < 3; j++) {
1118 float *block = td->block[j];
1119 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1120 uint16_t *dc = (uint16_t *)td->dc_data;
1121 union av_intfloat32 dc_val;
1122
1123 dc_val.i = half2float(dc[idx], s->mantissatable,
1124 s->exponenttable, s->offsettable);
1125
1126 block[0] = dc_val.f;
1127 ac_uncompress(s, &agb, block);
1128 dct_inverse(block);
1129 }
1130
1131 {
1132 const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
1133 const int o = s->nb_channels == 4;
1134 float *bo = ((float *)td->uncompressed_data) +
1135 y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
1136 float *go = ((float *)td->uncompressed_data) +
1137 y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
1138 float *ro = ((float *)td->uncompressed_data) +
1139 y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
1140 float *yb = td->block[0];
1141 float *ub = td->block[1];
1142 float *vb = td->block[2];
1143
1144 for (int yy = 0; yy < 8; yy++) {
1145 for (int xx = 0; xx < 8; xx++) {
1146 const int idx = xx + yy * 8;
1147
1148 convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1149
1150 bo[xx] = to_linear(bo[xx], scale);
1151 go[xx] = to_linear(go[xx], scale);
1152 ro[xx] = to_linear(ro[xx], scale);
1153 }
1154
1155 bo += td->xsize * s->nb_channels;
1156 go += td->xsize * s->nb_channels;
1157 ro += td->xsize * s->nb_channels;
1158 }
1159 }
1160 }
1161 }
1162
1163 if (s->nb_channels < 4)
1164 return 0;
1165
1166 for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
1167 uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
1168 uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
1169 uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
1170
1171 for (int x = 0; x < td->xsize; x++) {
1172 uint16_t ha = ai0[x] | (ai1[x] << 8);
1173
1174 ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable);
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)1181 static int decode_block(AVCodecContext *avctx, void *tdata,
1182 int jobnr, int threadnr)
1183 {
1184 EXRContext *s = avctx->priv_data;
1185 AVFrame *const p = s->picture;
1186 EXRThreadData *td = &s->thread_data[threadnr];
1187 const uint8_t *channel_buffer[4] = { 0 };
1188 const uint8_t *buf = s->buf;
1189 uint64_t line_offset, uncompressed_size;
1190 uint8_t *ptr;
1191 uint32_t data_size;
1192 int line, col = 0;
1193 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1194 const uint8_t *src;
1195 int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1196 int bxmin = 0, axmax = 0, window_xoffset = 0;
1197 int window_xmin, window_xmax, window_ymin, window_ymax;
1198 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1199 int i, x, buf_size = s->buf_size;
1200 int c, rgb_channel_count;
1201 float one_gamma = 1.0f / s->gamma;
1202 avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1203 int ret;
1204
1205 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1206
1207 if (s->is_tile) {
1208 if (buf_size < 20 || line_offset > buf_size - 20)
1209 return AVERROR_INVALIDDATA;
1210
1211 src = buf + line_offset + 20;
1212 if (s->is_multipart)
1213 src += 4;
1214
1215 tile_x = AV_RL32(src - 20);
1216 tile_y = AV_RL32(src - 16);
1217 tile_level_x = AV_RL32(src - 12);
1218 tile_level_y = AV_RL32(src - 8);
1219
1220 data_size = AV_RL32(src - 4);
1221 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1222 return AVERROR_INVALIDDATA;
1223
1224 if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1225 avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1226 return AVERROR_PATCHWELCOME;
1227 }
1228
1229 if (tile_x && s->tile_attr.xSize + (int64_t)FFMAX(s->xmin, 0) >= INT_MAX / tile_x )
1230 return AVERROR_INVALIDDATA;
1231 if (tile_y && s->tile_attr.ySize + (int64_t)FFMAX(s->ymin, 0) >= INT_MAX / tile_y )
1232 return AVERROR_INVALIDDATA;
1233
1234 line = s->ymin + s->tile_attr.ySize * tile_y;
1235 col = s->tile_attr.xSize * tile_x;
1236
1237 if (line < s->ymin || line > s->ymax ||
1238 s->xmin + col < s->xmin || s->xmin + col > s->xmax)
1239 return AVERROR_INVALIDDATA;
1240
1241 td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1242 td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1243
1244 if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX ||
1245 av_image_check_size2(td->xsize, td->ysize, s->avctx->max_pixels, AV_PIX_FMT_NONE, 0, s->avctx) < 0)
1246 return AVERROR_INVALIDDATA;
1247
1248 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1249 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1250 } else {
1251 if (buf_size < 8 || line_offset > buf_size - 8)
1252 return AVERROR_INVALIDDATA;
1253
1254 src = buf + line_offset + 8;
1255 if (s->is_multipart)
1256 src += 4;
1257 line = AV_RL32(src - 8);
1258
1259 if (line < s->ymin || line > s->ymax)
1260 return AVERROR_INVALIDDATA;
1261
1262 data_size = AV_RL32(src - 4);
