• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4  * Copyright (c) 2009 Jimmy Christensen
5  *
6  * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * OpenEXR decoder
28  * @author Jimmy Christensen
29  *
30  * For more information on the OpenEXR format, visit:
31  *  http://openexr.com/
32  */
33 
34 #include <float.h>
35 #include <zlib.h>
36 
37 #include "libavutil/avassert.h"
38 #include "libavutil/common.h"
39 #include "libavutil/imgutils.h"
40 #include "libavutil/intfloat.h"
41 #include "libavutil/avstring.h"
42 #include "libavutil/opt.h"
43 #include "libavutil/color_utils.h"
44 
45 #include "avcodec.h"
46 #include "bytestream.h"
47 
48 #if HAVE_BIGENDIAN
49 #include "bswapdsp.h"
50 #endif
51 
52 #include "codec_internal.h"
53 #include "exrdsp.h"
54 #include "get_bits.h"
55 #include "internal.h"
56 #include "half2float.h"
57 #include "mathops.h"
58 #include "thread.h"
59 
60 enum ExrCompr {
61     EXR_RAW,
62     EXR_RLE,
63     EXR_ZIP1,
64     EXR_ZIP16,
65     EXR_PIZ,
66     EXR_PXR24,
67     EXR_B44,
68     EXR_B44A,
69     EXR_DWAA,
70     EXR_DWAB,
71     EXR_UNKN,
72 };
73 
74 enum ExrPixelType {
75     EXR_UINT,
76     EXR_HALF,
77     EXR_FLOAT,
78     EXR_UNKNOWN,
79 };
80 
81 enum ExrTileLevelMode {
82     EXR_TILE_LEVEL_ONE,
83     EXR_TILE_LEVEL_MIPMAP,
84     EXR_TILE_LEVEL_RIPMAP,
85     EXR_TILE_LEVEL_UNKNOWN,
86 };
87 
88 enum ExrTileLevelRound {
89     EXR_TILE_ROUND_UP,
90     EXR_TILE_ROUND_DOWN,
91     EXR_TILE_ROUND_UNKNOWN,
92 };
93 
94 typedef struct HuffEntry {
95     uint8_t  len;
96     uint16_t sym;
97     uint32_t code;
98 } HuffEntry;
99 
100 typedef struct EXRChannel {
101     int xsub, ysub;
102     enum ExrPixelType pixel_type;
103 } EXRChannel;
104 
105 typedef struct EXRTileAttribute {
106     int32_t xSize;
107     int32_t ySize;
108     enum ExrTileLevelMode level_mode;
109     enum ExrTileLevelRound level_round;
110 } EXRTileAttribute;
111 
112 typedef struct EXRThreadData {
113     uint8_t *uncompressed_data;
114     int uncompressed_size;
115 
116     uint8_t *tmp;
117     int tmp_size;
118 
119     uint8_t *bitmap;
120     uint16_t *lut;
121 
122     uint8_t *ac_data;
123     unsigned ac_size;
124 
125     uint8_t *dc_data;
126     unsigned dc_size;
127 
128     uint8_t *rle_data;
129     unsigned rle_size;
130 
131     uint8_t *rle_raw_data;
132     unsigned rle_raw_size;
133 
134     float block[3][64];
135 
136     int ysize, xsize;
137 
138     int channel_line_size;
139 
140     int run_sym;
141     HuffEntry *he;
142     uint64_t *freq;
143     VLC vlc;
144 } EXRThreadData;
145 
146 typedef struct EXRContext {
147     AVClass *class;
148     AVFrame *picture;
149     AVCodecContext *avctx;
150     ExrDSPContext dsp;
151 
152 #if HAVE_BIGENDIAN
153     BswapDSPContext bbdsp;
154 #endif
155 
156     enum ExrCompr compression;
157     enum ExrPixelType pixel_type;
158     int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
159     const AVPixFmtDescriptor *desc;
160 
161     int w, h;
162     uint32_t sar;
163     int32_t xmax, xmin;
164     int32_t ymax, ymin;
165     uint32_t xdelta, ydelta;
166 
167     int scan_lines_per_block;
168 
169     EXRTileAttribute tile_attr; /* header data attribute of tile */
170     int is_tile; /* 0 if scanline, 1 if tile */
171     int is_multipart;
172     int current_part;
173 
174     int is_luma;/* 1 if there is an Y plane */
175 
176     GetByteContext gb;
177     const uint8_t *buf;
178     int buf_size;
179 
180     EXRChannel *channels;
181     int nb_channels;
182     int current_channel_offset;
183     uint32_t chunk_count;
184 
185     EXRThreadData *thread_data;
186 
187     const char *layer;
188     int selected_part;
189 
190     enum AVColorTransferCharacteristic apply_trc_type;
191     float gamma;
192     union av_intfloat32 gamma_table[65536];
193 
194     uint32_t mantissatable[2048];
195     uint32_t exponenttable[64];
196     uint16_t offsettable[64];
197 } EXRContext;
198 
zip_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)199 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
200                           int uncompressed_size, EXRThreadData *td)
201 {
202     unsigned long dest_len = uncompressed_size;
203 
204     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
205         dest_len != uncompressed_size)
206         return AVERROR_INVALIDDATA;
207 
208     av_assert1(uncompressed_size % 2 == 0);
209 
210     s->dsp.predictor(td->tmp, uncompressed_size);
211     s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
212 
213     return 0;
214 }
215 
rle(uint8_t * dst,const uint8_t * src,int compressed_size,int uncompressed_size)216 static int rle(uint8_t *dst, const uint8_t *src,
217                int compressed_size, int uncompressed_size)
218 {
219     uint8_t *d      = dst;
220     const int8_t *s = src;
221     int ssize       = compressed_size;
222     int dsize       = uncompressed_size;
223     uint8_t *dend   = d + dsize;
224     int count;
225 
226     while (ssize > 0) {
227         count = *s++;
228 
229         if (count < 0) {
230             count = -count;
231 
232             if ((dsize -= count) < 0 ||
233                 (ssize -= count + 1) < 0)
234                 return AVERROR_INVALIDDATA;
235 
236             while (count--)
237                 *d++ = *s++;
238         } else {
239             count++;
240 
241             if ((dsize -= count) < 0 ||
242                 (ssize -= 2) < 0)
243                 return AVERROR_INVALIDDATA;
244 
245             while (count--)
246                 *d++ = *s;
247 
248             s++;
249         }
250     }
251 
252     if (dend != d)
253         return AVERROR_INVALIDDATA;
254 
255     return 0;
256 }
257 
rle_uncompress(EXRContext * ctx,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)258 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
259                           int uncompressed_size, EXRThreadData *td)
260 {
261     rle(td->tmp, src, compressed_size, uncompressed_size);
262 
263     av_assert1(uncompressed_size % 2 == 0);
264 
265     ctx->dsp.predictor(td->tmp, uncompressed_size);
266     ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
267 
268     return 0;
269 }
270 
271 #define USHORT_RANGE (1 << 16)
272 #define BITMAP_SIZE  (1 << 13)
273 
reverse_lut(const uint8_t * bitmap,uint16_t * lut)274 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
275 {
276     int i, k = 0;
277 
278     for (i = 0; i < USHORT_RANGE; i++)
279         if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
280             lut[k++] = i;
281 
282     i = k - 1;
283 
284     memset(lut + k, 0, (USHORT_RANGE - k) * 2);
285 
286     return i;
287 }
288 
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)289 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
290 {
291     int i;
292 
293     for (i = 0; i < dsize; ++i)
294         dst[i] = lut[dst[i]];
295 }
296 
297 #define HUF_ENCBITS 16  // literal (value) bit length
298 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
299 
huf_canonical_code_table(uint64_t * freq)300 static void huf_canonical_code_table(uint64_t *freq)
301 {
302     uint64_t c, n[59] = { 0 };
303     int i;
304 
305     for (i = 0; i < HUF_ENCSIZE; i++)
306         n[freq[i]] += 1;
307 
308     c = 0;
309     for (i = 58; i > 0; --i) {
310         uint64_t nc = ((c + n[i]) >> 1);
311         n[i] = c;
312         c    = nc;
313     }
314 
315     for (i = 0; i < HUF_ENCSIZE; ++i) {
316         int l = freq[i];
317 
318         if (l > 0)
319             freq[i] = l | (n[l]++ << 6);
320     }
321 }
322 
323 #define SHORT_ZEROCODE_RUN  59
324 #define LONG_ZEROCODE_RUN   63
325 #define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
326 #define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
327 
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * freq)328 static int huf_unpack_enc_table(GetByteContext *gb,
329                                 int32_t im, int32_t iM, uint64_t *freq)
330 {
331     GetBitContext gbit;
332     int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
333     if (ret < 0)
334         return ret;
335 
336     for (; im <= iM; im++) {
337         uint64_t l = freq[im] = get_bits(&gbit, 6);
338 
339         if (l == LONG_ZEROCODE_RUN) {
340             int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
341 
342             if (im + zerun > iM + 1)
343                 return AVERROR_INVALIDDATA;
344 
345             while (zerun--)
346                 freq[im++] = 0;
347 
348             im--;
349         } else if (l >= SHORT_ZEROCODE_RUN) {
350             int zerun = l - SHORT_ZEROCODE_RUN + 2;
351 
352             if (im + zerun > iM + 1)
353                 return AVERROR_INVALIDDATA;
354 
355             while (zerun--)
356                 freq[im++] = 0;
357 
358             im--;
359         }
360     }
361 
362     bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
363     huf_canonical_code_table(freq);
364 
365     return 0;
366 }
367 
huf_build_dec_table(EXRContext * s,EXRThreadData * td,int im,int iM)368 static int huf_build_dec_table(EXRContext *s,
369                                EXRThreadData *td, int im, int iM)
370 {
371     int j = 0;
372 
373     td->run_sym = -1;
374     for (int i = im; i < iM; i++) {
375         td->he[j].sym = i;
376         td->he[j].len = td->freq[i] & 63;
377         td->he[j].code = td->freq[i] >> 6;
378         if (td->he[j].len > 32) {
379             avpriv_request_sample(s->avctx, "Too big code length");
380             return AVERROR_PATCHWELCOME;
381         }
382         if (td->he[j].len > 0)
383             j++;
384         else
385             td->run_sym = i;
386     }
387 
388     if (im > 0)
389         td->run_sym = 0;
390     else if (iM < 65535)
391         td->run_sym = 65535;
392 
393     if (td->run_sym == -1) {
394         avpriv_request_sample(s->avctx, "No place for run symbol");
395         return AVERROR_PATCHWELCOME;
396     }
397 
398     td->he[j].sym = td->run_sym;
399     td->he[j].len = td->freq[iM] & 63;
400     if (td->he[j].len > 32) {
401         avpriv_request_sample(s->avctx, "Too big code length");
402         return AVERROR_PATCHWELCOME;
403     }
404     td->he[j].code = td->freq[iM] >> 6;
405     j++;
406 
407     ff_free_vlc(&td->vlc);
408     return ff_init_vlc_sparse(&td->vlc, 12, j,
409                               &td->he[0].len, sizeof(td->he[0]), sizeof(td->he[0].len),
