1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct seq_file;
67 struct sighand_struct;
68 struct signal_struct;
69 struct task_delay_info;
70 struct task_group;
71 struct user_event_mm;
72
73 /*
74 * Task state bitmask. NOTE! These bits are also
75 * encoded in fs/proc/array.c: get_task_state().
76 *
77 * We have two separate sets of flags: task->__state
78 * is about runnability, while task->exit_state are
79 * about the task exiting. Confusing, but this way
80 * modifying one set can't modify the other one by
81 * mistake.
82 */
83
84 /* Used in tsk->__state: */
85 #define TASK_RUNNING 0x00000000
86 #define TASK_INTERRUPTIBLE 0x00000001
87 #define TASK_UNINTERRUPTIBLE 0x00000002
88 #define __TASK_STOPPED 0x00000004
89 #define __TASK_TRACED 0x00000008
90 /* Used in tsk->exit_state: */
91 #define EXIT_DEAD 0x00000010
92 #define EXIT_ZOMBIE 0x00000020
93 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
94 /* Used in tsk->__state again: */
95 #define TASK_PARKED 0x00000040
96 #define TASK_DEAD 0x00000080
97 #define TASK_WAKEKILL 0x00000100
98 #define TASK_WAKING 0x00000200
99 #define TASK_NOLOAD 0x00000400
100 #define TASK_NEW 0x00000800
101 #define TASK_RTLOCK_WAIT 0x00001000
102 #define TASK_FREEZABLE 0x00002000
103 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 #define TASK_FROZEN 0x00008000
105 #define TASK_STATE_MAX 0x00010000
106
107 #define TASK_ANY (TASK_STATE_MAX-1)
108
109 /*
110 * DO NOT ADD ANY NEW USERS !
111 */
112 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113
114 /* Convenience macros for the sake of set_current_state: */
115 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
117 #define TASK_TRACED __TASK_TRACED
118
119 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120
121 /* Convenience macros for the sake of wake_up(): */
122 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123
124 /* get_task_state(): */
125 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 TASK_PARKED)
129
130 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
131
132 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135
136 /*
137 * Special states are those that do not use the normal wait-loop pattern. See
138 * the comment with set_special_state().
139 */
140 #define is_special_task_state(state) \
141 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142
143 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 # define debug_normal_state_change(state_value) \
145 do { \
146 WARN_ON_ONCE(is_special_task_state(state_value)); \
147 current->task_state_change = _THIS_IP_; \
148 } while (0)
149
150 # define debug_special_state_change(state_value) \
151 do { \
152 WARN_ON_ONCE(!is_special_task_state(state_value)); \
153 current->task_state_change = _THIS_IP_; \
154 } while (0)
155
156 # define debug_rtlock_wait_set_state() \
157 do { \
158 current->saved_state_change = current->task_state_change;\
159 current->task_state_change = _THIS_IP_; \
160 } while (0)
161
162 # define debug_rtlock_wait_restore_state() \
163 do { \
164 current->task_state_change = current->saved_state_change;\
165 } while (0)
166
167 #else
168 # define debug_normal_state_change(cond) do { } while (0)
169 # define debug_special_state_change(cond) do { } while (0)
170 # define debug_rtlock_wait_set_state() do { } while (0)
171 # define debug_rtlock_wait_restore_state() do { } while (0)
172 #endif
173
174 /*
175 * set_current_state() includes a barrier so that the write of current->__state
176 * is correctly serialised wrt the caller's subsequent test of whether to
177 * actually sleep:
178 *
179 * for (;;) {
180 * set_current_state(TASK_UNINTERRUPTIBLE);
181 * if (CONDITION)
182 * break;
183 *
184 * schedule();
185 * }
186 * __set_current_state(TASK_RUNNING);
187 *
188 * If the caller does not need such serialisation (because, for instance, the
189 * CONDITION test and condition change and wakeup are under the same lock) then
190 * use __set_current_state().
191 *
192 * The above is typically ordered against the wakeup, which does:
193 *
194 * CONDITION = 1;
195 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
196 *
197 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198 * accessing p->__state.
199 *
200 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
201 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203 *
204 * However, with slightly different timing the wakeup TASK_RUNNING store can
205 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206 * a problem either because that will result in one extra go around the loop
207 * and our @cond test will save the day.
208 *
209 * Also see the comments of try_to_wake_up().
210 */
211 #define __set_current_state(state_value) \
212 do { \
213 debug_normal_state_change((state_value)); \
214 WRITE_ONCE(current->__state, (state_value)); \
215 } while (0)
216
217 #define set_current_state(state_value) \
218 do { \
219 debug_normal_state_change((state_value)); \
220 smp_store_mb(current->__state, (state_value)); \
221 } while (0)
222
223 /*
224 * set_special_state() should be used for those states when the blocking task
225 * can not use the regular condition based wait-loop. In that case we must
226 * serialize against wakeups such that any possible in-flight TASK_RUNNING
227 * stores will not collide with our state change.
228 */
229 #define set_special_state(state_value) \
230 do { \
231 unsigned long flags; /* may shadow */ \
232 \
233 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
234 debug_special_state_change((state_value)); \
235 WRITE_ONCE(current->__state, (state_value)); \
236 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
237 } while (0)
238
239 /*
240 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241 *
242 * RT's spin/rwlock substitutions are state preserving. The state of the
243 * task when blocking on the lock is saved in task_struct::saved_state and
244 * restored after the lock has been acquired. These operations are
245 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246 * lock related wakeups while the task is blocked on the lock are
247 * redirected to operate on task_struct::saved_state to ensure that these
248 * are not dropped. On restore task_struct::saved_state is set to
249 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250 *
251 * The lock operation looks like this:
252 *
253 * current_save_and_set_rtlock_wait_state();
254 * for (;;) {
255 * if (try_lock())
256 * break;
257 * raw_spin_unlock_irq(&lock->wait_lock);
258 * schedule_rtlock();
259 * raw_spin_lock_irq(&lock->wait_lock);
260 * set_current_state(TASK_RTLOCK_WAIT);
261 * }
262 * current_restore_rtlock_saved_state();
263 */
264 #define current_save_and_set_rtlock_wait_state() \
265 do { \
266 lockdep_assert_irqs_disabled(); \
267 raw_spin_lock(¤t->pi_lock); \
268 current->saved_state = current->__state; \
269 debug_rtlock_wait_set_state(); \
270 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
271 raw_spin_unlock(¤t->pi_lock); \
272 } while (0);
273
274 #define current_restore_rtlock_saved_state() \
275 do { \
276 lockdep_assert_irqs_disabled(); \
277 raw_spin_lock(¤t->pi_lock); \
278 debug_rtlock_wait_restore_state(); \
279 WRITE_ONCE(current->__state, current->saved_state); \
280 current->saved_state = TASK_RUNNING; \
281 raw_spin_unlock(¤t->pi_lock); \
282 } while (0);
283
284 #define get_current_state() READ_ONCE(current->__state)
285
286 /*
287 * Define the task command name length as enum, then it can be visible to
288 * BPF programs.