1263 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1264 return AVERROR_INVALIDDATA;
1265
1266 td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1267 td->xsize = s->xdelta;
1268
1269 if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX ||
1270 av_image_check_size2(td->xsize, td->ysize, s->avctx->max_pixels, AV_PIX_FMT_NONE, 0, s->avctx) < 0)
1271 return AVERROR_INVALIDDATA;
1272
1273 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1274 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1275
1276 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1277 line_offset > buf_size - uncompressed_size)) ||
1278 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1279 line_offset > buf_size - data_size))) {
1280 return AVERROR_INVALIDDATA;
1281 }
1282 }
1283
1284 window_xmin = FFMIN(avctx->width, FFMAX(0, s->xmin + col));
1285 window_xmax = FFMIN(avctx->width, FFMAX(0, s->xmin + col + td->xsize));
1286 window_ymin = FFMIN(avctx->height, FFMAX(0, line ));
1287 window_ymax = FFMIN(avctx->height, FFMAX(0, line + td->ysize));
1288 xsize = window_xmax - window_xmin;
1289 ysize = window_ymax - window_ymin;
1290
1291 /* tile or scanline not visible skip decoding */
1292 if (xsize <= 0 || ysize <= 0)
1293 return 0;
1294
1295 /* is the first tile or is a scanline */
1296 if(col == 0) {
1297 window_xmin = 0;
1298 /* pixels to add at the left of the display window */
1299 window_xoffset = FFMAX(0, s->xmin);
1300 /* bytes to add at the left of the display window */
1301 bxmin = window_xoffset * step;
1302 }
1303
1304 /* is the last tile or is a scanline */
1305 if(col + td->xsize == s->xdelta) {
1306 window_xmax = avctx->width;
1307 /* bytes to add at the right of the display window */
1308 axmax = FFMAX(0, (avctx->width - (s->xmax + 1))) * step;
1309 }
1310
1311 if (avctx->max_pixels && uncompressed_size > avctx->max_pixels * 16LL)
1312 return AVERROR_INVALIDDATA;
1313
1314 if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1315 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1316 if (!td->tmp)
1317 return AVERROR(ENOMEM);
1318 }
1319
1320 if (data_size < uncompressed_size) {
1321 av_fast_padded_malloc(&td->uncompressed_data,
1322 &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1323
1324 if (!td->uncompressed_data)
1325 return AVERROR(ENOMEM);
1326
1327 ret = AVERROR_INVALIDDATA;
1328 switch (s->compression) {
1329 case EXR_ZIP1:
1330 case EXR_ZIP16:
1331 ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1332 break;
1333 case EXR_PIZ:
1334 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1335 break;
1336 case EXR_PXR24:
1337 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1338 break;
1339 case EXR_RLE:
1340 ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1341 break;
1342 case EXR_B44:
1343 case EXR_B44A:
1344 ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1345 break;
1346 case EXR_DWAA:
1347 case EXR_DWAB:
1348 ret = dwa_uncompress(s, src, data_size, uncompressed_size, td);
1349 break;
1350 }
1351 if (ret < 0) {
1352 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1353 return ret;
1354 }
1355 src = td->uncompressed_data;
1356 }
1357
1358 /* offsets to crop data outside display window */
1359 data_xoffset = FFABS(FFMIN(0, s->xmin + col)) * (s->pixel_type == EXR_HALF ? 2 : 4);
1360 data_yoffset = FFABS(FFMIN(0, line));
1361 data_window_offset = (data_yoffset * td->channel_line_size) + data_xoffset;
1362
1363 if (!s->is_luma) {
1364 channel_buffer[0] = src + (td->xsize * s->channel_offsets[0]) + data_window_offset;
1365 channel_buffer[1] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1366 channel_buffer[2] = src + (td->xsize * s->channel_offsets[2]) + data_window_offset;
1367 rgb_channel_count = 3;
1368 } else { /* put y data in the first channel_buffer */
1369 channel_buffer[0] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1370 rgb_channel_count = 1;
1371 }
1372 if (s->channel_offsets[3] >= 0)
1373 channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset;
1374
1375 if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1376 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1377 int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1378 if (s->is_luma) {
1379 channel_buffer[1] = channel_buffer[0];
1380 channel_buffer[2] = channel_buffer[0];
1381 }
1382
1383 for (c = 0; c < channel_count; c++) {
1384 int plane = s->desc->comp[c].plane;
1385 ptr = p->data[plane] + window_ymin * p->linesize[plane] + (window_xmin * 4);
1386
1387 for (i = 0; i < ysize; i++, ptr += p->linesize[plane]) {
1388 const uint8_t *src;
1389 union av_intfloat32 *ptr_x;
1390
1391 src = channel_buffer[c];
1392 ptr_x = (union av_intfloat32 *)ptr;
1393
1394 // Zero out the start if xmin is not 0
1395 memset(ptr_x, 0, bxmin);
1396 ptr_x += window_xoffset;
1397