410                               &td->he[0].code, sizeof(td->he[0]), sizeof(td->he[0].code),
411                               &td->he[0].sym, sizeof(td->he[0]), sizeof(td->he[0].sym), 0);
412 }
413 
huf_decode(VLC * vlc,GetByteContext * gb,int nbits,int run_sym,int no,uint16_t * out)414 static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym,
415                       int no, uint16_t *out)
416 {
417     GetBitContext gbit;
418     int oe = 0;
419 
420     init_get_bits(&gbit, gb->buffer, nbits);
421     while (get_bits_left(&gbit) > 0 && oe < no) {
422         uint16_t x = get_vlc2(&gbit, vlc->table, 12, 3);
423 
424         if (x == run_sym) {
425             int run = get_bits(&gbit, 8);
426             uint16_t fill;
427 
428             if (oe == 0 || oe + run > no)
429                 return AVERROR_INVALIDDATA;
430 
431             fill = out[oe - 1];
432 
433             while (run-- > 0)
434                 out[oe++] = fill;
435         } else {
436             out[oe++] = x;
437         }
438     }
439 
440     return 0;
441 }
442 
huf_uncompress(EXRContext * s,EXRThreadData * td,GetByteContext * gb,uint16_t * dst,int dst_size)443 static int huf_uncompress(EXRContext *s,
444                           EXRThreadData *td,
445                           GetByteContext *gb,
446                           uint16_t *dst, int dst_size)
447 {
448     int32_t im, iM;
449     uint32_t nBits;
450     int ret;
451 
452     im       = bytestream2_get_le32(gb);
453     iM       = bytestream2_get_le32(gb);
454     bytestream2_skip(gb, 4);
455     nBits = bytestream2_get_le32(gb);
456     if (im < 0 || im >= HUF_ENCSIZE ||
457         iM < 0 || iM >= HUF_ENCSIZE)
458         return AVERROR_INVALIDDATA;
459 
460     bytestream2_skip(gb, 4);
461 
462     if (!td->freq)
463         td->freq = av_malloc_array(HUF_ENCSIZE, sizeof(*td->freq));
464     if (!td->he)
465         td->he = av_calloc(HUF_ENCSIZE, sizeof(*td->he));
466     if (!td->freq || !td->he) {
467         ret = AVERROR(ENOMEM);
468         return ret;
469     }
470 
471     memset(td->freq, 0, sizeof(*td->freq) * HUF_ENCSIZE);
472     if ((ret = huf_unpack_enc_table(gb, im, iM, td->freq)) < 0)
473         return ret;
474 
475     if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
476         ret = AVERROR_INVALIDDATA;
477         return ret;
478     }
479 
480     if ((ret = huf_build_dec_table(s, td, im, iM)) < 0)
481         return ret;
482     return huf_decode(&td->vlc, gb, nBits, td->run_sym, dst_size, dst);
483 }
484 
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)485 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
486 {
487     int16_t ls = l;
488     int16_t hs = h;
489     int hi     = hs;
490     int ai     = ls + (hi & 1) + (hi >> 1);
491     int16_t as = ai;
492     int16_t bs = ai - hi;
493 
494     *a = as;
495     *b = bs;
496 }
497 
498 #define NBITS      16
499 #define A_OFFSET  (1 << (NBITS - 1))
500 #define MOD_MASK  ((1 << NBITS) - 1)
501 
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)502 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
503 {
504     int m  = l;
505     int d  = h;
506     int bb = (m - (d >> 1)) & MOD_MASK;
507     int aa = (d + bb - A_OFFSET) & MOD_MASK;
508     *b = bb;
509     *a = aa;
510 }
511 
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)512 static void wav_decode(uint16_t *in, int nx, int ox,
513                        int ny, int oy, uint16_t mx)
514 {
515     int w14 = (mx < (1 << 14));
516     int n   = (nx > ny) ? ny : nx;
517     int p   = 1;
518     int p2;
519 
520     while (p <= n)
521         p <<= 1;
522 
523     p >>= 1;
524     p2  = p;
525     p >>= 1;
526 
527     while (p >= 1) {
528         uint16_t *py = in;
529         uint16_t *ey = in + oy * (ny - p2);
530         uint16_t i00, i01, i10, i11;
531         int oy1 = oy * p;
532         int oy2 = oy * p2;
533         int ox1 = ox * p;
534         int ox2 = ox * p2;
535 
536         for (; py <= ey; py += oy2) {
537             uint16_t *px = py;
538             uint16_t *ex = py + ox * (nx - p2);
539 
540             for (; px <= ex; px += ox2) {
541                 uint16_t *p01 = px + ox1;
542                 uint16_t *p10 = px + oy1;
543                 uint16_t *p11 = p10 + ox1;
544 
545                 if (w14) {
546                     wdec14(*px, *p10, &i00, &i10);
547                     wdec14(*p01, *p11, &i01, &i11);
548                     wdec14(i00, i01, px, p01);
549                     wdec14(i10, i11, p10, p11);
550                 } else {
551                     wdec16(*px, *p10, &i00, &i10);
552                     wdec16(*p01, *p11, &i01, &i11);
553                     wdec16(i00, i01, px, p01);
554                     wdec16(i10, i11, p10, p11);
555                 }
556             }
557 
558             if (nx & p) {
559                 uint16_t *p10 = px + oy1;
560 
561                 if (w14)
562                     wdec14(*px, *p10, &i00, p10);
563                 else
564                     wdec16(*px, *p10, &i00, p10);
565 
566                 *px = i00;
567             }
568         }
569 
570         if (ny & p) {
571             uint16_t *px = py;
572             uint16_t *ex = py + ox * (nx - p2);
573 
574             for (; px <= ex; px += ox2) {
575                 uint16_t *p01 = px + ox1;
576 
577                 if (w14)
578                     wdec14(*px, *p01, &i00, p01);
579                 else
580                     wdec16(*px, *p01, &i00, p01);
581 
582                 *px = i00;
583             }
584         }
585 
586         p2  = p;
587         p >>= 1;
588     }
589 }
590 
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)591 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
592                           int dsize, EXRThreadData *td)
593 {
594     GetByteContext gb;
595     uint16_t maxval, min_non_zero, max_non_zero;
596     uint16_t *ptr;
597     uint16_t *tmp = (uint16_t *)td->tmp;
598     uint16_t *out;
599     uint16_t *in;
600     int ret, i, j;
601     int pixel_half_size;/* 1 for half, 2 for float and uint32 */
602     EXRChannel *channel;
603     int tmp_offset;
604 
605     if (!td->bitmap)
606         td->bitmap = av_malloc(BITMAP_SIZE);
607     if (!td->lut)
608         td->lut = av_malloc(1 << 17);
609     if (!td->bitmap || !td->lut) {
610         av_freep(&td->bitmap);
611         av_freep(&td->lut);
612         return AVERROR(ENOMEM);
613     }
614 
615     bytestream2_init(&gb, src, ssize);
616     min_non_zero = bytestream2_get_le16(&gb);
617     max_non_zero = bytestream2_get_le16(&gb);
618 
619     if (max_non_zero >= BITMAP_SIZE)
620         return AVERROR_INVALIDDATA;
621 
622     memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
623     if (min_non_zero <= max_non_zero)
624         bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
625                                max_non_zero - min_non_zero + 1);
626     memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
627 
628     maxval = reverse_lut(td->bitmap, td->lut);
629 
630     bytestream2_skip(&gb, 4);
631     ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t));
632     if (ret)
633         return ret;
634 
635     ptr = tmp;
636     for (i = 0; i < s->nb_channels; i++) {
637         channel = &s->channels[i];
638 
639         if (channel->pixel_type == EXR_HALF)
640             pixel_half_size = 1;
641         else
642             pixel_half_size = 2;
643 
644         for (j = 0; j < pixel_half_size; j++)
645             wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
646                        td->xsize * pixel_half_size, maxval);
647         ptr += td->xsize * td->ysize * pixel_half_size;
648     }
649 
650     apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
651 
652     out = (uint16_t *)td->uncompressed_data;
653     for (i = 0; i < td->ysize; i++) {
654         tmp_offset = 0;
655         for (j = 0; j < s->nb_channels; j++) {
656             channel = &s->channels[j];
657             if (channel->pixel_type == EXR_HALF)
658                 pixel_half_size = 1;
659             else
660                 pixel_half_size = 2;
661 
662             in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
663             tmp_offset += pixel_half_size;
664 
665 #if HAVE_BIGENDIAN
666             s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
667 #else
668             memcpy(out, in, td->xsize * 2 * pixel_half_size);
669 #endif
670             out += td->xsize * pixel_half_size;
671         }
672     }
673 
674     return 0;
675 }
676 
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)677 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
678                             int compressed_size, int uncompressed_size,
679                             EXRThreadData *td)
680 {
681     unsigned long dest_len, expected_len = 0;
682     const uint8_t *in = td->tmp;
683     uint8_t *out;
684     int c, i, j;
685 
686     for (i = 0; i < s->nb_channels; i++) {
687         if (s->channels[i].pixel_type == EXR_FLOAT) {
688             expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
689         } else if (s->channels[i].pixel_type == EXR_HALF) {
690             expected_len += (td->xsize * td->ysize * 2);
691         } else {//UINT 32
692             expected_len += (td->xsize * td->ysize * 4);
693         }
694     }
695 
696     dest_len = expected_len;
697 
698     if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
699         return AVERROR_INVALIDDATA;
700     } else if (dest_len != expected_len) {
701         return AVERROR_INVALIDDATA;
702     }
703 
704     out = td->uncompressed_data;
705     for (i = 0; i < td->ysize; i++)
706         for (c = 0; c < s->nb_channels; c++) {
707             EXRChannel *channel = &s->channels[c];
708             const uint8_t *ptr[4];
709             uint32_t pixel = 0;
710 
711             switch (channel->pixel_type) {
712             case EXR_FLOAT:
713                 ptr[0] = in;
714                 ptr[1] = ptr[0] + td->xsize;
715                 ptr[2] = ptr[1] + td->xsize;
716                 in     = ptr[2] + td->xsize;
717 
718                 for (j = 0; j < td->xsize; ++j) {
719                     uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
720                                     (*(ptr[1]++) << 16) |
721                                     (*(ptr[2]++) << 8);