289 */
290 enum {
291 TASK_COMM_LEN = 16,
292 };
293 enum task_event {
294 PUT_PREV_TASK = 0,
295 PICK_NEXT_TASK = 1,
296 TASK_WAKE = 2,
297 TASK_MIGRATE = 3,
298 TASK_UPDATE = 4,
299 IRQ_UPDATE = 5,
300 };
301
302 /* Note: this need to be in sync with migrate_type_names array */
303 enum migrate_types {
304 GROUP_TO_RQ,
305 RQ_TO_GROUP,
306 };
307
308 #ifdef CONFIG_CPU_ISOLATION_OPT
309 extern int sched_isolate_count(const cpumask_t *mask, bool include_offline);
310 extern int sched_isolate_cpu(int cpu);
311 extern int sched_unisolate_cpu(int cpu);
312 extern int sched_unisolate_cpu_unlocked(int cpu);
313 #else
sched_isolate_count(const cpumask_t * mask,bool include_offline)314 static inline int sched_isolate_count(const cpumask_t *mask,
315 bool include_offline)
316 {
317 cpumask_t count_mask;
318
319 if (include_offline)
320 cpumask_andnot(&count_mask, mask, cpu_online_mask);
321 else
322 return 0;
323
324 return cpumask_weight(&count_mask);
325 }
326
sched_isolate_cpu(int cpu)327 static inline int sched_isolate_cpu(int cpu)
328 {
329 return 0;
330 }
331
sched_unisolate_cpu(int cpu)332 static inline int sched_unisolate_cpu(int cpu)
333 {
334 return 0;
335 }
336
sched_unisolate_cpu_unlocked(int cpu)337 static inline int sched_unisolate_cpu_unlocked(int cpu)
338 {
339 return 0;
340 }
341 #endif
342
343 extern void scheduler_tick(void);
344
345 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
346
347 extern long schedule_timeout(long timeout);
348 extern long schedule_timeout_interruptible(long timeout);
349 extern long schedule_timeout_killable(long timeout);
350 extern long schedule_timeout_uninterruptible(long timeout);
351 extern long schedule_timeout_idle(long timeout);
352 asmlinkage void schedule(void);
353 extern void schedule_preempt_disabled(void);
354 asmlinkage void preempt_schedule_irq(void);
355 #ifdef CONFIG_PREEMPT_RT
356 extern void schedule_rtlock(void);
357 #endif
358
359 extern int __must_check io_schedule_prepare(void);
360 extern void io_schedule_finish(int token);
361 extern long io_schedule_timeout(long timeout);
362 extern void io_schedule(void);
363
364 /**
365 * struct prev_cputime - snapshot of system and user cputime
366 * @utime: time spent in user mode
367 * @stime: time spent in system mode
368 * @lock: protects the above two fields
369 *
370 * Stores previous user/system time values such that we can guarantee
371 * monotonicity.
372 */
373 struct prev_cputime {
374 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
375 u64 utime;
376 u64 stime;
377 raw_spinlock_t lock;
378 #endif
379 };
380
381 enum vtime_state {
382 /* Task is sleeping or running in a CPU with VTIME inactive: */
383 VTIME_INACTIVE = 0,
384 /* Task is idle */
385 VTIME_IDLE,
386 /* Task runs in kernelspace in a CPU with VTIME active: */
387 VTIME_SYS,
388 /* Task runs in userspace in a CPU with VTIME active: */
389 VTIME_USER,
390 /* Task runs as guests in a CPU with VTIME active: */
391 VTIME_GUEST,
392 };
393
394 struct vtime {
395 seqcount_t seqcount;
396 unsigned long long starttime;
397 enum vtime_state state;
398 unsigned int cpu;
399 u64 utime;
400 u64 stime;
401 u64 gtime;
402 };
403
404 /*
405 * Utilization clamp constraints.
406 * @UCLAMP_MIN: Minimum utilization
407 * @UCLAMP_MAX: Maximum utilization
408 * @UCLAMP_CNT: Utilization clamp constraints count
409 */
410 enum uclamp_id {
411 UCLAMP_MIN = 0,
412 UCLAMP_MAX,
413 UCLAMP_CNT
414 };
415
416 #ifdef CONFIG_SMP
417 extern struct root_domain def_root_domain;
418 extern struct mutex sched_domains_mutex;
419 #endif
420
421 struct sched_param {
422 int sched_priority;
423 };
424
425 struct sched_info {
426 #ifdef CONFIG_SCHED_INFO
427 /* Cumulative counters: */
428
429 /* # of times we have run on this CPU: */
430 unsigned long pcount;
431
432 /* Time spent waiting on a runqueue: */
433 unsigned long long run_delay;
434
435 /* Timestamps: */
436
437 /* When did we last run on a CPU? */
438 unsigned long long last_arrival;
439
440 /* When were we last queued to run? */
441 unsigned long long last_queued;
442
443 #endif /* CONFIG_SCHED_INFO */
444 };
445
446 /*
447 * Integer metrics need fixed point arithmetic, e.g., sched/fair
448 * has a few: load, load_avg, util_avg, freq, and capacity.
449 *
450 * We define a basic fixed point arithmetic range, and then formalize
451 * all these metrics based on that basic range.
452 */
453 # define SCHED_FIXEDPOINT_SHIFT 10
454 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
455
456 /* Increase resolution of cpu_capacity calculations */
457 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
458 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
459
460 struct load_weight {
461 unsigned long weight;
462 u32 inv_weight;
463 };
464
465 /**
466 * struct util_est - Estimation utilization of FAIR tasks
467 * @enqueued: instantaneous estimated utilization of a task/cpu
468 * @ewma: the Exponential Weighted Moving Average (EWMA)
469 * utilization of a task
470 *
471 * Support data structure to track an Exponential Weighted Moving Average
472 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
473 * average each time a task completes an activation. Sample's weight is chosen
474 * so that the EWMA will be relatively insensitive to transient changes to the
475 * task's workload.
476 *
477 * The enqueued attribute has a slightly different meaning for tasks and cpus:
478 * - task: the task's util_avg at last task dequeue time
479 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
480 * Thus, the util_est.enqueued of a task represents the contribution on the
481 * estimated utilization of the CPU where that task is currently enqueued.
482 *
483 * Only for tasks we track a moving average of the past instantaneous
484 * estimated utilization. This allows to absorb sporadic drops in utilization
485 * of an otherwise almost periodic task.
486 *
487 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
488 * updates. When a task is dequeued, its util_est should not be updated if its
489 * util_avg has not been updated in the meantime.
490 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
491 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
492 * for a task) it is safe to use MSB.
493 */
494 struct util_est {
495 unsigned int enqueued;
496 unsigned int ewma;
497 #define UTIL_EST_WEIGHT_SHIFT 2
498 #define UTIL_AVG_UNCHANGED 0x80000000
499 } __attribute__((__aligned__(sizeof(u64))));
500
501 /*
502 * The load/runnable/util_avg accumulates an infinite geometric series
503 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
504 *
505 * [load_avg definition]
506 *
507 * load_avg = runnable% * scale_load_down(load)
508 *
509 * [runnable_avg definition]
510 *
511 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
512 *
513 * [util_avg definition]
514 *
515 * util_avg = running% * SCHED_CAPACITY_SCALE
516 *
517 * where runnable% is the time ratio that a sched_entity is runnable and
518 * running% the time ratio that a sched_entity is running.