1398 if (s->pixel_type == EXR_FLOAT ||
1399 s->compression == EXR_DWAA ||
1400 s->compression == EXR_DWAB) {
1401 // 32-bit
1402 union av_intfloat32 t;
1403 if (trc_func && c < 3) {
1404 for (x = 0; x < xsize; x++) {
1405 t.i = bytestream_get_le32(&src);
1406 t.f = trc_func(t.f);
1407 *ptr_x++ = t;
1408 }
1409 } else if (one_gamma != 1.f) {
1410 for (x = 0; x < xsize; x++) {
1411 t.i = bytestream_get_le32(&src);
1412 if (t.f > 0.0f && c < 3) /* avoid negative values */
1413 t.f = powf(t.f, one_gamma);
1414 *ptr_x++ = t;
1415 }
1416 } else {
1417 for (x = 0; x < xsize; x++) {
1418 t.i = bytestream_get_le32(&src);
1419 *ptr_x++ = t;
1420 }
1421 }
1422 } else if (s->pixel_type == EXR_HALF) {
1423 // 16-bit
1424 if (c < 3 || !trc_func) {
1425 for (x = 0; x < xsize; x++) {
1426 *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1427 }
1428 } else {
1429 for (x = 0; x < xsize; x++) {
1430 ptr_x[0].i = half2float(bytestream_get_le16(&src),
1431 s->mantissatable,
1432 s->exponenttable,
1433 s->offsettable);
1434 ptr_x++;
1435 }
1436 }
1437 }
1438
1439 // Zero out the end if xmax+1 is not w
1440 memset(ptr_x, 0, axmax);
1441 channel_buffer[c] += td->channel_line_size;
1442 }
1443 }
1444 } else {
1445
1446 av_assert1(s->pixel_type == EXR_UINT);
1447 ptr = p->data[0] + window_ymin * p->linesize[0] + (window_xmin * s->desc->nb_components * 2);
1448
1449 for (i = 0; i < ysize; i++, ptr += p->linesize[0]) {
1450
1451 const uint8_t * a;
1452 const uint8_t *rgb[3];
1453 uint16_t *ptr_x;
1454
1455 for (c = 0; c < rgb_channel_count; c++) {
1456 rgb[c] = channel_buffer[c];
1457 }
1458
1459 if (channel_buffer[3])
1460 a = channel_buffer[3];
1461
1462 ptr_x = (uint16_t *) ptr;
1463
1464 // Zero out the start if xmin is not 0
1465 memset(ptr_x, 0, bxmin);
1466 ptr_x += window_xoffset * s->desc->nb_components;
1467
1468 for (x = 0; x < xsize; x++) {
1469 for (c = 0; c < rgb_channel_count; c++) {
1470 *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1471 }
1472
1473 if (channel_buffer[3])
1474 *ptr_x++ = bytestream_get_le32(&a) >> 16;
1475 }
1476
1477 // Zero out the end if xmax+1 is not w
1478 memset(ptr_x, 0, axmax);
1479
1480 channel_buffer[0] += td->channel_line_size;
1481 channel_buffer[1] += td->channel_line_size;
1482 channel_buffer[2] += td->channel_line_size;
1483 if (channel_buffer[3])
1484 channel_buffer[3] += td->channel_line_size;
1485 }
1486 }
1487
1488 return 0;
1489 }
1490
skip_header_chunk(EXRContext * s)1491 static void skip_header_chunk(EXRContext *s)
1492 {
1493 GetByteContext *gb = &s->gb;
1494
1495 while (bytestream2_get_bytes_left(gb) > 0) {
1496 if (!bytestream2_peek_byte(gb))
1497 break;
1498
1499 // Process unknown variables
1500 for (int i = 0; i < 2; i++) // value_name and value_type
1501 while (bytestream2_get_byte(gb) != 0);
1502
1503 // Skip variable length
1504 bytestream2_skip(gb, bytestream2_get_le32(gb));
1505 }
1506 }
1507
1508 /**
1509 * Check if the variable name corresponds to its data type.
1510 *
1511 * @param s the EXRContext
1512 * @param value_name name of the variable to check
1513 * @param value_type type of the variable to check
1514 * @param minimum_length minimum length of the variable data
1515 *
1516 * @return bytes to read containing variable data
1517 * -1 if variable is not found
1518 * 0 if buffer ended prematurely
1519 */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)1520 static int check_header_variable(EXRContext *s,
1521 const char *value_name,
1522 const char *value_type,
1523 unsigned int minimum_length)
1524 {
1525 GetByteContext *gb = &s->gb;
1526 int var_size = -1;
1527
1528 if (bytestream2_get_bytes_left(gb) >= minimum_length &&
1529 !strcmp(gb->buffer, value_name)) {
1530 // found value_name, jump to value_type (null terminated strings)
1531 gb->buffer += strlen(value_name) + 1;
1532 if (!strcmp(gb->buffer, value_type)) {
1533 gb->buffer += strlen(value_type) + 1;
1534 var_size = bytestream2_get_le32(gb);
1535 // don't go read past boundaries
1536 if (var_size > bytestream2_get_bytes_left(gb))
1537 var_size = 0;
1538 } else {
1539 // value_type not found, reset the buffer
1540 gb->buffer -= strlen(value_name) + 1;
1541 av_log(s->avctx, AV_LOG_WARNING,
1542 "Unknown data type %s for header variable %s.\n",
1543 value_type, value_name);
1544 }
1545 }
1546
1547 return var_size;
1548 }
1549
decode_header(EXRContext * s,AVFrame * frame)1550 static int decode_header(EXRContext *s, AVFrame *frame)
1551 {
1552 AVDictionary *metadata = NULL;
1553 GetByteContext *gb = &s->gb;
1554 int magic_number, version, flags;
1555 int layer_match = 0;
1556 int ret;
1557 int dup_channels = 0;
1558
1559 s->current_channel_offset = 0;
1560 s->xmin = ~0;
1561 s->xmax = ~0;
1562 s->ymin = ~0;
1563 s->ymax = ~0;
1564 s->xdelta = ~0;
1565 s->ydelta = ~0;
1566 s->channel_offsets[0] = -1;