722                     pixel += diff;
723                     bytestream_put_le32(&out, pixel);
724                 }
725                 break;
726             case EXR_HALF:
727                 ptr[0] = in;
728                 ptr[1] = ptr[0] + td->xsize;
729                 in     = ptr[1] + td->xsize;
730                 for (j = 0; j < td->xsize; j++) {
731                     uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
732 
733                     pixel += diff;
734                     bytestream_put_le16(&out, pixel);
735                 }
736                 break;
737             case EXR_UINT:
738                 ptr[0] = in;
739                 ptr[1] = ptr[0] + s->xdelta;
740                 ptr[2] = ptr[1] + s->xdelta;
741                 ptr[3] = ptr[2] + s->xdelta;
742                 in     = ptr[3] + s->xdelta;
743 
744                 for (j = 0; j < s->xdelta; ++j) {
745                     uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
746                     (*(ptr[1]++) << 16) |
747                     (*(ptr[2]++) << 8 ) |
748                     (*(ptr[3]++));
749                     pixel += diff;
750                     bytestream_put_le32(&out, pixel);
751                 }
752                 break;
753             default:
754                 return AVERROR_INVALIDDATA;
755             }
756         }
757 
758     return 0;
759 }
760 
unpack_14(const uint8_t b[14],uint16_t s[16])761 static void unpack_14(const uint8_t b[14], uint16_t s[16])
762 {
763     unsigned short shift = (b[ 2] >> 2) & 15;
764     unsigned short bias = (0x20 << shift);
765     int i;
766 
767     s[ 0] = (b[0] << 8) | b[1];
768 
769     s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
770     s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
771     s[12] = s[ 8] +   ((b[ 4]                       & 0x3f) << shift) - bias;
772 
773     s[ 1] = s[ 0] +   ((b[ 5] >> 2)                         << shift) - bias;
774     s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
775     s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
776     s[13] = s[12] +   ((b[ 7]                       & 0x3f) << shift) - bias;
777 
778     s[ 2] = s[ 1] +   ((b[ 8] >> 2)                         << shift) - bias;
779     s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
780     s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
781     s[14] = s[13] +   ((b[10]                       & 0x3f) << shift) - bias;
782 
783     s[ 3] = s[ 2] +   ((b[11] >> 2)                         << shift) - bias;
784     s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
785     s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
786     s[15] = s[14] +   ((b[13]                       & 0x3f) << shift) - bias;
787 
788     for (i = 0; i < 16; ++i) {
789         if (s[i] & 0x8000)
790             s[i] &= 0x7fff;
791         else
792             s[i] = ~s[i];
793     }
794 }
795 
unpack_3(const uint8_t b[3],uint16_t s[16])796 static void unpack_3(const uint8_t b[3], uint16_t s[16])
797 {
798     int i;
799 
800     s[0] = (b[0] << 8) | b[1];
801 
802     if (s[0] & 0x8000)
803         s[0] &= 0x7fff;
804     else
805         s[0] = ~s[0];
806 
807     for (i = 1; i < 16; i++)
808         s[i] = s[0];
809 }
810 
811 
b44_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)812 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
813                           int uncompressed_size, EXRThreadData *td) {
814     const int8_t *sr = src;
815     int stay_to_uncompress = compressed_size;
816     int nb_b44_block_w, nb_b44_block_h;
817     int index_tl_x, index_tl_y, index_out, index_tmp;
818     uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
819     int c, iY, iX, y, x;
820     int target_channel_offset = 0;
821 
822     /* calc B44 block count */
823     nb_b44_block_w = td->xsize / 4;
824     if ((td->xsize % 4) != 0)
825         nb_b44_block_w++;
826 
827     nb_b44_block_h = td->ysize / 4;
828     if ((td->ysize % 4) != 0)
829         nb_b44_block_h++;
830 
831     for (c = 0; c < s->nb_channels; c++) {
832         if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
833             for (iY = 0; iY < nb_b44_block_h; iY++) {
834                 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
835                     if (stay_to_uncompress < 3) {
836                         av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
837                         return AVERROR_INVALIDDATA;
838                     }
839 
840                     if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
841                         unpack_3(sr, tmp_buffer);
842                         sr += 3;
843                         stay_to_uncompress -= 3;
844                     }  else {/* B44 Block */
845                         if (stay_to_uncompress < 14) {
846                             av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
847                             return AVERROR_INVALIDDATA;
848                         }
849                         unpack_14(sr, tmp_buffer);
850                         sr += 14;
851                         stay_to_uncompress -= 14;
852                     }
853 
854                     /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
855                     index_tl_x = iX * 4;
856                     index_tl_y = iY * 4;
857 
858                     for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
859                         for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
860                             index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
861                             index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
862                             td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
863                             td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
864                         }
865                     }
866                 }
867             }
868             target_channel_offset += 2;
869         } else {/* Float or UINT 32 channel */
870             if (stay_to_uncompress < td->ysize * td->xsize * 4) {
871                 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
872                 return AVERROR_INVALIDDATA;
873             }
874 
875             for (y = 0; y < td->ysize; y++) {
876                 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
877                 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
878                 sr += td->xsize * 4;
879             }
880             target_channel_offset += 4;
881 
882             stay_to_uncompress -= td->ysize * td->xsize * 4;
883         }
884     }
885 
886     return 0;
887 }
888 
ac_uncompress(EXRContext * s,GetByteContext * gb,float * block)889 static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
890 {
891     int ret = 0, n = 1;
892 
893     while (n < 64) {
894         uint16_t val = bytestream2_get_ne16(gb);
895 
896         if (val == 0xff00) {
897             n = 64;
898         } else if ((val >> 8) == 0xff) {
899             n += val & 0xff;
900         } else {
901             ret = n;
902             block[ff_zigzag_direct[n]] = av_int2float(half2float(val,
903                                                       s->mantissatable,
904                                                       s->exponenttable,
905                                                       s->offsettable));
906             n++;
907         }
908     }
909 
910     return ret;
911 }
912 
idct_1d(float * blk,int step)913 static void idct_1d(float *blk, int step)
914 {
915     const float a = .5f * cosf(    M_PI / 4.f);
916     const float b = .5f * cosf(    M_PI / 16.f);
917     const float c = .5f * cosf(    M_PI / 8.f);
918     const float d = .5f * cosf(3.f*M_PI / 16.f);
919     const float e = .5f * cosf(5.f*M_PI / 16.f);
920     const float f = .5f * cosf(3.f*M_PI / 8.f);
921     const float g = .5f * cosf(7.f*M_PI / 16.f);
922 
923     float alpha[4], beta[4], theta[4], gamma[4];
924 
925     alpha[0] = c * blk[2 * step];
926     alpha[1] = f * blk[2 * step];
927     alpha[2] = c * blk[6 * step];
928     alpha[3] = f * blk[6 * step];
929 
930     beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step];
931     beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step];
932     beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step];
933     beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step];
934 
935     theta[0] = a * (blk[0 * step] + blk[4 * step]);
936     theta[3] = a * (blk[0 * step] - blk[4 * step]);
937 
938     theta[1] = alpha[0] + alpha[3];
939     theta[2] = alpha[1] - alpha[2];
940 
941     gamma[0] = theta[0] + theta[1];
942     gamma[1] = theta[3] + theta[2];
943     gamma[2] = theta[3] - theta[2];
944     gamma[3] = theta[0] - theta[1];
945 
946     blk[0 * step] = gamma[0] + beta[0];
947     blk[1 * step] = gamma[1] + beta[1];
948     blk[2 * step] = gamma[2] + beta[2];
949     blk[3 * step] = gamma[3] + beta[3];
950 
951     blk[4 * step] = gamma[3] - beta[3];
952     blk[5 * step] = gamma[2] - beta[2];
953     blk[6 * step] = gamma[1] - beta[1];
954     blk[7 * step] = gamma[0] - beta[0];
955 }
956 
dct_inverse(float * block)957 static void dct_inverse(float *block)
958 {
959     for (int i = 0; i < 8; i++)
960         idct_1d(block + i, 8);
961 
962     for (int i = 0; i < 8; i++) {
963         idct_1d(block, 1);
964         block += 8;
965     }
966 }
967 
convert(float y,float u,float v,float * b,float * g,float * r)968 static void convert(float y, float u, float v,
969                     float *b, float *g, float *r)
970 {
971     *r = y               + 1.5747f * v;
972     *g = y - 0.1873f * u - 0.4682f * v;
973     *b = y + 1.8556f * u;
974 }
975 
to_linear(float x,float scale)976 static float to_linear(float x, float scale)
977 {
978     float ax = fabsf(x);
979 
980     if (ax <= 1.f) {
981         return FFSIGN(x) * powf(ax, 2.2f * scale);
982     } else {
983         const float log_base = expf(2.2f * scale);
984 
985         return FFSIGN(x) * powf(log_base, ax - 1.f);
986     }
987 }
988 
dwa_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)989 static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
990                           int uncompressed_size, EXRThreadData *td)
991 {
992     int64_t version, lo_usize, lo_size;