519 *
520 * For cfs_rq, they are the aggregated values of all runnable and blocked
521 * sched_entities.
522 *
523 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
524 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
525 * for computing those signals (see update_rq_clock_pelt())
526 *
527 * N.B., the above ratios (runnable% and running%) themselves are in the
528 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
529 * to as large a range as necessary. This is for example reflected by
530 * util_avg's SCHED_CAPACITY_SCALE.
531 *
532 * [Overflow issue]
533 *
534 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
535 * with the highest load (=88761), always runnable on a single cfs_rq,
536 * and should not overflow as the number already hits PID_MAX_LIMIT.
537 *
538 * For all other cases (including 32-bit kernels), struct load_weight's
539 * weight will overflow first before we do, because:
540 *
541 * Max(load_avg) <= Max(load.weight)
542 *
543 * Then it is the load_weight's responsibility to consider overflow
544 * issues.
545 */
546 struct sched_avg {
547 u64 last_update_time;
548 u64 load_sum;
549 u64 runnable_sum;
550 u32 util_sum;
551 u32 period_contrib;
552 unsigned long load_avg;
553 unsigned long runnable_avg;
554 unsigned long util_avg;
555 struct util_est util_est;
556 } ____cacheline_aligned;
557
558 struct sched_statistics {
559 #ifdef CONFIG_SCHEDSTATS
560 u64 wait_start;
561 u64 wait_max;
562 u64 wait_count;
563 u64 wait_sum;
564 u64 iowait_count;
565 u64 iowait_sum;
566
567 u64 sleep_start;
568 u64 sleep_max;
569 s64 sum_sleep_runtime;
570
571 u64 block_start;
572 u64 block_max;
573 s64 sum_block_runtime;
574
575 s64 exec_max;
576 u64 slice_max;
577
578 u64 nr_migrations_cold;
579 u64 nr_failed_migrations_affine;
580 u64 nr_failed_migrations_running;
581 u64 nr_failed_migrations_hot;
582 u64 nr_forced_migrations;
583
584 u64 nr_wakeups;
585 u64 nr_wakeups_sync;
586 u64 nr_wakeups_migrate;
587 u64 nr_wakeups_local;
588 u64 nr_wakeups_remote;
589 u64 nr_wakeups_affine;
590 u64 nr_wakeups_affine_attempts;
591 u64 nr_wakeups_passive;
592 u64 nr_wakeups_idle;
593
594 #ifdef CONFIG_SCHED_CORE
595 u64 core_forceidle_sum;
596 #endif
597 #endif /* CONFIG_SCHEDSTATS */
598 } ____cacheline_aligned;
599
600 struct sched_entity {
601 /* For load-balancing: */
602 struct load_weight load;
603 struct rb_node run_node;
604 u64 deadline;
605 u64 min_deadline;
606
607 struct list_head group_node;
608 unsigned int on_rq;
609
610 u64 exec_start;
611 u64 sum_exec_runtime;
612 u64 prev_sum_exec_runtime;
613 u64 vruntime;
614 s64 vlag;
615 u64 slice;
616
617 u64 nr_migrations;
618
619 #ifdef CONFIG_FAIR_GROUP_SCHED
620 int depth;
621 struct sched_entity *parent;
622 /* rq on which this entity is (to be) queued: */
623 struct cfs_rq *cfs_rq;
624 /* rq "owned" by this entity/group: */
625 struct cfs_rq *my_q;
626 /* cached value of my_q->h_nr_running */
627 unsigned long runnable_weight;
628 #endif
629
630 #ifdef CONFIG_SCHED_LATENCY_NICE
631 int latency_weight;
632 #endif
633
634 #ifdef CONFIG_SMP
635 /*
636 * Per entity load average tracking.
637 *
638 * Put into separate cache line so it does not
639 * collide with read-mostly values above.
640 */
641 struct sched_avg avg;
642 #endif
643 };
644
645 #ifdef CONFIG_SCHED_WALT
646 extern void sched_exit(struct task_struct *p);
647 extern int sched_set_init_task_load(struct task_struct *p, int init_load_pct);
648 extern u32 sched_get_init_task_load(struct task_struct *p);
649 extern void free_task_load_ptrs(struct task_struct *p);
650 #define RAVG_HIST_SIZE_MAX 5
651 struct ravg {
652 /*
653 * 'mark_start' marks the beginning of an event (task waking up, task
654 * starting to execute, task being preempted) within a window
655 *
656 * 'sum' represents how runnable a task has been within current
657 * window. It incorporates both running time and wait time and is
658 * frequency scaled.
659 *
660 * 'sum_history' keeps track of history of 'sum' seen over previous
661 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
662 * ignored.
663 *
664 * 'demand' represents maximum sum seen over previous
665 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
666 * demand for tasks.
667 *
668 * 'curr_window_cpu' represents task's contribution to cpu busy time on
669 * various CPUs in the current window
670 *
671 * 'prev_window_cpu' represents task's contribution to cpu busy time on
672 * various CPUs in the previous window
673 *
674 * 'curr_window' represents the sum of all entries in curr_window_cpu
675 *
676 * 'prev_window' represents the sum of all entries in prev_window_cpu
677 *
678 */
679 u64 mark_start;
680 u32 sum, demand;
681 u32 sum_history[RAVG_HIST_SIZE_MAX];
682 u32 *curr_window_cpu, *prev_window_cpu;
683 u32 curr_window, prev_window;
684 u16 active_windows;
685 u16 demand_scaled;
686 };
687 #else
sched_exit(struct task_struct * p)688 static inline void sched_exit(struct task_struct *p) { }
free_task_load_ptrs(struct task_struct * p)689 static inline void free_task_load_ptrs(struct task_struct *p) { }
690 #endif /* CONFIG_SCHED_WALT */
691
692 struct sched_rt_entity {
693 struct list_head run_list;
694 unsigned long timeout;
695 unsigned long watchdog_stamp;
696 unsigned int time_slice;
697 unsigned short on_rq;
698 unsigned short on_list;
699
700 struct sched_rt_entity *back;
701 #ifdef CONFIG_RT_GROUP_SCHED
702 struct sched_rt_entity *parent;
703 /* rq on which this entity is (to be) queued: */
704 struct rt_rq *rt_rq;
705 /* rq "owned" by this entity/group: */
706 struct rt_rq *my_q;
707 #endif
708 } __randomize_layout;
709
710 struct sched_dl_entity {
711 struct rb_node rb_node;
712
713 /*
714 * Original scheduling parameters. Copied here from sched_attr
715 * during sched_setattr(), they will remain the same until
716 * the next sched_setattr().
717 */
718 u64 dl_runtime; /* Maximum runtime for each instance */
719 u64 dl_deadline; /* Relative deadline of each instance */
720 u64 dl_period; /* Separation of two instances (period) */
721 u64 dl_bw; /* dl_runtime / dl_period */
722 u64 dl_density; /* dl_runtime / dl_deadline */
723
724 /*
725 * Actual scheduling parameters. Initialized with the values above,
726 * they are continuously updated during task execution. Note that
727 * the remaining runtime could be < 0 in case we are in overrun.