1567 s->channel_offsets[1] = -1;
1568 s->channel_offsets[2] = -1;
1569 s->channel_offsets[3] = -1;
1570 s->pixel_type = EXR_UNKNOWN;
1571 s->compression = EXR_UNKN;
1572 s->nb_channels = 0;
1573 s->w = 0;
1574 s->h = 0;
1575 s->tile_attr.xSize = -1;
1576 s->tile_attr.ySize = -1;
1577 s->is_tile = 0;
1578 s->is_multipart = 0;
1579 s->is_luma = 0;
1580 s->current_part = 0;
1581
1582 if (bytestream2_get_bytes_left(gb) < 10) {
1583 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1584 return AVERROR_INVALIDDATA;
1585 }
1586
1587 magic_number = bytestream2_get_le32(gb);
1588 if (magic_number != 20000630) {
1589 /* As per documentation of OpenEXR, it is supposed to be
1590 * int 20000630 little-endian */
1591 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1592 return AVERROR_INVALIDDATA;
1593 }
1594
1595 version = bytestream2_get_byte(gb);
1596 if (version != 2) {
1597 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1598 return AVERROR_PATCHWELCOME;
1599 }
1600
1601 flags = bytestream2_get_le24(gb);
1602
1603 if (flags & 0x02)
1604 s->is_tile = 1;
1605 if (flags & 0x10)
1606 s->is_multipart = 1;
1607 if (flags & 0x08) {
1608 avpriv_report_missing_feature(s->avctx, "deep data");
1609 return AVERROR_PATCHWELCOME;
1610 }
1611
1612 // Parse the header
1613 while (bytestream2_get_bytes_left(gb) > 0) {
1614 int var_size;
1615
1616 while (s->is_multipart && s->current_part < s->selected_part &&
1617 bytestream2_get_bytes_left(gb) > 0) {
1618 if (bytestream2_peek_byte(gb)) {
1619 skip_header_chunk(s);
1620 } else {
1621 bytestream2_skip(gb, 1);
1622 if (!bytestream2_peek_byte(gb))
1623 break;
1624 }
1625 bytestream2_skip(gb, 1);
1626 s->current_part++;
1627 }
1628
1629 if (!bytestream2_peek_byte(gb)) {
1630 if (!s->is_multipart)
1631 break;
1632 bytestream2_skip(gb, 1);
1633 if (s->current_part == s->selected_part) {
1634 while (bytestream2_get_bytes_left(gb) > 0) {
1635 if (bytestream2_peek_byte(gb)) {
1636 skip_header_chunk(s);
1637 } else {
1638 bytestream2_skip(gb, 1);
1639 if (!bytestream2_peek_byte(gb))
1640 break;
1641 }
1642 }
1643 }
1644 if (!bytestream2_peek_byte(gb))
1645 break;
1646 s->current_part++;
1647 }
1648
1649 if ((var_size = check_header_variable(s, "channels",
1650 "chlist", 38)) >= 0) {
1651 GetByteContext ch_gb;
1652 if (!var_size) {
1653 ret = AVERROR_INVALIDDATA;
1654 goto fail;
1655 }
1656
1657 bytestream2_init(&ch_gb, gb->buffer, var_size);
1658
1659 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1660 EXRChannel *channel;
1661 enum ExrPixelType current_pixel_type;
1662 int channel_index = -1;
1663 int xsub, ysub;
1664
1665 if (strcmp(s->layer, "") != 0) {
1666 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1667 layer_match = 1;
1668 av_log(s->avctx, AV_LOG_INFO,
1669 "Channel match layer : %s.\n", ch_gb.buffer);
1670 ch_gb.buffer += strlen(s->layer);
1671 if (*ch_gb.buffer == '.')
1672 ch_gb.buffer++; /* skip dot if not given */
1673 } else {
1674 layer_match = 0;
1675 av_log(s->avctx, AV_LOG_INFO,
1676 "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1677 }
1678 } else {
1679 layer_match = 1;
1680 }
1681
1682 if (layer_match) { /* only search channel if the layer match is valid */
1683 if (!av_strcasecmp(ch_gb.buffer, "R") ||
1684 !av_strcasecmp(ch_gb.buffer, "X") ||
1685 !av_strcasecmp(ch_gb.buffer, "U")) {
1686 channel_index = 0;
1687 s->is_luma = 0;
1688 } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1689 !av_strcasecmp(ch_gb.buffer, "V")) {
1690 channel_index = 1;
1691 s->is_luma = 0;
1692 } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1693 channel_index = 1;
1694 s->is_luma = 1;
1695 } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1696 !av_strcasecmp(ch_gb.buffer, "Z") ||
1697 !av_strcasecmp(ch_gb.buffer, "W")) {
1698 channel_index = 2;
1699 s->is_luma = 0;
1700 } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1701 channel_index = 3;
1702 } else {
1703 av_log(s->avctx, AV_LOG_WARNING,
1704 "Unsupported channel %.256s.\n", ch_gb.buffer);
1705 }
1706 }
1707
1708 /* skip until you get a 0 */
1709 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1710 bytestream2_get_byte(&ch_gb))
1711 continue;
1712
1713 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1714 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1715 ret = AVERROR_INVALIDDATA;
1716 goto fail;
1717 }
1718
1719 current_pixel_type = bytestream2_get_le32(&ch_gb);
1720 if (current_pixel_type >= EXR_UNKNOWN) {
1721 avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1722 current_pixel_type);
1723 ret = AVERROR_PATCHWELCOME;
1724 goto fail;
1725 }
1726
1727 bytestream2_skip(&ch_gb, 4);
1728 xsub = bytestream2_get_le32(&ch_gb);
1729 ysub = bytestream2_get_le32(&ch_gb);
1730
1731 if (xsub != 1 || ysub != 1) {
1732 avpriv_report_missing_feature(s->avctx,