993     int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
994     int64_t ac_count, dc_count, ac_compression;
995     const int dc_w = td->xsize >> 3;
996     const int dc_h = td->ysize >> 3;
997     GetByteContext gb, agb;
998     int skip, ret;
999 
1000     if (compressed_size <= 88)
1001         return AVERROR_INVALIDDATA;
1002 
1003     version = AV_RL64(src + 0);
1004     if (version != 2)
1005         return AVERROR_INVALIDDATA;
1006 
1007     lo_usize = AV_RL64(src + 8);
1008     lo_size = AV_RL64(src + 16);
1009     ac_size = AV_RL64(src + 24);
1010     dc_size = AV_RL64(src + 32);
1011     rle_csize = AV_RL64(src + 40);
1012     rle_usize = AV_RL64(src + 48);
1013     rle_raw_size = AV_RL64(src + 56);
1014     ac_count = AV_RL64(src + 64);
1015     dc_count = AV_RL64(src + 72);
1016     ac_compression = AV_RL64(src + 80);
1017 
1018     if (   compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1019         || ac_count > (uint64_t)INT_MAX/2
1020     )
1021         return AVERROR_INVALIDDATA;
1022 
1023     bytestream2_init(&gb, src + 88, compressed_size - 88);
1024     skip = bytestream2_get_le16(&gb);
1025     if (skip < 2)
1026         return AVERROR_INVALIDDATA;
1027 
1028     bytestream2_skip(&gb, skip - 2);
1029 
1030     if (lo_size > 0) {
1031         if (lo_usize > uncompressed_size)
1032             return AVERROR_INVALIDDATA;
1033         bytestream2_skip(&gb, lo_size);
1034     }
1035 
1036     if (ac_size > 0) {
1037         unsigned long dest_len;
1038         GetByteContext agb = gb;
1039 
1040         if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
1041             return AVERROR_INVALIDDATA;
1042 
1043         dest_len = ac_count * 2LL;
1044 
1045         av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
1046         if (!td->ac_data)
1047             return AVERROR(ENOMEM);
1048 
1049         switch (ac_compression) {
1050         case 0:
1051             ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
1052             if (ret < 0)
1053                 return ret;
1054             break;
1055         case 1:
1056             if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
1057                 dest_len != ac_count * 2LL)
1058                 return AVERROR_INVALIDDATA;
1059             break;
1060         default:
1061             return AVERROR_INVALIDDATA;
1062         }
1063 
1064         bytestream2_skip(&gb, ac_size);
1065     }
1066 
1067     {
1068         unsigned long dest_len;
1069         GetByteContext agb = gb;
1070 
1071         if (dc_count != dc_w * dc_h * 3)
1072             return AVERROR_INVALIDDATA;
1073 
1074         dest_len = dc_count * 2LL;
1075 
1076         av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
1077         if (!td->dc_data)
1078             return AVERROR(ENOMEM);
1079 
1080         if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
1081             (dest_len != dc_count * 2LL))
1082             return AVERROR_INVALIDDATA;
1083 
1084         s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
1085         s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
1086 
1087         bytestream2_skip(&gb, dc_size);
1088     }
1089 
1090     if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1091         unsigned long dest_len = rle_usize;
1092 
1093         av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
1094         if (!td->rle_data)
1095             return AVERROR(ENOMEM);
1096 
1097         av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
1098         if (!td->rle_raw_data)
1099             return AVERROR(ENOMEM);
1100 
1101         if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
1102             (dest_len != rle_usize))
1103             return AVERROR_INVALIDDATA;
1104 
1105         ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
1106         if (ret < 0)
1107             return ret;
1108         bytestream2_skip(&gb, rle_csize);
1109     }
1110 
1111     bytestream2_init(&agb, td->ac_data, ac_count * 2);
1112 
1113     for (int y = 0; y < td->ysize; y += 8) {
1114         for (int x = 0; x < td->xsize; x += 8) {
1115             memset(td->block, 0, sizeof(td->block));
1116 
1117             for (int j = 0; j < 3; j++) {
1118                 float *block = td->block[j];
1119                 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1120                 uint16_t *dc = (uint16_t *)td->dc_data;
1121                 union av_intfloat32 dc_val;
1122 
1123                 dc_val.i = half2float(dc[idx], s->mantissatable,
1124                                       s->exponenttable, s->offsettable);
1125 
1126                 block[0] = dc_val.f;
1127                 ac_uncompress(s, &agb, block);
1128                 dct_inverse(block);
1129             }
1130 
1131             {
1132                 const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
1133                 const int o = s->nb_channels == 4;
1134                 float *bo = ((float *)td->uncompressed_data) +
1135                     y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
1136                 float *go = ((float *)td->uncompressed_data) +
1137                     y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
1138                 float *ro = ((float *)td->uncompressed_data) +
1139                     y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
1140                 float *yb = td->block[0];
1141                 float *ub = td->block[1];
1142                 float *vb = td->block[2];
1143 
1144                 for (int yy = 0; yy < 8; yy++) {
1145                     for (int xx = 0; xx < 8; xx++) {
1146                         const int idx = xx + yy * 8;
1147 
1148                         convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1149 
1150                         bo[xx] = to_linear(bo[xx], scale);
1151                         go[xx] = to_linear(go[xx], scale);
1152                         ro[xx] = to_linear(ro[xx], scale);
1153                     }
1154 
1155                     bo += td->xsize * s->nb_channels;
1156                     go += td->xsize * s->nb_channels;
1157                     ro += td->xsize * s->nb_channels;
1158                 }
1159             }
1160         }
1161     }
1162 
1163     if (s->nb_channels < 4)
1164         return 0;
1165 
1166     for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
1167         uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
1168         uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
1169         uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
1170 
1171         for (int x = 0; x < td->xsize; x++) {
1172             uint16_t ha = ai0[x] | (ai1[x] << 8);
1173 
1174             ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable);
1175         }
1176     }
1177 
1178     return 0;
1179 }
1180 
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)1181 static int decode_block(AVCodecContext *avctx, void *tdata,
1182                         int jobnr, int threadnr)
1183 {
1184     EXRContext *s = avctx->priv_data;
1185     AVFrame *const p = s->picture;
1186     EXRThreadData *td = &s->thread_data[threadnr];
1187     const uint8_t *channel_buffer[4] = { 0 };
1188     const uint8_t *buf = s->buf;
1189     uint64_t line_offset, uncompressed_size;
1190     uint8_t *ptr;
1191     uint32_t data_size;
1192     int line, col = 0;
1193     uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1194     const uint8_t *src;
1195     int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1196     int bxmin = 0, axmax = 0, window_xoffset = 0;
1197     int window_xmin, window_xmax, window_ymin, window_ymax;
1198     int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1199     int i, x, buf_size = s->buf_size;
1200     int c, rgb_channel_count;
1201     float one_gamma = 1.0f / s->gamma;
1202     avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1203     int ret;
1204 
1205     line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1206 
1207     if (s->is_tile) {
1208         if (buf_size < 20 || line_offset > buf_size - 20)
1209             return AVERROR_INVALIDDATA;
1210 
1211         src  = buf + line_offset + 20;
1212         if (s->is_multipart)
1213             src += 4;
1214 
1215         tile_x = AV_RL32(src - 20);
1216         tile_y = AV_RL32(src - 16);
1217         tile_level_x = AV_RL32(src - 12);
1218         tile_level_y = AV_RL32(src - 8);
1219 
1220         data_size = AV_RL32(src - 4);
1221         if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1222             return AVERROR_INVALIDDATA;
1223 
1224         if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1225             avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1226             return AVERROR_PATCHWELCOME;
1227         }
1228 
1229         if (tile_x && s->tile_attr.xSize + (int64_t)FFMAX(s->xmin, 0) >= INT_MAX / tile_x )
1230             return AVERROR_INVALIDDATA;
1231         if (tile_y && s->tile_attr.ySize + (int64_t)FFMAX(s->ymin, 0) >= INT_MAX / tile_y )
1232             return AVERROR_INVALIDDATA;
1233 
1234         line = s->ymin + s->tile_attr.ySize * tile_y;
1235         col = s->tile_attr.xSize * tile_x;
1236 
1237         if (line < s->ymin || line > s->ymax ||
1238             s->xmin + col  < s->xmin ||  s->xmin + col  > s->xmax)
1239             return AVERROR_INVALIDDATA;
1240 
1241         td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1242         td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1243 
1244         if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX ||
1245             av_image_check_size2(td->xsize, td->ysize, s->avctx->max_pixels, AV_PIX_FMT_NONE, 0, s->avctx) < 0)
1246             return AVERROR_INVALIDDATA;
1247 
1248         td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1249         uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1250     } else {
1251         if (buf_size < 8 || line_offset > buf_size - 8)
1252             return AVERROR_INVALIDDATA;
1253 
1254         src  = buf + line_offset + 8;
1255         if (s->is_multipart)
1256             src += 4;
1257         line = AV_RL32(src - 8);
1258 
1259         if (line < s->ymin || line > s->ymax)
1260             return AVERROR_INVALIDDATA;
1261 
1262         data_size = AV_RL32(src - 4);