728 */
729 s64 runtime; /* Remaining runtime for this instance */
730 u64 deadline; /* Absolute deadline for this instance */
731 unsigned int flags; /* Specifying the scheduler behaviour */
732
733 /*
734 * Some bool flags:
735 *
736 * @dl_throttled tells if we exhausted the runtime. If so, the
737 * task has to wait for a replenishment to be performed at the
738 * next firing of dl_timer.
739 *
740 * @dl_yielded tells if task gave up the CPU before consuming
741 * all its available runtime during the last job.
742 *
743 * @dl_non_contending tells if the task is inactive while still
744 * contributing to the active utilization. In other words, it
745 * indicates if the inactive timer has been armed and its handler
746 * has not been executed yet. This flag is useful to avoid race
747 * conditions between the inactive timer handler and the wakeup
748 * code.
749 *
750 * @dl_overrun tells if the task asked to be informed about runtime
751 * overruns.
752 */
753 unsigned int dl_throttled : 1;
754 unsigned int dl_yielded : 1;
755 unsigned int dl_non_contending : 1;
756 unsigned int dl_overrun : 1;
757
758 /*
759 * Bandwidth enforcement timer. Each -deadline task has its
760 * own bandwidth to be enforced, thus we need one timer per task.
761 */
762 struct hrtimer dl_timer;
763
764 /*
765 * Inactive timer, responsible for decreasing the active utilization
766 * at the "0-lag time". When a -deadline task blocks, it contributes
767 * to GRUB's active utilization until the "0-lag time", hence a
768 * timer is needed to decrease the active utilization at the correct
769 * time.
770 */
771 struct hrtimer inactive_timer;
772
773 #ifdef CONFIG_RT_MUTEXES
774 /*
775 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
776 * pi_se points to the donor, otherwise points to the dl_se it belongs
777 * to (the original one/itself).
778 */
779 struct sched_dl_entity *pi_se;
780 #endif
781 };
782
783 #ifdef CONFIG_UCLAMP_TASK
784 /* Number of utilization clamp buckets (shorter alias) */
785 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
786
787 /*
788 * Utilization clamp for a scheduling entity
789 * @value: clamp value "assigned" to a se
790 * @bucket_id: bucket index corresponding to the "assigned" value
791 * @active: the se is currently refcounted in a rq's bucket
792 * @user_defined: the requested clamp value comes from user-space
793 *
794 * The bucket_id is the index of the clamp bucket matching the clamp value
795 * which is pre-computed and stored to avoid expensive integer divisions from
796 * the fast path.
797 *
798 * The active bit is set whenever a task has got an "effective" value assigned,
799 * which can be different from the clamp value "requested" from user-space.
800 * This allows to know a task is refcounted in the rq's bucket corresponding
801 * to the "effective" bucket_id.
802 *
803 * The user_defined bit is set whenever a task has got a task-specific clamp
804 * value requested from userspace, i.e. the system defaults apply to this task
805 * just as a restriction. This allows to relax default clamps when a less
806 * restrictive task-specific value has been requested, thus allowing to
807 * implement a "nice" semantic. For example, a task running with a 20%
808 * default boost can still drop its own boosting to 0%.
809 */
810 struct uclamp_se {
811 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
812 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
813 unsigned int active : 1;
814 unsigned int user_defined : 1;
815 };
816 #endif /* CONFIG_UCLAMP_TASK */
817
818 union rcu_special {
819 struct {
820 u8 blocked;
821 u8 need_qs;
822 u8 exp_hint; /* Hint for performance. */
823 u8 need_mb; /* Readers need smp_mb(). */
824 } b; /* Bits. */
825 u32 s; /* Set of bits. */
826 };
827
828 enum perf_event_task_context {
829 perf_invalid_context = -1,
830 perf_hw_context = 0,
831 perf_sw_context,
832 perf_nr_task_contexts,
833 };
834
835 struct wake_q_node {
836 struct wake_q_node *next;
837 };
838
839 struct kmap_ctrl {
840 #ifdef CONFIG_KMAP_LOCAL
841 int idx;
842 pte_t pteval[KM_MAX_IDX];
843 #endif
844 };
845
846 struct task_struct {
847 #ifdef CONFIG_THREAD_INFO_IN_TASK
848 /*
849 * For reasons of header soup (see current_thread_info()), this
850 * must be the first element of task_struct.
851 */
852 struct thread_info thread_info;
853 #endif
854 unsigned int __state;
855
856 #ifdef CONFIG_PREEMPT_RT
857 /* saved state for "spinlock sleepers" */
858 unsigned int saved_state;
859 #endif
860
861 /*
862 * This begins the randomizable portion of task_struct. Only
863 * scheduling-critical items should be added above here.
864 */
865 randomized_struct_fields_start
866
867 void *stack;
868 refcount_t usage;
869 /* Per task flags (PF_*), defined further below: */
870 unsigned int flags;
871 unsigned int ptrace;
872
873 #ifdef CONFIG_SMP
874 int on_cpu;
875 struct __call_single_node wake_entry;
876 unsigned int wakee_flips;
877 unsigned long wakee_flip_decay_ts;
878 struct task_struct *last_wakee;
879
880 /*
881 * recent_used_cpu is initially set as the last CPU used by a task
882 * that wakes affine another task. Waker/wakee relationships can
883 * push tasks around a CPU where each wakeup moves to the next one.
884 * Tracking a recently used CPU allows a quick search for a recently
885 * used CPU that may be idle.
886 */
887 int recent_used_cpu;
888 int wake_cpu;
889 #endif
890 int on_rq;
891
892 int prio;
893 int static_prio;
894 int normal_prio;
895 unsigned int rt_priority;
896 #ifdef CONFIG_SCHED_LATENCY_NICE
897 int latency_prio;
898 #endif
899
900 struct sched_entity se;
901 struct sched_rt_entity rt;
902 #ifdef CONFIG_SCHED_WALT
903 struct ravg ravg;
904 /*
905 * 'init_load_pct' represents the initial task load assigned to children
906 * of this task
907 */
908 u32 init_load_pct;
909 u64 last_sleep_ts;
910 #endif
911 struct sched_dl_entity dl;
912 const struct sched_class *sched_class;
913
914 #ifdef CONFIG_SCHED_CORE
915 struct rb_node core_node;
916 unsigned long core_cookie;
917 unsigned int core_occupation;
918 #endif
919
920 #ifdef CONFIG_SCHED_RTG
921 int rtg_depth;
922 struct related_thread_group *grp;
923 struct list_head grp_list;
924 #endif
925
926 #ifdef CONFIG_CGROUP_SCHED
927 struct task_group *sched_task_group;
928 #endif
929
930 #ifdef CONFIG_UCLAMP_TASK
931 /*
932 * Clamp values requested for a scheduling entity.
933 * Must be updated with task_rq_lock() held.
934 */
935 struct uclamp_se uclamp_req[UCLAMP_CNT];
936 /*
937 * Effective clamp values used for a scheduling entity.
938 * Must be updated with task_rq_lock() held.