1733 "Subsampling %dx%d",
1734 xsub, ysub);
1735 ret = AVERROR_PATCHWELCOME;
1736 goto fail;
1737 }
1738
1739 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1740 if (s->pixel_type != EXR_UNKNOWN &&
1741 s->pixel_type != current_pixel_type) {
1742 av_log(s->avctx, AV_LOG_ERROR,
1743 "RGB channels not of the same depth.\n");
1744 ret = AVERROR_INVALIDDATA;
1745 goto fail;
1746 }
1747 s->pixel_type = current_pixel_type;
1748 s->channel_offsets[channel_index] = s->current_channel_offset;
1749 } else if (channel_index >= 0) {
1750 av_log(s->avctx, AV_LOG_WARNING,
1751 "Multiple channels with index %d.\n", channel_index);
1752 if (++dup_channels > 10) {
1753 ret = AVERROR_INVALIDDATA;
1754 goto fail;
1755 }
1756 }
1757
1758 s->channels = av_realloc(s->channels,
1759 ++s->nb_channels * sizeof(EXRChannel));
1760 if (!s->channels) {
1761 ret = AVERROR(ENOMEM);
1762 goto fail;
1763 }
1764 channel = &s->channels[s->nb_channels - 1];
1765 channel->pixel_type = current_pixel_type;
1766 channel->xsub = xsub;
1767 channel->ysub = ysub;
1768
1769 if (current_pixel_type == EXR_HALF) {
1770 s->current_channel_offset += 2;
1771 } else {/* Float or UINT32 */
1772 s->current_channel_offset += 4;
1773 }
1774 }
1775
1776 /* Check if all channels are set with an offset or if the channels
1777 * are causing an overflow */
1778 if (!s->is_luma) {/* if we expected to have at least 3 channels */
1779 if (FFMIN3(s->channel_offsets[0],
1780 s->channel_offsets[1],
1781 s->channel_offsets[2]) < 0) {
1782 if (s->channel_offsets[0] < 0)
1783 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1784 if (s->channel_offsets[1] < 0)
1785 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1786 if (s->channel_offsets[2] < 0)
1787 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1788 ret = AVERROR_INVALIDDATA;
1789 goto fail;
1790 }
1791 }
1792
1793 // skip one last byte and update main gb
1794 gb->buffer = ch_gb.buffer + 1;
1795 continue;
1796 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1797 31)) >= 0) {
1798 int xmin, ymin, xmax, ymax;
1799 if (!var_size) {
1800 ret = AVERROR_INVALIDDATA;
1801 goto fail;
1802 }
1803
1804 xmin = bytestream2_get_le32(gb);
1805 ymin = bytestream2_get_le32(gb);
1806 xmax = bytestream2_get_le32(gb);
1807 ymax = bytestream2_get_le32(gb);
1808
1809 if (xmin > xmax || ymin > ymax ||
1810 ymax == INT_MAX || xmax == INT_MAX ||
1811 (unsigned)xmax - xmin >= INT_MAX ||
1812 (unsigned)ymax - ymin >= INT_MAX) {
1813 ret = AVERROR_INVALIDDATA;
1814 goto fail;
1815 }
1816 s->xmin = xmin;
1817 s->xmax = xmax;
1818 s->ymin = ymin;
1819 s->ymax = ymax;
1820 s->xdelta = (s->xmax - s->xmin) + 1;
1821 s->ydelta = (s->ymax - s->ymin) + 1;
1822
1823 continue;
1824 } else if ((var_size = check_header_variable(s, "displayWindow",
1825 "box2i", 34)) >= 0) {
1826 int32_t sx, sy, dx, dy;
1827
1828 if (!var_size) {
1829 ret = AVERROR_INVALIDDATA;
1830 goto fail;
1831 }
1832
1833 sx = bytestream2_get_le32(gb);
1834 sy = bytestream2_get_le32(gb);
1835 dx = bytestream2_get_le32(gb);
1836 dy = bytestream2_get_le32(gb);
1837
1838 s->w = (unsigned)dx - sx + 1;
1839 s->h = (unsigned)dy - sy + 1;
1840
1841 continue;
1842 } else if ((var_size = check_header_variable(s, "lineOrder",
1843 "lineOrder", 25)) >= 0) {
1844 int line_order;
1845 if (!var_size) {
1846 ret = AVERROR_INVALIDDATA;
1847 goto fail;
1848 }
1849
1850 line_order = bytestream2_get_byte(gb);
1851 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1852 if (line_order > 2) {
1853 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1854 ret = AVERROR_INVALIDDATA;
1855 goto fail;
1856 }
1857
1858 continue;
1859 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1860 "float", 31)) >= 0) {
1861 if (!var_size) {
1862 ret = AVERROR_INVALIDDATA;
1863 goto fail;
1864 }
1865
1866 s->sar = bytestream2_get_le32(gb);
1867
1868 continue;
1869 } else if ((var_size = check_header_variable(s, "compression",
1870 "compression", 29)) >= 0) {
1871 if (!var_size) {
1872 ret = AVERROR_INVALIDDATA;
1873 goto fail;
1874 }
1875
1876 if (s->compression == EXR_UNKN)
1877 s->compression = bytestream2_get_byte(gb);
1878 else {
1879 bytestream2_skip(gb, 1);
1880 av_log(s->avctx, AV_LOG_WARNING,
1881 "Found more than one compression attribute.\n");
1882 }
1883
1884 continue;
1885 } else if ((var_size = check_header_variable(s, "tiles",
1886 "tiledesc", 22)) >= 0) {
1887 char tileLevel;
1888
1889 if (!s->is_tile)
1890 av_log(s->avctx, AV_LOG_WARNING,
1891 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1892
1893 s->tile_attr.xSize = bytestream2_get_le32(gb);
1894 s->tile_attr.ySize = bytestream2_get_le32(gb);
1895
1896 tileLevel = bytestream2_get_byte(gb);
1897 s->tile_attr.level_mode = tileLevel & 0x0f;
1898 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1899