1263         if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1264             return AVERROR_INVALIDDATA;
1265 
1266         td->ysize          = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1267         td->xsize          = s->xdelta;
1268 
1269         if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX ||
1270             av_image_check_size2(td->xsize, td->ysize, s->avctx->max_pixels, AV_PIX_FMT_NONE, 0, s->avctx) < 0)
1271             return AVERROR_INVALIDDATA;
1272 
1273         td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1274         uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1275 
1276         if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1277                                            line_offset > buf_size - uncompressed_size)) ||
1278             (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1279                                            line_offset > buf_size - data_size))) {
1280             return AVERROR_INVALIDDATA;
1281         }
1282     }
1283 
1284     window_xmin = FFMIN(avctx->width, FFMAX(0, s->xmin + col));
1285     window_xmax = FFMIN(avctx->width, FFMAX(0, s->xmin + col + td->xsize));
1286     window_ymin = FFMIN(avctx->height, FFMAX(0, line ));
1287     window_ymax = FFMIN(avctx->height, FFMAX(0, line + td->ysize));
1288     xsize = window_xmax - window_xmin;
1289     ysize = window_ymax - window_ymin;
1290 
1291     /* tile or scanline not visible skip decoding */
1292     if (xsize <= 0 || ysize <= 0)
1293         return 0;
1294 
1295     /* is the first tile or is a scanline */
1296     if(col == 0) {
1297         window_xmin = 0;
1298         /* pixels to add at the left of the display window */
1299         window_xoffset = FFMAX(0, s->xmin);
1300         /* bytes to add at the left of the display window */
1301         bxmin = window_xoffset * step;
1302     }
1303 
1304     /* is the last tile or is a scanline */
1305     if(col + td->xsize == s->xdelta) {
1306         window_xmax = avctx->width;
1307          /* bytes to add at the right of the display window */
1308         axmax = FFMAX(0, (avctx->width - (s->xmax + 1))) * step;
1309     }
1310 
1311     if (avctx->max_pixels && uncompressed_size > avctx->max_pixels * 16LL)
1312         return AVERROR_INVALIDDATA;
1313 
1314     if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1315         av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1316         if (!td->tmp)
1317             return AVERROR(ENOMEM);
1318     }
1319 
1320     if (data_size < uncompressed_size) {
1321         av_fast_padded_malloc(&td->uncompressed_data,
1322                               &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1323 
1324         if (!td->uncompressed_data)
1325             return AVERROR(ENOMEM);
1326 
1327         ret = AVERROR_INVALIDDATA;
1328         switch (s->compression) {
1329         case EXR_ZIP1:
1330         case EXR_ZIP16:
1331             ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1332             break;
1333         case EXR_PIZ:
1334             ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1335             break;
1336         case EXR_PXR24:
1337             ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1338             break;
1339         case EXR_RLE:
1340             ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1341             break;
1342         case EXR_B44:
1343         case EXR_B44A:
1344             ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1345             break;
1346         case EXR_DWAA:
1347         case EXR_DWAB:
1348             ret = dwa_uncompress(s, src, data_size, uncompressed_size, td);
1349             break;
1350         }
1351         if (ret < 0) {
1352             av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1353             return ret;
1354         }
1355         src = td->uncompressed_data;
1356     }
1357 
1358     /* offsets to crop data outside display window */
1359     data_xoffset = FFABS(FFMIN(0, s->xmin + col)) * (s->pixel_type == EXR_HALF ? 2 : 4);
1360     data_yoffset = FFABS(FFMIN(0, line));
1361     data_window_offset = (data_yoffset * td->channel_line_size) + data_xoffset;
1362 
1363     if (!s->is_luma) {
1364         channel_buffer[0] = src + (td->xsize * s->channel_offsets[0]) + data_window_offset;
1365         channel_buffer[1] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1366         channel_buffer[2] = src + (td->xsize * s->channel_offsets[2]) + data_window_offset;
1367         rgb_channel_count = 3;
1368     } else { /* put y data in the first channel_buffer */
1369         channel_buffer[0] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1370         rgb_channel_count = 1;
1371     }
1372      if (s->channel_offsets[3] >= 0)
1373         channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset;
1374 
1375     if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1376         /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1377         int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1378         if (s->is_luma) {
1379             channel_buffer[1] = channel_buffer[0];
1380             channel_buffer[2] = channel_buffer[0];
1381         }
1382 
1383         for (c = 0; c < channel_count; c++) {
1384             int plane = s->desc->comp[c].plane;
1385             ptr = p->data[plane] + window_ymin * p->linesize[plane] + (window_xmin * 4);
1386 
1387             for (i = 0; i < ysize; i++, ptr += p->linesize[plane]) {
1388                 const uint8_t *src;
1389                 union av_intfloat32 *ptr_x;
1390 
1391                 src = channel_buffer[c];
1392                 ptr_x = (union av_intfloat32 *)ptr;
1393 
1394                 // Zero out the start if xmin is not 0
1395                 memset(ptr_x, 0, bxmin);
1396                 ptr_x += window_xoffset;
1397 
1398                 if (s->pixel_type == EXR_FLOAT ||
1399                     s->compression == EXR_DWAA ||
1400                     s->compression == EXR_DWAB) {
1401                     // 32-bit
1402                     union av_intfloat32 t;
1403                     if (trc_func && c < 3) {
1404                         for (x = 0; x < xsize; x++) {
1405                             t.i = bytestream_get_le32(&src);
1406                             t.f = trc_func(t.f);
1407                             *ptr_x++ = t;
1408                         }
1409                     } else if (one_gamma != 1.f) {
1410                         for (x = 0; x < xsize; x++) {
1411                             t.i = bytestream_get_le32(&src);
1412                             if (t.f > 0.0f && c < 3)  /* avoid negative values */
1413                                 t.f = powf(t.f, one_gamma);
1414                             *ptr_x++ = t;
1415                         }
1416                     } else {
1417                         for (x = 0; x < xsize; x++) {
1418                             t.i = bytestream_get_le32(&src);
1419                             *ptr_x++ = t;
1420                         }
1421                     }
1422                 } else if (s->pixel_type == EXR_HALF) {
1423                     // 16-bit
1424                     if (c < 3 || !trc_func) {
1425                         for (x = 0; x < xsize; x++) {
1426                             *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1427                         }
1428                     } else {
1429                         for (x = 0; x < xsize; x++) {
1430                             ptr_x[0].i = half2float(bytestream_get_le16(&src),
1431                                                     s->mantissatable,
1432                                                     s->exponenttable,
1433                                                     s->offsettable);
1434                             ptr_x++;
1435                         }
1436                     }
1437                 }
1438 
1439                 // Zero out the end if xmax+1 is not w
1440                 memset(ptr_x, 0, axmax);
1441                 channel_buffer[c] += td->channel_line_size;
1442             }
1443         }
1444     } else {
1445 
1446         av_assert1(s->pixel_type == EXR_UINT);
1447         ptr = p->data[0] + window_ymin * p->linesize[0] + (window_xmin * s->desc->nb_components * 2);
1448 
1449         for (i = 0; i < ysize; i++, ptr += p->linesize[0]) {
1450 
1451             const uint8_t * a;
1452             const uint8_t *rgb[3];
1453             uint16_t *ptr_x;
1454 
1455             for (c = 0; c < rgb_channel_count; c++) {
1456                 rgb[c] = channel_buffer[c];
1457             }
1458 
1459             if (channel_buffer[3])
1460                 a = channel_buffer[3];
1461 
1462             ptr_x = (uint16_t *) ptr;
1463 
1464             // Zero out the start if xmin is not 0
1465             memset(ptr_x, 0, bxmin);
1466             ptr_x += window_xoffset * s->desc->nb_components;
1467 
1468             for (x = 0; x < xsize; x++) {
1469                 for (c = 0; c < rgb_channel_count; c++) {
1470                     *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1471                 }
1472 
1473                 if (channel_buffer[3])
1474                     *ptr_x++ = bytestream_get_le32(&a) >> 16;
1475             }
1476 
1477             // Zero out the end if xmax+1 is not w
1478             memset(ptr_x, 0, axmax);
1479 
1480             channel_buffer[0] += td->channel_line_size;
1481             channel_buffer[1] += td->channel_line_size;
1482             channel_buffer[2] += td->channel_line_size;
1483             if (channel_buffer[3])
1484                 channel_buffer[3] += td->channel_line_size;
1485         }
1486     }
1487 
1488     return 0;
1489 }
1490 
skip_header_chunk(EXRContext * s)1491 static void skip_header_chunk(EXRContext *s)
1492 {
1493     GetByteContext *gb = &s->gb;
1494 
1495     while (bytestream2_get_bytes_left(gb) > 0) {
1496         if (!bytestream2_peek_byte(gb))
1497             break;
1498 
1499         // Process unknown variables
1500         for (int i = 0; i < 2; i++) // value_name and value_type
1501             while (bytestream2_get_byte(gb) != 0);
1502 
1503         // Skip variable length
1504         bytestream2_skip(gb, bytestream2_get_le32(gb));
1505     }
1506 }
1507 
1508 /**
1509  * Check if the variable name corresponds to its data type.