939 */
940 struct uclamp_se uclamp[UCLAMP_CNT];
941 #endif
942
943 struct sched_statistics stats;
944
945 #ifdef CONFIG_PREEMPT_NOTIFIERS
946 /* List of struct preempt_notifier: */
947 struct hlist_head preempt_notifiers;
948 #endif
949
950 #ifdef CONFIG_BLK_DEV_IO_TRACE
951 unsigned int btrace_seq;
952 #endif
953
954 unsigned int policy;
955 int nr_cpus_allowed;
956 const cpumask_t *cpus_ptr;
957 cpumask_t *user_cpus_ptr;
958 cpumask_t cpus_mask;
959 void *migration_pending;
960 #ifdef CONFIG_SMP
961 unsigned short migration_disabled;
962 #endif
963 unsigned short migration_flags;
964
965 #ifdef CONFIG_PREEMPT_RCU
966 int rcu_read_lock_nesting;
967 union rcu_special rcu_read_unlock_special;
968 struct list_head rcu_node_entry;
969 struct rcu_node *rcu_blocked_node;
970 #endif /* #ifdef CONFIG_PREEMPT_RCU */
971
972 #ifdef CONFIG_TASKS_RCU
973 unsigned long rcu_tasks_nvcsw;
974 u8 rcu_tasks_holdout;
975 u8 rcu_tasks_idx;
976 int rcu_tasks_idle_cpu;
977 struct list_head rcu_tasks_holdout_list;
978 int rcu_tasks_exit_cpu;
979 struct list_head rcu_tasks_exit_list;
980 #endif /* #ifdef CONFIG_TASKS_RCU */
981
982 #ifdef CONFIG_TASKS_TRACE_RCU
983 int trc_reader_nesting;
984 int trc_ipi_to_cpu;
985 union rcu_special trc_reader_special;
986 struct list_head trc_holdout_list;
987 struct list_head trc_blkd_node;
988 int trc_blkd_cpu;
989 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
990
991 struct sched_info sched_info;
992
993 struct list_head tasks;
994 #ifdef CONFIG_SMP
995 struct plist_node pushable_tasks;
996 struct rb_node pushable_dl_tasks;
997 #endif
998
999 struct mm_struct *mm;
1000 struct mm_struct *active_mm;
1001
1002 int exit_state;
1003 int exit_code;
1004 int exit_signal;
1005 /* The signal sent when the parent dies: */
1006 int pdeath_signal;
1007 /* JOBCTL_*, siglock protected: */
1008 unsigned long jobctl;
1009
1010 /* Used for emulating ABI behavior of previous Linux versions: */
1011 unsigned int personality;
1012
1013 /* Scheduler bits, serialized by scheduler locks: */
1014 unsigned sched_reset_on_fork:1;
1015 unsigned sched_contributes_to_load:1;
1016 unsigned sched_migrated:1;
1017 unsigned sched_task_hot:1;
1018
1019 /* Force alignment to the next boundary: */
1020 unsigned :0;
1021
1022 /* Unserialized, strictly 'current' */
1023
1024 /*
1025 * This field must not be in the scheduler word above due to wakelist
1026 * queueing no longer being serialized by p->on_cpu. However:
1027 *
1028 * p->XXX = X; ttwu()
1029 * schedule() if (p->on_rq && ..) // false
1030 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
1031 * deactivate_task() ttwu_queue_wakelist())
1032 * p->on_rq = 0; p->sched_remote_wakeup = Y;
1033 *
1034 * guarantees all stores of 'current' are visible before
1035 * ->sched_remote_wakeup gets used, so it can be in this word.
1036 */
1037 unsigned sched_remote_wakeup:1;
1038
1039 /* Bit to tell LSMs we're in execve(): */
1040 unsigned in_execve:1;
1041 unsigned in_iowait:1;
1042 #ifndef TIF_RESTORE_SIGMASK
1043 unsigned restore_sigmask:1;
1044 #endif
1045 #ifdef CONFIG_MEMCG
1046 unsigned in_user_fault:1;
1047 #endif
1048 #ifdef CONFIG_LRU_GEN
1049 /* whether the LRU algorithm may apply to this access */
1050 unsigned in_lru_fault:1;
1051 #endif
1052 #ifdef CONFIG_COMPAT_BRK
1053 unsigned brk_randomized:1;
1054 #endif
1055 #ifdef CONFIG_CGROUPS
1056 /* disallow userland-initiated cgroup migration */
1057 unsigned no_cgroup_migration:1;
1058 /* task is frozen/stopped (used by the cgroup freezer) */
1059 unsigned frozen:1;
1060 #endif
1061 #ifdef CONFIG_BLK_CGROUP
1062 unsigned use_memdelay:1;
1063 #endif
1064 #ifdef CONFIG_PSI
1065 /* Stalled due to lack of memory */
1066 unsigned in_memstall:1;
1067 #endif
1068 #ifdef CONFIG_PAGE_OWNER
1069 /* Used by page_owner=on to detect recursion in page tracking. */
1070 unsigned in_page_owner:1;
1071 #endif
1072 #ifdef CONFIG_EVENTFD
1073 /* Recursion prevention for eventfd_signal() */
1074 unsigned in_eventfd:1;
1075 #endif
1076 #ifdef CONFIG_IOMMU_SVA
1077 unsigned pasid_activated:1;
1078 #endif
1079 #ifdef CONFIG_CPU_SUP_INTEL
1080 unsigned reported_split_lock:1;
1081 #endif
1082 #ifdef CONFIG_TASK_DELAY_ACCT
1083 /* delay due to memory thrashing */
1084 unsigned in_thrashing:1;
1085 #endif
1086
1087 unsigned long atomic_flags; /* Flags requiring atomic access. */
1088
1089 struct restart_block restart_block;
1090
1091 pid_t pid;
1092 pid_t tgid;
1093
1094 #ifdef CONFIG_STACKPROTECTOR
1095 /* Canary value for the -fstack-protector GCC feature: */
1096 unsigned long stack_canary;
1097 #endif
1098 /*
1099 * Pointers to the (original) parent process, youngest child, younger sibling,
1100 * older sibling, respectively. (p->father can be replaced with
1101 * p->real_parent->pid)
1102 */
1103
1104 /* Real parent process: */
1105 struct task_struct __rcu *real_parent;
1106
1107 /* Recipient of SIGCHLD, wait4() reports: */
1108 struct task_struct __rcu *parent;
1109
1110 /*
1111 * Children/sibling form the list of natural children:
1112 */
1113 struct list_head children;
1114 struct list_head sibling;
1115 struct task_struct *group_leader;
1116
1117 /*
1118 * 'ptraced' is the list of tasks this task is using ptrace() on.
1119 *
1120 * This includes both natural children and PTRACE_ATTACH targets.