1900 if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1901 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1902 s->tile_attr.level_mode);
1903 ret = AVERROR_PATCHWELCOME;
1904 goto fail;
1905 }
1906
1907 if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1908 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1909 s->tile_attr.level_round);
1910 ret = AVERROR_PATCHWELCOME;
1911 goto fail;
1912 }
1913
1914 continue;
1915 } else if ((var_size = check_header_variable(s, "writer",
1916 "string", 1)) >= 0) {
1917 uint8_t key[256] = { 0 };
1918
1919 bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1920 av_dict_set(&metadata, "writer", key, 0);
1921
1922 continue;
1923 } else if ((var_size = check_header_variable(s, "framesPerSecond",
1924 "rational", 33)) >= 0) {
1925 if (!var_size) {
1926 ret = AVERROR_INVALIDDATA;
1927 goto fail;
1928 }
1929
1930 s->avctx->framerate.num = bytestream2_get_le32(gb);
1931 s->avctx->framerate.den = bytestream2_get_le32(gb);
1932
1933 continue;
1934 } else if ((var_size = check_header_variable(s, "chunkCount",
1935 "int", 23)) >= 0) {
1936
1937 s->chunk_count = bytestream2_get_le32(gb);
1938
1939 continue;
1940 } else if ((var_size = check_header_variable(s, "type",
1941 "string", 16)) >= 0) {
1942 uint8_t key[256] = { 0 };
1943
1944 bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1945 if (strncmp("scanlineimage", key, var_size) &&
1946 strncmp("tiledimage", key, var_size)) {
1947 ret = AVERROR_PATCHWELCOME;
1948 goto fail;
1949 }
1950
1951 continue;
1952 } else if ((var_size = check_header_variable(s, "preview",
1953 "preview", 16)) >= 0) {
1954 uint32_t pw = bytestream2_get_le32(gb);
1955 uint32_t ph = bytestream2_get_le32(gb);
1956 uint64_t psize = pw * ph;
1957 if (psize > INT64_MAX / 4) {
1958 ret = AVERROR_INVALIDDATA;
1959 goto fail;
1960 }
1961 psize *= 4;
1962
1963 if ((int64_t)psize >= bytestream2_get_bytes_left(gb)) {
1964 ret = AVERROR_INVALIDDATA;
1965 goto fail;
1966 }
1967
1968 bytestream2_skip(gb, psize);
1969
1970 continue;
1971 }
1972
1973 // Check if there are enough bytes for a header
1974 if (bytestream2_get_bytes_left(gb) <= 9) {
1975 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1976 ret = AVERROR_INVALIDDATA;
1977 goto fail;
1978 }
1979
1980 // Process unknown variables
1981 {
1982 uint8_t name[256] = { 0 };
1983 uint8_t type[256] = { 0 };
1984 uint8_t value[256] = { 0 };
1985 int i = 0, size;
1986
1987 while (bytestream2_get_bytes_left(gb) > 0 &&
1988 bytestream2_peek_byte(gb) && i < 255) {
1989 name[i++] = bytestream2_get_byte(gb);
1990 }
1991
1992 bytestream2_skip(gb, 1);
1993 i = 0;
1994 while (bytestream2_get_bytes_left(gb) > 0 &&
1995 bytestream2_peek_byte(gb) && i < 255) {
1996 type[i++] = bytestream2_get_byte(gb);
1997 }
1998 bytestream2_skip(gb, 1);
1999 size = bytestream2_get_le32(gb);
2000
2001 bytestream2_get_buffer(gb, value, FFMIN(sizeof(value) - 1, size));
2002 if (!strcmp(type, "string"))
2003 av_dict_set(&metadata, name, value, 0);
2004 }
2005 }
2006
2007 if (s->compression == EXR_UNKN) {
2008 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
2009 ret = AVERROR_INVALIDDATA;
2010 goto fail;
2011 }
2012
2013 if (s->is_tile) {
2014 if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
2015 av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
2016 ret = AVERROR_INVALIDDATA;
2017 goto fail;
2018 }
2019 }
2020
2021 if (bytestream2_get_bytes_left(gb) <= 0) {
2022 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
2023 ret = AVERROR_INVALIDDATA;
2024 goto fail;
2025 }
2026
2027 frame->metadata = metadata;
2028
2029 // aaand we are done
2030 bytestream2_skip(gb, 1);
2031 return 0;
2032 fail:
2033 av_dict_free(&metadata);
2034 return ret;
2035 }
2036
decode_frame(AVCodecContext * avctx,AVFrame * picture,int * got_frame,AVPacket * avpkt)2037 static int decode_frame(AVCodecContext *avctx, AVFrame *picture,
2038 int *got_frame, AVPacket *avpkt)
2039 {
2040 EXRContext *s = avctx->priv_data;
2041 GetByteContext *gb = &s->gb;
2042 uint8_t *ptr;
2043
2044 int i, y, ret, ymax;
2045 int planes;
2046 int out_line_size;
2047 int nb_blocks; /* nb scanline or nb tile */
2048 uint64_t start_offset_table;
2049 uint64_t start_next_scanline;
2050 PutByteContext offset_table_writer;
2051
2052 bytestream2_init(gb, avpkt->data, avpkt->size);
2053
2054 if ((ret = decode_header(s, picture)) < 0)
2055 return ret;
2056
2057 if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) &&
2058 s->pixel_type == EXR_HALF) {
2059 s->current_channel_offset *= 2;
2060 for (int i = 0; i < 4; i++)
2061 s->channel_offsets[i] *= 2;
2062 }
2063
2064 switch (s->pixel_type) {
2065 case EXR_FLOAT:
2066 case EXR_HALF:
2067 if (s->channel_offsets[3] >= 0) {
2068 if (!s->is_luma) {
2069 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2070 } else {