1510  *
1511  * @param s              the EXRContext
1512  * @param value_name     name of the variable to check
1513  * @param value_type     type of the variable to check
1514  * @param minimum_length minimum length of the variable data
1515  *
1516  * @return bytes to read containing variable data
1517  *         -1 if variable is not found
1518  *         0 if buffer ended prematurely
1519  */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)1520 static int check_header_variable(EXRContext *s,
1521                                  const char *value_name,
1522                                  const char *value_type,
1523                                  unsigned int minimum_length)
1524 {
1525     GetByteContext *gb = &s->gb;
1526     int var_size = -1;
1527 
1528     if (bytestream2_get_bytes_left(gb) >= minimum_length &&
1529         !strcmp(gb->buffer, value_name)) {
1530         // found value_name, jump to value_type (null terminated strings)
1531         gb->buffer += strlen(value_name) + 1;
1532         if (!strcmp(gb->buffer, value_type)) {
1533             gb->buffer += strlen(value_type) + 1;
1534             var_size = bytestream2_get_le32(gb);
1535             // don't go read past boundaries
1536             if (var_size > bytestream2_get_bytes_left(gb))
1537                 var_size = 0;
1538         } else {
1539             // value_type not found, reset the buffer
1540             gb->buffer -= strlen(value_name) + 1;
1541             av_log(s->avctx, AV_LOG_WARNING,
1542                    "Unknown data type %s for header variable %s.\n",
1543                    value_type, value_name);
1544         }
1545     }
1546 
1547     return var_size;
1548 }
1549 
decode_header(EXRContext * s,AVFrame * frame)1550 static int decode_header(EXRContext *s, AVFrame *frame)
1551 {
1552     AVDictionary *metadata = NULL;
1553     GetByteContext *gb = &s->gb;
1554     int magic_number, version, flags;
1555     int layer_match = 0;
1556     int ret;
1557     int dup_channels = 0;
1558 
1559     s->current_channel_offset = 0;
1560     s->xmin               = ~0;
1561     s->xmax               = ~0;
1562     s->ymin               = ~0;
1563     s->ymax               = ~0;
1564     s->xdelta             = ~0;
1565     s->ydelta             = ~0;
1566     s->channel_offsets[0] = -1;
1567     s->channel_offsets[1] = -1;
1568     s->channel_offsets[2] = -1;
1569     s->channel_offsets[3] = -1;
1570     s->pixel_type         = EXR_UNKNOWN;
1571     s->compression        = EXR_UNKN;
1572     s->nb_channels        = 0;
1573     s->w                  = 0;
1574     s->h                  = 0;
1575     s->tile_attr.xSize    = -1;
1576     s->tile_attr.ySize    = -1;
1577     s->is_tile            = 0;
1578     s->is_multipart       = 0;
1579     s->is_luma            = 0;
1580     s->current_part       = 0;
1581 
1582     if (bytestream2_get_bytes_left(gb) < 10) {
1583         av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1584         return AVERROR_INVALIDDATA;
1585     }
1586 
1587     magic_number = bytestream2_get_le32(gb);
1588     if (magic_number != 20000630) {
1589         /* As per documentation of OpenEXR, it is supposed to be
1590          * int 20000630 little-endian */
1591         av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1592         return AVERROR_INVALIDDATA;
1593     }
1594 
1595     version = bytestream2_get_byte(gb);
1596     if (version != 2) {
1597         avpriv_report_missing_feature(s->avctx, "Version %d", version);
1598         return AVERROR_PATCHWELCOME;
1599     }
1600 
1601     flags = bytestream2_get_le24(gb);
1602 
1603     if (flags & 0x02)
1604         s->is_tile = 1;
1605     if (flags & 0x10)
1606         s->is_multipart = 1;
1607     if (flags & 0x08) {
1608         avpriv_report_missing_feature(s->avctx, "deep data");
1609         return AVERROR_PATCHWELCOME;
1610     }
1611 
1612     // Parse the header
1613     while (bytestream2_get_bytes_left(gb) > 0) {
1614         int var_size;
1615 
1616         while (s->is_multipart && s->current_part < s->selected_part &&
1617                bytestream2_get_bytes_left(gb) > 0) {
1618             if (bytestream2_peek_byte(gb)) {
1619                 skip_header_chunk(s);
1620             } else {
1621                 bytestream2_skip(gb, 1);
1622                 if (!bytestream2_peek_byte(gb))
1623                     break;
1624             }
1625             bytestream2_skip(gb, 1);
1626             s->current_part++;
1627         }
1628 
1629         if (!bytestream2_peek_byte(gb)) {
1630             if (!s->is_multipart)
1631                 break;
1632             bytestream2_skip(gb, 1);
1633             if (s->current_part == s->selected_part) {
1634                 while (bytestream2_get_bytes_left(gb) > 0) {
1635                     if (bytestream2_peek_byte(gb)) {
1636                         skip_header_chunk(s);
1637                     } else {
1638                         bytestream2_skip(gb, 1);
1639                         if (!bytestream2_peek_byte(gb))
1640                             break;
1641                     }
1642                 }
1643             }
1644             if (!bytestream2_peek_byte(gb))
1645                 break;
1646             s->current_part++;
1647         }
1648 
1649         if ((var_size = check_header_variable(s, "channels",
1650                                               "chlist", 38)) >= 0) {
1651             GetByteContext ch_gb;
1652             if (!var_size) {
1653                 ret = AVERROR_INVALIDDATA;
1654                 goto fail;
1655             }
1656 
1657             bytestream2_init(&ch_gb, gb->buffer, var_size);
1658 
1659             while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1660                 EXRChannel *channel;
1661                 enum ExrPixelType current_pixel_type;
1662                 int channel_index = -1;
1663                 int xsub, ysub;
1664 
1665                 if (strcmp(s->layer, "") != 0) {
1666                     if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1667                         layer_match = 1;
1668                         av_log(s->avctx, AV_LOG_INFO,
1669                                "Channel match layer : %s.\n", ch_gb.buffer);
1670                         ch_gb.buffer += strlen(s->layer);
1671                         if (*ch_gb.buffer == '.')
1672                             ch_gb.buffer++;         /* skip dot if not given */
1673                     } else {
1674                         layer_match = 0;
1675                         av_log(s->avctx, AV_LOG_INFO,
1676                                "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1677                     }
1678                 } else {
1679                     layer_match = 1;
1680                 }
1681 
1682                 if (layer_match) { /* only search channel if the layer match is valid */
1683                     if (!av_strcasecmp(ch_gb.buffer, "R") ||
1684                         !av_strcasecmp(ch_gb.buffer, "X") ||
1685                         !av_strcasecmp(ch_gb.buffer, "U")) {
1686                         channel_index = 0;
1687                         s->is_luma = 0;
1688                     } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1689                                !av_strcasecmp(ch_gb.buffer, "V")) {
1690                         channel_index = 1;
1691                         s->is_luma = 0;
1692                     } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1693                         channel_index = 1;
1694                         s->is_luma = 1;
1695                     } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1696                                !av_strcasecmp(ch_gb.buffer, "Z") ||
1697                                !av_strcasecmp(ch_gb.buffer, "W")) {
1698                         channel_index = 2;
1699                         s->is_luma = 0;
1700                     } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1701                         channel_index = 3;
1702                     } else {
1703                         av_log(s->avctx, AV_LOG_WARNING,
1704                                "Unsupported channel %.256s.\n", ch_gb.buffer);
1705                     }
1706                 }
1707 
1708                 /* skip until you get a 0 */
1709                 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1710                        bytestream2_get_byte(&ch_gb))
1711                     continue;
1712 
1713                 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1714                     av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1715                     ret = AVERROR_INVALIDDATA;
1716                     goto fail;
1717                 }
1718 
1719                 current_pixel_type = bytestream2_get_le32(&ch_gb);
1720                 if (current_pixel_type >= EXR_UNKNOWN) {
1721                     avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1722                                                   current_pixel_type);
1723                     ret = AVERROR_PATCHWELCOME;
1724                     goto fail;
1725                 }
1726 
1727                 bytestream2_skip(&ch_gb, 4);
1728                 xsub = bytestream2_get_le32(&ch_gb);
1729                 ysub = bytestream2_get_le32(&ch_gb);
1730 
1731                 if (xsub != 1 || ysub != 1) {
1732                     avpriv_report_missing_feature(s->avctx,
1733                                                   "Subsampling %dx%d",
1734                                                   xsub, ysub);
1735                     ret = AVERROR_PATCHWELCOME;
1736                     goto fail;
1737                 }
1738 
1739                 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1740                     if (s->pixel_type != EXR_UNKNOWN &&
1741                         s->pixel_type != current_pixel_type) {
1742                         av_log(s->avctx, AV_LOG_ERROR,
1743                                "RGB channels not of the same depth.\n");
1744                         ret = AVERROR_INVALIDDATA;
1745                         goto fail;
1746                     }
1747                     s->pixel_type                     = current_pixel_type;
1748                     s->channel_offsets[channel_index] = s->current_channel_offset;
1749                 } else if (channel_index >= 0) {
1750                     av_log(s->avctx, AV_LOG_WARNING,
1751                             "Multiple channels with index %d.\n", channel_index);
1752                     if (++dup_channels > 10) {
1753                         ret = AVERROR_INVALIDDATA;
1754                         goto fail;
1755                     }
1756                 }
1757 
1758                 s->channels = av_realloc(s->channels,
1759                                          ++s->nb_channels * sizeof(EXRChannel));
1760                 if (!s->channels) {
1761                     ret = AVERROR(ENOMEM);
1762                     goto fail;
1763                 }
1764                 channel             = &s->channels[s->nb_channels - 1];
1765                 channel->pixel_type = current_pixel_type;
1766                 channel->xsub       = xsub;
1767                 channel->ysub       = ysub;
1768 
1769                 if (current_pixel_type == EXR_HALF) {
1770                     s->current_channel_offset += 2;
1771                 } else {/* Float or UINT32 */
1772                     s->current_channel_offset += 4;
1773                 }
1774             }
1775 
1776             /* Check if all channels are set with an offset or if the channels
1777              * are causing an overflow  */
1778             if (!s->is_luma) {/* if we expected to have at least 3 channels */
1779                 if (FFMIN3(s->channel_offsets[0],
1780                            s->channel_offsets[1],
1781                            s->channel_offsets[2]) < 0) {
1782                     if (s->channel_offsets[0] < 0)
1783                         av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1784                     if (s->channel_offsets[1] < 0)
1785                         av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1786                     if (s->channel_offsets[2] < 0)
1787                         av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1788                     ret = AVERROR_INVALIDDATA;
1789                     goto fail;
1790                 }
1791             }
1792 
1793             // skip one last byte and update main gb
1794             gb->buffer = ch_gb.buffer + 1;
1795             continue;