1121 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1122 */
1123 struct list_head ptraced;
1124 struct list_head ptrace_entry;
1125
1126 /* PID/PID hash table linkage. */
1127 struct pid *thread_pid;
1128 struct hlist_node pid_links[PIDTYPE_MAX];
1129 struct list_head thread_group;
1130 struct list_head thread_node;
1131
1132 struct completion *vfork_done;
1133
1134 /* CLONE_CHILD_SETTID: */
1135 int __user *set_child_tid;
1136
1137 /* CLONE_CHILD_CLEARTID: */
1138 int __user *clear_child_tid;
1139
1140 /* PF_KTHREAD | PF_IO_WORKER */
1141 void *worker_private;
1142
1143 u64 utime;
1144 u64 stime;
1145 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1146 u64 utimescaled;
1147 u64 stimescaled;
1148 #endif
1149 u64 gtime;
1150 struct prev_cputime prev_cputime;
1151 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1152 struct vtime vtime;
1153 #endif
1154
1155 #ifdef CONFIG_NO_HZ_FULL
1156 atomic_t tick_dep_mask;
1157 #endif
1158 /* Context switch counts: */
1159 unsigned long nvcsw;
1160 unsigned long nivcsw;
1161
1162 /* Monotonic time in nsecs: */
1163 u64 start_time;
1164
1165 /* Boot based time in nsecs: */
1166 u64 start_boottime;
1167
1168 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1169 unsigned long min_flt;
1170 unsigned long maj_flt;
1171
1172 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1173 struct posix_cputimers posix_cputimers;
1174
1175 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1176 struct posix_cputimers_work posix_cputimers_work;
1177 #endif
1178
1179 /* Process credentials: */
1180
1181 /* Tracer's credentials at attach: */
1182 const struct cred __rcu *ptracer_cred;
1183
1184 /* Objective and real subjective task credentials (COW): */
1185 const struct cred __rcu *real_cred;
1186
1187 /* Effective (overridable) subjective task credentials (COW): */
1188 const struct cred __rcu *cred;
1189
1190 #ifdef CONFIG_KEYS
1191 /* Cached requested key. */
1192 struct key *cached_requested_key;
1193 #endif
1194
1195 /*
1196 * executable name, excluding path.
1197 *
1198 * - normally initialized setup_new_exec()
1199 * - access it with [gs]et_task_comm()
1200 * - lock it with task_lock()
1201 */
1202 char comm[TASK_COMM_LEN];
1203
1204 struct nameidata *nameidata;
1205
1206 #ifdef CONFIG_SYSVIPC
1207 struct sysv_sem sysvsem;
1208 struct sysv_shm sysvshm;
1209 #endif
1210 #ifdef CONFIG_DETECT_HUNG_TASK
1211 unsigned long last_switch_count;
1212 unsigned long last_switch_time;
1213 #endif
1214 /* Filesystem information: */
1215 struct fs_struct *fs;
1216
1217 /* Open file information: */
1218 struct files_struct *files;
1219
1220 #ifdef CONFIG_IO_URING
1221 struct io_uring_task *io_uring;
1222 #endif
1223
1224 /* Namespaces: */
1225 struct nsproxy *nsproxy;
1226
1227 /* Signal handlers: */
1228 struct signal_struct *signal;
1229 struct sighand_struct __rcu *sighand;
1230 sigset_t blocked;
1231 sigset_t real_blocked;
1232 /* Restored if set_restore_sigmask() was used: */
1233 sigset_t saved_sigmask;
1234 struct sigpending pending;
1235 unsigned long sas_ss_sp;
1236 size_t sas_ss_size;
1237 unsigned int sas_ss_flags;
1238
1239 struct callback_head *task_works;
1240
1241 #ifdef CONFIG_AUDIT
1242 #ifdef CONFIG_AUDITSYSCALL
1243 struct audit_context *audit_context;
1244 #endif
1245 kuid_t loginuid;
1246 unsigned int sessionid;
1247 #endif
1248 struct seccomp seccomp;
1249 struct syscall_user_dispatch syscall_dispatch;
1250
1251 /* Thread group tracking: */
1252 u64 parent_exec_id;
1253 u64 self_exec_id;
1254
1255 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1256 spinlock_t alloc_lock;
1257
1258 /* Protection of the PI data structures: */
1259 raw_spinlock_t pi_lock;
1260
1261 struct wake_q_node wake_q;
1262
1263 #ifdef CONFIG_RT_MUTEXES
1264 /* PI waiters blocked on a rt_mutex held by this task: */
1265 struct rb_root_cached pi_waiters;
1266 /* Updated under owner's pi_lock and rq lock */
1267 struct task_struct *pi_top_task;
1268 /* Deadlock detection and priority inheritance handling: */
1269 struct rt_mutex_waiter *pi_blocked_on;
1270 #endif
1271
1272 #ifdef CONFIG_DEBUG_MUTEXES
1273 /* Mutex deadlock detection: */
1274 struct mutex_waiter *blocked_on;
1275 #endif
1276
1277 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1278 int non_block_count;
1279 #endif
1280
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 struct irqtrace_events irqtrace;
1283 unsigned int hardirq_threaded;
1284 u64 hardirq_chain_key;
1285 int softirqs_enabled;
1286 int softirq_context;
1287 int irq_config;
1288 #endif
1289 #ifdef CONFIG_PREEMPT_RT
1290 int softirq_disable_cnt;
1291 #endif
1292
1293 #ifdef CONFIG_LOCKDEP
1294 # define MAX_LOCK_DEPTH 48UL
1295 u64 curr_chain_key;
1296 int lockdep_depth;
1297 unsigned int lockdep_recursion;
1298 struct held_lock held_locks[MAX_LOCK_DEPTH];
1299 #endif
1300
1301 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1302 unsigned int in_ubsan;
1303 #endif
1304
1305 /* Journalling filesystem info: */
1306 void *journal_info;
1307
1308 /* Stacked block device info: */
1309 struct bio_list *bio_list;
1310
1311 /* Stack plugging: */
1312 struct blk_plug *plug;
1313
1314 /* VM state: */
1315 struct reclaim_state *reclaim_state;
1316
1317 struct io_context *io_context;
1318
1319 #ifdef CONFIG_COMPACTION
1320 struct capture_control *capture_control;
1321 #endif
1322 /* Ptrace state: */
1323 unsigned long ptrace_message;
1324 kernel_siginfo_t *last_siginfo;
1325
1326 struct task_io_accounting ioac;
1327 #ifdef CONFIG_PSI
1328 /* Pressure stall state */
1329 unsigned int psi_flags;
1330 #endif
1331 #ifdef CONFIG_TASK_XACCT
1332 /* Accumulated RSS usage: */
1333 u64 acct_rss_mem1;
1334 /* Accumulated virtual memory usage: */
1335 u64 acct_vm_mem1;
1336 /* stime + utime since last update: */
1337 u64 acct_timexpd;
1338 #endif
1339 #ifdef CONFIG_CPUSETS
1340 /* Protected by ->alloc_lock: */
1341 nodemask_t mems_allowed;
1342 /* Sequence number to catch updates: */
1343 seqcount_spinlock_t mems_allowed_seq;
1344 int cpuset_mem_spread_rotor;
1345 int cpuset_slab_spread_rotor;
1346 #endif
1347 #ifdef CONFIG_CGROUPS
1348 /* Control Group info protected by css_set_lock: */
1349 struct css_set __rcu *cgroups;
1350 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1351 struct list_head cg_list;
1352 #endif
1353 #ifdef CONFIG_X86_CPU_RESCTRL
1354 u32 closid;
1355 u32 rmid;
1356 #endif
1357 #ifdef CONFIG_FUTEX
1358 struct robust_list_head __user *robust_list;
1359 #ifdef CONFIG_COMPAT
1360 struct compat_robust_list_head __user *compat_robust_list;
1361 #endif
1362 struct list_head pi_state_list;
1363 struct futex_pi_state *pi_state_cache;
1364 struct mutex futex_exit_mutex;
1365 unsigned int futex_state;
1366 #endif
1367 #ifdef CONFIG_PERF_EVENTS
1368 struct perf_event_context *perf_event_ctxp;
1369 struct mutex perf_event_mutex;
1370 struct list_head perf_event_list;
1371 #endif
1372 #ifdef CONFIG_DEBUG_PREEMPT
1373 unsigned long preempt_disable_ip;
1374 #endif
1375 #ifdef CONFIG_NUMA
1376 /* Protected by alloc_lock: */
1377 struct mempolicy *mempolicy;
1378 short il_prev;
1379 short pref_node_fork;
1380 #endif
1381 #ifdef CONFIG_NUMA_BALANCING
1382 int numa_scan_seq;
1383 unsigned int numa_scan_period;
1384 unsigned int numa_scan_period_max;
1385 int numa_preferred_nid;
1386 unsigned long numa_migrate_retry;
1387 /* Migration stamp: */
1388 u64 node_stamp;
1389 u64 last_task_numa_placement;
1390 u64 last_sum_exec_runtime;
1391 struct callback_head numa_work;
1392
1393 /*
1394 * This pointer is only modified for current in syscall and
1395 * pagefault context (and for tasks being destroyed), so it can be read
1396 * from any of the following contexts:
1397 * - RCU read-side critical section
1398 * - current->numa_group from everywhere
1399 * - task's runqueue locked, task not running
1400 */
1401 struct numa_group __rcu *numa_group;
1402
1403 /*
1404 * numa_faults is an array split into four regions:
1405 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1406 * in this precise order.