2071 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
2072 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2073 }
2074 } else {
2075 if (!s->is_luma) {
2076 avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
2077 } else {
2078 avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
2079 }
2080 }
2081 break;
2082 case EXR_UINT:
2083 if (s->channel_offsets[3] >= 0) {
2084 if (!s->is_luma) {
2085 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
2086 } else {
2087 avctx->pix_fmt = AV_PIX_FMT_YA16;
2088 }
2089 } else {
2090 if (!s->is_luma) {
2091 avctx->pix_fmt = AV_PIX_FMT_RGB48;
2092 } else {
2093 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
2094 }
2095 }
2096 break;
2097 default:
2098 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
2099 return AVERROR_INVALIDDATA;
2100 }
2101
2102 if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
2103 avctx->color_trc = s->apply_trc_type;
2104
2105 switch (s->compression) {
2106 case EXR_RAW:
2107 case EXR_RLE:
2108 case EXR_ZIP1:
2109 s->scan_lines_per_block = 1;
2110 break;
2111 case EXR_PXR24:
2112 case EXR_ZIP16:
2113 s->scan_lines_per_block = 16;
2114 break;
2115 case EXR_PIZ:
2116 case EXR_B44:
2117 case EXR_B44A:
2118 case EXR_DWAA:
2119 s->scan_lines_per_block = 32;
2120 break;
2121 case EXR_DWAB:
2122 s->scan_lines_per_block = 256;
2123 break;
2124 default:
2125 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
2126 return AVERROR_PATCHWELCOME;
2127 }
2128
2129 /* Verify the xmin, xmax, ymin and ymax before setting the actual image size.
2130 * It's possible for the data window can larger or outside the display window */
2131 if (s->xmin > s->xmax || s->ymin > s->ymax ||
2132 s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF) {
2133 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
2134 return AVERROR_INVALIDDATA;
2135 }
2136
2137 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
2138 return ret;
2139
2140 ff_set_sar(s->avctx, av_d2q(av_int2float(s->sar), 255));
2141
2142 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
2143 if (!s->desc)
2144 return AVERROR_INVALIDDATA;
2145
2146 if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
2147 planes = s->desc->nb_components;
2148 out_line_size = avctx->width * 4;
2149 } else {
2150 planes = 1;
2151 out_line_size = avctx->width * 2 * s->desc->nb_components;
2152 }
2153
2154 if (s->is_tile) {
2155 nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
2156 ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
2157 } else { /* scanline */
2158 nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
2159 s->scan_lines_per_block;
2160 }
2161
2162 if ((ret = ff_thread_get_buffer(avctx, picture, 0)) < 0)
2163 return ret;
2164
2165 if (bytestream2_get_bytes_left(gb)/8 < nb_blocks)
2166 return AVERROR_INVALIDDATA;
2167
2168 // check offset table and recreate it if need
2169 if (!s->is_tile && bytestream2_peek_le64(gb) == 0) {
2170 av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
2171
2172 start_offset_table = bytestream2_tell(gb);
2173 start_next_scanline = start_offset_table + nb_blocks * 8;
2174 bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
2175
2176 for (y = 0; y < nb_blocks; y++) {
2177 /* write offset of prev scanline in offset table */
2178 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2179
2180 /* get len of next scanline */
2181 bytestream2_seek(gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
2182 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2183 }
2184 bytestream2_seek(gb, start_offset_table, SEEK_SET);
2185 }
2186
2187 // save pointer we are going to use in decode_block
2188 s->buf = avpkt->data;
2189 s->buf_size = avpkt->size;
2190
2191 // Zero out the start if ymin is not 0
2192 for (i = 0; i < planes; i++) {
2193 ptr = picture->data[i];
2194 for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
2195 memset(ptr, 0, out_line_size);
2196 ptr += picture->linesize[i];
2197 }
2198 }
2199
2200 s->picture = picture;
2201
2202 avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
2203
2204 ymax = FFMAX(0, s->ymax + 1);
2205 // Zero out the end if ymax+1 is not h
2206 if (ymax < avctx->height)
2207 for (i = 0; i < planes; i++) {
2208 ptr = picture->data[i] + (ymax * picture->linesize[i]);
2209 for (y = ymax; y < avctx->height; y++) {
2210 memset(ptr, 0, out_line_size);
2211 ptr += picture->linesize[i];
2212 }
2213 }
2214
2215 picture->pict_type = AV_PICTURE_TYPE_I;
2216 *got_frame = 1;
2217
2218 return avpkt->size;
2219 }
2220
decode_init(AVCodecContext * avctx)2221 static av_cold int decode_init(AVCodecContext *avctx)
2222 {
2223 EXRContext *s = avctx->priv_data;
2224 uint32_t i;
2225 union av_intfloat32 t;
2226 float one_gamma = 1.0f / s->gamma;
2227 avpriv_trc_function trc_func = NULL;
2228