1796         } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1797                                                      31)) >= 0) {
1798             int xmin, ymin, xmax, ymax;
1799             if (!var_size) {
1800                 ret = AVERROR_INVALIDDATA;
1801                 goto fail;
1802             }
1803 
1804             xmin   = bytestream2_get_le32(gb);
1805             ymin   = bytestream2_get_le32(gb);
1806             xmax   = bytestream2_get_le32(gb);
1807             ymax   = bytestream2_get_le32(gb);
1808 
1809             if (xmin > xmax || ymin > ymax ||
1810                 ymax == INT_MAX || xmax == INT_MAX ||
1811                 (unsigned)xmax - xmin >= INT_MAX ||
1812                 (unsigned)ymax - ymin >= INT_MAX) {
1813                 ret = AVERROR_INVALIDDATA;
1814                 goto fail;
1815             }
1816             s->xmin = xmin;
1817             s->xmax = xmax;
1818             s->ymin = ymin;
1819             s->ymax = ymax;
1820             s->xdelta = (s->xmax - s->xmin) + 1;
1821             s->ydelta = (s->ymax - s->ymin) + 1;
1822 
1823             continue;
1824         } else if ((var_size = check_header_variable(s, "displayWindow",
1825                                                      "box2i", 34)) >= 0) {
1826             int32_t sx, sy, dx, dy;
1827 
1828             if (!var_size) {
1829                 ret = AVERROR_INVALIDDATA;
1830                 goto fail;
1831             }
1832 
1833             sx = bytestream2_get_le32(gb);
1834             sy = bytestream2_get_le32(gb);
1835             dx = bytestream2_get_le32(gb);
1836             dy = bytestream2_get_le32(gb);
1837 
1838             s->w = (unsigned)dx - sx + 1;
1839             s->h = (unsigned)dy - sy + 1;
1840 
1841             continue;
1842         } else if ((var_size = check_header_variable(s, "lineOrder",
1843                                                      "lineOrder", 25)) >= 0) {
1844             int line_order;
1845             if (!var_size) {
1846                 ret = AVERROR_INVALIDDATA;
1847                 goto fail;
1848             }
1849 
1850             line_order = bytestream2_get_byte(gb);
1851             av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1852             if (line_order > 2) {
1853                 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1854                 ret = AVERROR_INVALIDDATA;
1855                 goto fail;
1856             }
1857 
1858             continue;
1859         } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1860                                                      "float", 31)) >= 0) {
1861             if (!var_size) {
1862                 ret = AVERROR_INVALIDDATA;
1863                 goto fail;
1864             }
1865 
1866             s->sar = bytestream2_get_le32(gb);
1867 
1868             continue;
1869         } else if ((var_size = check_header_variable(s, "compression",
1870                                                      "compression", 29)) >= 0) {
1871             if (!var_size) {
1872                 ret = AVERROR_INVALIDDATA;
1873                 goto fail;
1874             }
1875 
1876             if (s->compression == EXR_UNKN)
1877                 s->compression = bytestream2_get_byte(gb);
1878             else {
1879                 bytestream2_skip(gb, 1);
1880                 av_log(s->avctx, AV_LOG_WARNING,
1881                        "Found more than one compression attribute.\n");
1882             }
1883 
1884             continue;
1885         } else if ((var_size = check_header_variable(s, "tiles",
1886                                                      "tiledesc", 22)) >= 0) {
1887             char tileLevel;
1888 
1889             if (!s->is_tile)
1890                 av_log(s->avctx, AV_LOG_WARNING,
1891                        "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1892 
1893             s->tile_attr.xSize = bytestream2_get_le32(gb);
1894             s->tile_attr.ySize = bytestream2_get_le32(gb);
1895 
1896             tileLevel = bytestream2_get_byte(gb);
1897             s->tile_attr.level_mode = tileLevel & 0x0f;
1898             s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1899 
1900             if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1901                 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1902                                               s->tile_attr.level_mode);
1903                 ret = AVERROR_PATCHWELCOME;
1904                 goto fail;
1905             }
1906 
1907             if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1908                 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1909                                               s->tile_attr.level_round);
1910                 ret = AVERROR_PATCHWELCOME;
1911                 goto fail;
1912             }
1913 
1914             continue;
1915         } else if ((var_size = check_header_variable(s, "writer",
1916                                                      "string", 1)) >= 0) {
1917             uint8_t key[256] = { 0 };
1918 
1919             bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1920             av_dict_set(&metadata, "writer", key, 0);
1921 
1922             continue;
1923         } else if ((var_size = check_header_variable(s, "framesPerSecond",
1924                                                      "rational", 33)) >= 0) {
1925             if (!var_size) {
1926                 ret = AVERROR_INVALIDDATA;
1927                 goto fail;
1928             }
1929 
1930             s->avctx->framerate.num = bytestream2_get_le32(gb);
1931             s->avctx->framerate.den = bytestream2_get_le32(gb);
1932 
1933             continue;
1934         } else if ((var_size = check_header_variable(s, "chunkCount",
1935                                                      "int", 23)) >= 0) {
1936 
1937             s->chunk_count = bytestream2_get_le32(gb);
1938 
1939             continue;
1940         } else if ((var_size = check_header_variable(s, "type",
1941                                                      "string", 16)) >= 0) {
1942             uint8_t key[256] = { 0 };
1943 
1944             bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1945             if (strncmp("scanlineimage", key, var_size) &&
1946                 strncmp("tiledimage", key, var_size)) {
1947                 ret = AVERROR_PATCHWELCOME;
1948                 goto fail;
1949             }
1950 
1951             continue;
1952         } else if ((var_size = check_header_variable(s, "preview",
1953                                                      "preview", 16)) >= 0) {
1954             uint32_t pw = bytestream2_get_le32(gb);
1955             uint32_t ph = bytestream2_get_le32(gb);
1956             uint64_t psize = pw * ph;
1957             if (psize > INT64_MAX / 4) {
1958                 ret = AVERROR_INVALIDDATA;
1959                 goto fail;
1960             }
1961             psize *= 4;
1962 
1963             if ((int64_t)psize >= bytestream2_get_bytes_left(gb)) {
1964                 ret = AVERROR_INVALIDDATA;
1965                 goto fail;
1966             }
1967 
1968             bytestream2_skip(gb, psize);
1969 
1970             continue;
1971         }
1972 
1973         // Check if there are enough bytes for a header
1974         if (bytestream2_get_bytes_left(gb) <= 9) {
1975             av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1976             ret = AVERROR_INVALIDDATA;
1977             goto fail;
1978         }
1979 
1980         // Process unknown variables
1981         {
1982             uint8_t name[256] = { 0 };
1983             uint8_t type[256] = { 0 };
1984             uint8_t value[256] = { 0 };
1985             int i = 0, size;
1986 
1987             while (bytestream2_get_bytes_left(gb) > 0 &&
1988                    bytestream2_peek_byte(gb) && i < 255) {
1989                 name[i++] = bytestream2_get_byte(gb);
1990             }
1991 
1992             bytestream2_skip(gb, 1);
1993             i = 0;
1994             while (bytestream2_get_bytes_left(gb) > 0 &&
1995                    bytestream2_peek_byte(gb) && i < 255) {
1996                 type[i++] = bytestream2_get_byte(gb);
1997             }
1998             bytestream2_skip(gb, 1);
1999             size = bytestream2_get_le32(gb);
2000 
2001             bytestream2_get_buffer(gb, value, FFMIN(sizeof(value) - 1, size));
2002             if (!strcmp(type, "string"))
2003                 av_dict_set(&metadata, name, value, 0);
2004         }
2005     }
2006 
2007     if (s->compression == EXR_UNKN) {
2008         av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
2009         ret = AVERROR_INVALIDDATA;
2010         goto fail;
2011     }
2012 
2013     if (s->is_tile) {
2014         if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
2015             av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
2016             ret = AVERROR_INVALIDDATA;
2017             goto fail;
2018         }
2019     }
2020 
2021     if (bytestream2_get_bytes_left(gb) <= 0) {
2022         av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
2023         ret = AVERROR_INVALIDDATA;
2024         goto fail;
2025     }
2026 
2027     frame->metadata = metadata;
2028 
2029     // aaand we are done
2030     bytestream2_skip(gb, 1);
2031     return 0;
2032 fail:
2033     av_dict_free(&metadata);
2034     return ret;
2035 }
2036 
decode_frame(AVCodecContext * avctx,AVFrame * picture,int * got_frame,AVPacket * avpkt)2037 static int decode_frame(AVCodecContext *avctx, AVFrame *picture,
2038                         int *got_frame, AVPacket *avpkt)
2039 {
2040     EXRContext *s = avctx->priv_data;
2041     GetByteContext *gb = &s->gb;
2042     uint8_t *ptr;
2043 
2044     int i, y, ret, ymax;
2045     int planes;
2046     int out_line_size;
2047     int nb_blocks;   /* nb scanline or nb tile */
2048     uint64_t start_offset_table;
2049     uint64_t start_next_scanline;
2050     PutByteContext offset_table_writer;
2051 
2052     bytestream2_init(gb, avpkt->data, avpkt->size);
2053 
2054     if ((ret = decode_header(s, picture)) < 0)
2055         return ret;
2056 
2057     if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) &&
2058         s->pixel_type == EXR_HALF) {
2059         s->current_channel_offset *= 2;
2060         for (int i = 0; i < 4; i++)
2061             s->channel_offsets[i] *= 2;
2062     }
2063 
2064     switch (s->pixel_type) {
2065     case EXR_FLOAT:
2066     case EXR_HALF:
2067         if (s->channel_offsets[3] >= 0) {
2068             if (!s->is_luma) {
2069                 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2070             } else {
2071                 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
2072                 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2073             }
2074         } else {
2075             if (!s->is_luma) {
2076                 avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
2077             } else {
2078                 avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
2079             }
2080         }
2081         break;
2082     case EXR_UINT:
2083         if (s->channel_offsets[3] >= 0) {
2084             if (!s->is_luma) {
2085                 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
2086             } else {
2087                 avctx->pix_fmt = AV_PIX_FMT_YA16;
2088             }
2089         } else {
2090             if (!s->is_luma) {
2091                 avctx->pix_fmt = AV_PIX_FMT_RGB48;
2092             } else {
2093                 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
2094             }
2095         }
2096         break;
2097     default:
2098         av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
2099         return AVERROR_INVALIDDATA;
2100     }
2101 
2102     if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
2103         avctx->color_trc = s->apply_trc_type;
2104 
2105     switch (s->compression) {
2106     case EXR_RAW:
2107     case EXR_RLE:
2108     case EXR_ZIP1:
2109         s->scan_lines_per_block = 1;
2110         break;
2111     case EXR_PXR24:
2112     case EXR_ZIP16:
2113         s->scan_lines_per_block = 16;
2114         break;
2115     case EXR_PIZ:
2116     case EXR_B44:
2117     case EXR_B44A:
2118     case EXR_DWAA:
2119         s->scan_lines_per_block = 32;
2120         break;
2121     case EXR_DWAB:
2122         s->scan_lines_per_block = 256;
2123         break;
2124     default:
2125         avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
2126         return AVERROR_PATCHWELCOME;
2127     }
2128 
2129     /* Verify the xmin, xmax, ymin and ymax before setting the actual image size.