1407 *
1408 * faults_memory: Exponential decaying average of faults on a per-node
1409 * basis. Scheduling placement decisions are made based on these
1410 * counts. The values remain static for the duration of a PTE scan.
1411 * faults_cpu: Track the nodes the process was running on when a NUMA
1412 * hinting fault was incurred.
1413 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1414 * during the current scan window. When the scan completes, the counts
1415 * in faults_memory and faults_cpu decay and these values are copied.
1416 */
1417 unsigned long *numa_faults;
1418 unsigned long total_numa_faults;
1419
1420 /*
1421 * numa_faults_locality tracks if faults recorded during the last
1422 * scan window were remote/local or failed to migrate. The task scan
1423 * period is adapted based on the locality of the faults with different
1424 * weights depending on whether they were shared or private faults
1425 */
1426 unsigned long numa_faults_locality[3];
1427
1428 unsigned long numa_pages_migrated;
1429 #endif /* CONFIG_NUMA_BALANCING */
1430
1431 #ifdef CONFIG_RSEQ
1432 struct rseq __user *rseq;
1433 u32 rseq_len;
1434 u32 rseq_sig;
1435 /*
1436 * RmW on rseq_event_mask must be performed atomically
1437 * with respect to preemption.
1438 */
1439 unsigned long rseq_event_mask;
1440 #endif
1441
1442 #ifdef CONFIG_SCHED_MM_CID
1443 int mm_cid; /* Current cid in mm */
1444 int last_mm_cid; /* Most recent cid in mm */
1445 int migrate_from_cpu;
1446 int mm_cid_active; /* Whether cid bitmap is active */
1447 struct callback_head cid_work;
1448 #endif
1449
1450 struct tlbflush_unmap_batch tlb_ubc;
1451
1452 /* Cache last used pipe for splice(): */
1453 struct pipe_inode_info *splice_pipe;
1454
1455 struct page_frag task_frag;
1456
1457 #ifdef CONFIG_TASK_DELAY_ACCT
1458 struct task_delay_info *delays;
1459 #endif
1460
1461 #ifdef CONFIG_FAULT_INJECTION
1462 int make_it_fail;
1463 unsigned int fail_nth;
1464 #endif
1465 /*
1466 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1467 * balance_dirty_pages() for a dirty throttling pause:
1468 */
1469 int nr_dirtied;
1470 int nr_dirtied_pause;
1471 /* Start of a write-and-pause period: */
1472 unsigned long dirty_paused_when;
1473
1474 #ifdef CONFIG_LATENCYTOP
1475 int latency_record_count;
1476 struct latency_record latency_record[LT_SAVECOUNT];
1477 #endif
1478 /*
1479 * Time slack values; these are used to round up poll() and
1480 * select() etc timeout values. These are in nanoseconds.
1481 */
1482 u64 timer_slack_ns;
1483 u64 default_timer_slack_ns;
1484
1485 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1486 unsigned int kasan_depth;
1487 #endif
1488
1489 #ifdef CONFIG_KCSAN
1490 struct kcsan_ctx kcsan_ctx;
1491 #ifdef CONFIG_TRACE_IRQFLAGS
1492 struct irqtrace_events kcsan_save_irqtrace;
1493 #endif
1494 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1495 int kcsan_stack_depth;
1496 #endif
1497 #endif
1498
1499 #ifdef CONFIG_KMSAN
1500 struct kmsan_ctx kmsan_ctx;
1501 #endif
1502
1503 #if IS_ENABLED(CONFIG_KUNIT)
1504 struct kunit *kunit_test;
1505 #endif
1506
1507 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1508 /* Index of current stored address in ret_stack: */
1509 int curr_ret_stack;
1510 int curr_ret_depth;
1511
1512 /* Stack of return addresses for return function tracing: */
1513 struct ftrace_ret_stack *ret_stack;
1514
1515 /* Timestamp for last schedule: */
1516 unsigned long long ftrace_timestamp;
1517
1518 /*
1519 * Number of functions that haven't been traced
1520 * because of depth overrun:
1521 */
1522 atomic_t trace_overrun;
1523
1524 /* Pause tracing: */
1525 atomic_t tracing_graph_pause;
1526 #endif
1527
1528 #ifdef CONFIG_TRACING
1529 /* Bitmask and counter of trace recursion: */
1530 unsigned long trace_recursion;
1531 #endif /* CONFIG_TRACING */
1532
1533 #ifdef CONFIG_KCOV
1534 /* See kernel/kcov.c for more details. */
1535
1536 /* Coverage collection mode enabled for this task (0 if disabled): */
1537 unsigned int kcov_mode;
1538
1539 /* Size of the kcov_area: */
1540 unsigned int kcov_size;
1541
1542 /* Buffer for coverage collection: */
1543 void *kcov_area;
1544
1545 /* KCOV descriptor wired with this task or NULL: */
1546 struct kcov *kcov;
1547
1548 /* KCOV common handle for remote coverage collection: */
1549 u64 kcov_handle;
1550
1551 /* KCOV sequence number: */
1552 int kcov_sequence;
1553
1554 /* Collect coverage from softirq context: */
1555 unsigned int kcov_softirq;
1556 #endif
1557
1558 #ifdef CONFIG_MEMCG
1559 struct mem_cgroup *memcg_in_oom;
1560 gfp_t memcg_oom_gfp_mask;
1561 int memcg_oom_order;
1562
1563 /* Number of pages to reclaim on returning to userland: */
1564 unsigned int memcg_nr_pages_over_high;
1565
1566 /* Used by memcontrol for targeted memcg charge: */
1567 struct mem_cgroup *active_memcg;
1568 #endif
1569
1570 #ifdef CONFIG_BLK_CGROUP
1571 struct gendisk *throttle_disk;
1572 #endif
1573
1574 #ifdef CONFIG_UPROBES
1575 struct uprobe_task *utask;
1576 #endif
1577 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1578 unsigned int sequential_io;
1579 unsigned int sequential_io_avg;
1580 #endif
1581 struct kmap_ctrl kmap_ctrl;
1582 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1583 unsigned long task_state_change;
1584 # ifdef CONFIG_PREEMPT_RT
1585 unsigned long saved_state_change;
1586 # endif
1587 #endif
1588 struct rcu_head rcu;
1589 refcount_t rcu_users;
1590 int pagefault_disabled;
1591 #ifdef CONFIG_MMU
1592 struct task_struct *oom_reaper_list;
1593 struct timer_list oom_reaper_timer;
1594 #endif
1595 #ifdef CONFIG_VMAP_STACK
1596 struct vm_struct *stack_vm_area;
1597 #endif
1598 #ifdef CONFIG_THREAD_INFO_IN_TASK
1599 /* A live task holds one reference: */
1600 refcount_t stack_refcount;
1601 #endif
1602 #ifdef CONFIG_LIVEPATCH
1603 int patch_state;
1604 #endif
1605 #ifdef CONFIG_SECURITY
1606 /* Used by LSM modules for access restriction: */
1607 void *security;
1608 #endif
1609 #ifdef CONFIG_BPF_SYSCALL
1610 /* Used by BPF task local storage */
1611 struct bpf_local_storage __rcu *bpf_storage;
1612 /* Used for BPF run context */
1613 struct bpf_run_ctx *bpf_ctx;
1614 #endif
1615
1616 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1617 unsigned long lowest_stack;
1618 unsigned long prev_lowest_stack;