2229 half2float_table(s->mantissatable, s->exponenttable, s->offsettable);
2230
2231 s->avctx = avctx;
2232
2233 ff_exrdsp_init(&s->dsp);
2234
2235 #if HAVE_BIGENDIAN
2236 ff_bswapdsp_init(&s->bbdsp);
2237 #endif
2238
2239 trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
2240 if (trc_func) {
2241 for (i = 0; i < 65536; ++i) {
2242 t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2243 t.f = trc_func(t.f);
2244 s->gamma_table[i] = t;
2245 }
2246 } else {
2247 if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
2248 for (i = 0; i < 65536; ++i) {
2249 s->gamma_table[i].i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2250 }
2251 } else {
2252 for (i = 0; i < 65536; ++i) {
2253 t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2254 /* If negative value we reuse half value */
2255 if (t.f <= 0.0f) {
2256 s->gamma_table[i] = t;
2257 } else {
2258 t.f = powf(t.f, one_gamma);
2259 s->gamma_table[i] = t;
2260 }
2261 }
2262 }
2263 }
2264
2265 // allocate thread data, used for non EXR_RAW compression types
2266 s->thread_data = av_calloc(avctx->thread_count, sizeof(*s->thread_data));
2267 if (!s->thread_data)
2268 return AVERROR(ENOMEM);
2269
2270 return 0;
2271 }
2272
decode_end(AVCodecContext * avctx)2273 static av_cold int decode_end(AVCodecContext *avctx)
2274 {
2275 EXRContext *s = avctx->priv_data;
2276 int i;
2277 for (i = 0; i < avctx->thread_count; i++) {
2278 EXRThreadData *td = &s->thread_data[i];
2279 av_freep(&td->uncompressed_data);
2280 av_freep(&td->tmp);
2281 av_freep(&td->bitmap);
2282 av_freep(&td->lut);
2283 av_freep(&td->he);
2284 av_freep(&td->freq);
2285 av_freep(&td->ac_data);
2286 av_freep(&td->dc_data);
2287 av_freep(&td->rle_data);
2288 av_freep(&td->rle_raw_data);
2289 ff_free_vlc(&td->vlc);
2290 }
2291
2292 av_freep(&s->thread_data);
2293 av_freep(&s->channels);
2294
2295 return 0;
2296 }
2297
2298 #define OFFSET(x) offsetof(EXRContext, x)
2299 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2300 static const AVOption options[] = {
2301 { "layer", "Set the decoding layer", OFFSET(layer),
2302 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
2303 { "part", "Set the decoding part", OFFSET(selected_part),
2304 AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VD },
2305 { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
2306 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
2307
2308 // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
2309 { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
2310 AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
2311 { "bt709", "BT.709", 0,
2312 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2313 { "gamma", "gamma", 0,
2314 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2315 { "gamma22", "BT.470 M", 0,
2316 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2317 { "gamma28", "BT.470 BG", 0,
2318 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2319 { "smpte170m", "SMPTE 170 M", 0,
2320 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2321 { "smpte240m", "SMPTE 240 M", 0,
2322 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2323 { "linear", "Linear", 0,
2324 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2325 { "log", "Log", 0,
2326 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2327 { "log_sqrt", "Log square root", 0,
2328 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2329 { "iec61966_2_4", "IEC 61966-2-4", 0,
2330 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2331 { "bt1361", "BT.1361", 0,
2332 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2333 { "iec61966_2_1", "IEC 61966-2-1", 0,
2334 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2335 { "bt2020_10bit", "BT.2020 - 10 bit", 0,
2336 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2337 { "bt2020_12bit", "BT.2020 - 12 bit", 0,
2338 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2339 { "smpte2084", "SMPTE ST 2084", 0,
2340 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2341 { "smpte428_1", "SMPTE ST 428-1", 0,
2342 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2343
2344 { NULL },
2345 };
2346
2347 static const AVClass exr_class = {
2348 .class_name = "EXR",
2349 .item_name = av_default_item_name,
2350 .option = options,
2351 .version = LIBAVUTIL_VERSION_INT,
2352 };
2353
2354 const FFCodec ff_exr_decoder = {
2355 .p.name = "exr",
2356 .p.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
2357 .p.type = AVMEDIA_TYPE_VIDEO,
2358 .p.id = AV_CODEC_ID_EXR,
2359 .priv_data_size = sizeof(EXRContext),
2360 .init = decode_init,
2361 .close = decode_end,
2362 FF_CODEC_DECODE_CB(decode_frame),
2363 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
2364 AV_CODEC_CAP_SLICE_THREADS,
2365 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
2366 .p.priv_class = &exr_class,
2367 };
2368