2130      * It's possible for the data window can larger or outside the display window */
2131     if (s->xmin > s->xmax  || s->ymin > s->ymax ||
2132         s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF) {
2133         av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
2134         return AVERROR_INVALIDDATA;
2135     }
2136 
2137     if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
2138         return ret;
2139 
2140     ff_set_sar(s->avctx, av_d2q(av_int2float(s->sar), 255));
2141 
2142     s->desc          = av_pix_fmt_desc_get(avctx->pix_fmt);
2143     if (!s->desc)
2144         return AVERROR_INVALIDDATA;
2145 
2146     if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
2147         planes           = s->desc->nb_components;
2148         out_line_size    = avctx->width * 4;
2149     } else {
2150         planes           = 1;
2151         out_line_size    = avctx->width * 2 * s->desc->nb_components;
2152     }
2153 
2154     if (s->is_tile) {
2155         nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
2156         ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
2157     } else { /* scanline */
2158         nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
2159         s->scan_lines_per_block;
2160     }
2161 
2162     if ((ret = ff_thread_get_buffer(avctx, picture, 0)) < 0)
2163         return ret;
2164 
2165     if (bytestream2_get_bytes_left(gb)/8 < nb_blocks)
2166         return AVERROR_INVALIDDATA;
2167 
2168     // check offset table and recreate it if need
2169     if (!s->is_tile && bytestream2_peek_le64(gb) == 0) {
2170         av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
2171 
2172         start_offset_table = bytestream2_tell(gb);
2173         start_next_scanline = start_offset_table + nb_blocks * 8;
2174         bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
2175 
2176         for (y = 0; y < nb_blocks; y++) {
2177             /* write offset of prev scanline in offset table */
2178             bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2179 
2180             /* get len of next scanline */
2181             bytestream2_seek(gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
2182             start_next_scanline += (bytestream2_get_le32(gb) + 8);
2183         }
2184         bytestream2_seek(gb, start_offset_table, SEEK_SET);
2185     }
2186 
2187     // save pointer we are going to use in decode_block
2188     s->buf      = avpkt->data;
2189     s->buf_size = avpkt->size;
2190 
2191     // Zero out the start if ymin is not 0
2192     for (i = 0; i < planes; i++) {
2193         ptr = picture->data[i];
2194         for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
2195             memset(ptr, 0, out_line_size);
2196             ptr += picture->linesize[i];
2197         }
2198     }
2199 
2200     s->picture = picture;
2201 
2202     avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
2203 
2204     ymax = FFMAX(0, s->ymax + 1);
2205     // Zero out the end if ymax+1 is not h
2206     if (ymax < avctx->height)
2207         for (i = 0; i < planes; i++) {
2208             ptr = picture->data[i] + (ymax * picture->linesize[i]);
2209             for (y = ymax; y < avctx->height; y++) {
2210                 memset(ptr, 0, out_line_size);
2211                 ptr += picture->linesize[i];
2212             }
2213         }
2214 
2215     picture->pict_type = AV_PICTURE_TYPE_I;
2216     *got_frame = 1;
2217 
2218     return avpkt->size;
2219 }
2220 
decode_init(AVCodecContext * avctx)2221 static av_cold int decode_init(AVCodecContext *avctx)
2222 {
2223     EXRContext *s = avctx->priv_data;
2224     uint32_t i;
2225     union av_intfloat32 t;
2226     float one_gamma = 1.0f / s->gamma;
2227     avpriv_trc_function trc_func = NULL;
2228 
2229     half2float_table(s->mantissatable, s->exponenttable, s->offsettable);
2230 
2231     s->avctx              = avctx;
2232 
2233     ff_exrdsp_init(&s->dsp);
2234 
2235 #if HAVE_BIGENDIAN
2236     ff_bswapdsp_init(&s->bbdsp);
2237 #endif
2238 
2239     trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
2240     if (trc_func) {
2241         for (i = 0; i < 65536; ++i) {
2242             t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2243             t.f = trc_func(t.f);
2244             s->gamma_table[i] = t;
2245         }
2246     } else {
2247         if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
2248             for (i = 0; i < 65536; ++i) {
2249                 s->gamma_table[i].i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2250             }
2251         } else {
2252             for (i = 0; i < 65536; ++i) {
2253                 t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2254                 /* If negative value we reuse half value */
2255                 if (t.f <= 0.0f) {
2256                     s->gamma_table[i] = t;
2257                 } else {
2258                     t.f = powf(t.f, one_gamma);
2259                     s->gamma_table[i] = t;
2260                 }
2261             }
2262         }
2263     }
2264 
2265     // allocate thread data, used for non EXR_RAW compression types
2266     s->thread_data = av_calloc(avctx->thread_count, sizeof(*s->thread_data));
2267     if (!s->thread_data)
2268         return AVERROR(ENOMEM);
2269 
2270     return 0;
2271 }
2272 
decode_end(AVCodecContext * avctx)2273 static av_cold int decode_end(AVCodecContext *avctx)
2274 {
2275     EXRContext *s = avctx->priv_data;
2276     int i;
2277     for (i = 0; i < avctx->thread_count; i++) {
2278         EXRThreadData *td = &s->thread_data[i];
2279         av_freep(&td->uncompressed_data);
2280         av_freep(&td->tmp);
2281         av_freep(&td->bitmap);
2282         av_freep(&td->lut);
2283         av_freep(&td->he);
2284         av_freep(&td->freq);
2285         av_freep(&td->ac_data);
2286         av_freep(&td->dc_data);
2287         av_freep(&td->rle_data);
2288         av_freep(&td->rle_raw_data);
2289         ff_free_vlc(&td->vlc);
2290     }
2291 
2292     av_freep(&s->thread_data);
2293     av_freep(&s->channels);
2294 
2295     return 0;
2296 }
2297 
2298 #define OFFSET(x) offsetof(EXRContext, x)
2299 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2300 static const AVOption options[] = {
2301     { "layer", "Set the decoding layer", OFFSET(layer),
2302         AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
2303     { "part",  "Set the decoding part", OFFSET(selected_part),
2304         AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VD },
2305     { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
2306         AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
2307 
2308     // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
2309     { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
2310         AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
2311     { "bt709",        "BT.709",           0,
2312         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 },        INT_MIN, INT_MAX, VD, "apply_trc_type"},
2313     { "gamma",        "gamma",            0,
2314         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
2315     { "gamma22",      "BT.470 M",         0,
2316         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
2317     { "gamma28",      "BT.470 BG",        0,
2318         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
2319     { "smpte170m",    "SMPTE 170 M",      0,
2320         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2321     { "smpte240m",    "SMPTE 240 M",      0,
2322         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2323     { "linear",       "Linear",           0,
2324         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR },       INT_MIN, INT_MAX, VD, "apply_trc_type"},
2325     { "log",          "Log",              0,
2326         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG },          INT_MIN, INT_MAX, VD, "apply_trc_type"},
2327     { "log_sqrt",     "Log square root",  0,
2328         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT },     INT_MIN, INT_MAX, VD, "apply_trc_type"},
2329     { "iec61966_2_4", "IEC 61966-2-4",    0,
2330         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2331     { "bt1361",       "BT.1361",          0,
2332         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG },   INT_MIN, INT_MAX, VD, "apply_trc_type"},
2333     { "iec61966_2_1", "IEC 61966-2-1",    0,
2334         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2335     { "bt2020_10bit", "BT.2020 - 10 bit", 0,
2336         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2337     { "bt2020_12bit", "BT.2020 - 12 bit", 0,
2338         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2339     { "smpte2084",    "SMPTE ST 2084",    0,
2340         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
2341     { "smpte428_1",   "SMPTE ST 428-1",   0,
2342         AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2343 
2344     { NULL },
2345 };
2346 
2347 static const AVClass exr_class = {
2348     .class_name = "EXR",
2349     .item_name  = av_default_item_name,
2350     .option     = options,
2351     .version    = LIBAVUTIL_VERSION_INT,
2352 };
2353 
2354 const FFCodec ff_exr_decoder = {
2355     .p.name           = "exr",
2356     .p.long_name      = NULL_IF_CONFIG_SMALL("OpenEXR image"),
2357     .p.type           = AVMEDIA_TYPE_VIDEO,
2358     .p.id             = AV_CODEC_ID_EXR,
2359     .priv_data_size   = sizeof(EXRContext),
2360     .init             = decode_init,
2361     .close            = decode_end,
2362     FF_CODEC_DECODE_CB(decode_frame),
2363     .p.capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
2364                         AV_CODEC_CAP_SLICE_THREADS,
2365     .caps_internal    = FF_CODEC_CAP_INIT_THREADSAFE,
2366     .p.priv_class     = &exr_class,
2367 };
2368