1619 #endif
1620
1621 #ifdef CONFIG_X86_MCE
1622 void __user *mce_vaddr;
1623 __u64 mce_kflags;
1624 u64 mce_addr;
1625 __u64 mce_ripv : 1,
1626 mce_whole_page : 1,
1627 __mce_reserved : 62;
1628 struct callback_head mce_kill_me;
1629 int mce_count;
1630 #endif
1631
1632 #ifdef CONFIG_KRETPROBES
1633 struct llist_head kretprobe_instances;
1634 #endif
1635 #ifdef CONFIG_RETHOOK
1636 struct llist_head rethooks;
1637 #endif
1638
1639 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1640 /*
1641 * If L1D flush is supported on mm context switch
1642 * then we use this callback head to queue kill work
1643 * to kill tasks that are not running on SMT disabled
1644 * cores
1645 */
1646 struct callback_head l1d_flush_kill;
1647 #endif
1648
1649 #ifdef CONFIG_RV
1650 /*
1651 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1652 * If we find justification for more monitors, we can think
1653 * about adding more or developing a dynamic method. So far,
1654 * none of these are justified.
1655 */
1656 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1657 #endif
1658
1659 #ifdef CONFIG_USER_EVENTS
1660 struct user_event_mm *user_event_mm;
1661 #endif
1662
1663 #ifdef CONFIG_ACCESS_TOKENID
1664 u64 token;
1665 u64 ftoken;
1666 #endif
1667
1668 /*
1669 * New fields for task_struct should be added above here, so that
1670 * they are included in the randomized portion of task_struct.
1671 */
1672 randomized_struct_fields_end
1673
1674 /* CPU-specific state of this task: */
1675 struct thread_struct thread;
1676
1677 /*
1678 * WARNING: on x86, 'thread_struct' contains a variable-sized
1679 * structure. It *MUST* be at the end of 'task_struct'.
1680 *
1681 * Do not put anything below here!
1682 */
1683 };
1684
task_pid(struct task_struct * task)1685 static inline struct pid *task_pid(struct task_struct *task)
1686 {
1687 return task->thread_pid;
1688 }
1689
1690 /*
1691 * the helpers to get the task's different pids as they are seen
1692 * from various namespaces
1693 *
1694 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1695 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1696 * current.
1697 * task_xid_nr_ns() : id seen from the ns specified;
1698 *
1699 * see also pid_nr() etc in include/linux/pid.h
1700 */
1701 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1702
task_pid_nr(struct task_struct * tsk)1703 static inline pid_t task_pid_nr(struct task_struct *tsk)
1704 {
1705 return tsk->pid;
1706 }
1707
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1708 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1709 {
1710 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1711 }
1712
task_pid_vnr(struct task_struct * tsk)1713 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1714 {
1715 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1716 }
1717
1718
task_tgid_nr(struct task_struct * tsk)1719 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1720 {
1721 return tsk->tgid;
1722 }
1723
1724 /**
1725 * pid_alive - check that a task structure is not stale
1726 * @p: Task structure to be checked.
1727 *
1728 * Test if a process is not yet dead (at most zombie state)
1729 * If pid_alive fails, then pointers within the task structure
1730 * can be stale and must not be dereferenced.
1731 *
1732 * Return: 1 if the process is alive. 0 otherwise.
1733 */
pid_alive(const struct task_struct * p)1734 static inline int pid_alive(const struct task_struct *p)
1735 {
1736 return p->thread_pid != NULL;
1737 }
1738
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1739 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1740 {
1741 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1742 }
1743
task_pgrp_vnr(struct task_struct * tsk)1744 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1745 {
1746 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1747 }
1748
1749
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1750 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1751 {
1752 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1753 }
1754
task_session_vnr(struct task_struct * tsk)1755 static inline pid_t task_session_vnr(struct task_struct *tsk)
1756 {
1757 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1758 }
1759
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1760 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1761 {
1762 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1763 }
1764
task_tgid_vnr(struct task_struct * tsk)1765 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1766 {
1767 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1768 }
1769
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1770 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1771 {
1772 pid_t pid = 0;
1773
1774 rcu_read_lock();
1775 if (pid_alive(tsk))
1776 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1777 rcu_read_unlock();
1778
1779 return pid;
1780 }
1781
task_ppid_nr(const struct task_struct * tsk)1782 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1783 {
1784 return task_ppid_nr_ns(tsk, &init_pid_ns);
1785 }
1786
1787 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1788 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1789 {
1790 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1791 }
1792
1793 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1794 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1795
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1796 static inline unsigned int __task_state_index(unsigned int tsk_state,
1797 unsigned int tsk_exit_state)
1798 {
1799 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1800
1801 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1802
1803 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1804 state = TASK_REPORT_IDLE;
1805
1806 /*
1807 * We're lying here, but rather than expose a completely new task state
1808 * to userspace, we can make this appear as if the task has gone through
1809 * a regular rt_mutex_lock() call.
1810 * Report frozen tasks as uninterruptible.
1811 */
1812 if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1813 state = TASK_UNINTERRUPTIBLE;
1814
1815 return fls(state);
1816 }
1817
task_state_index(struct task_struct * tsk)1818 static inline unsigned int task_state_index(struct task_struct *tsk)
1819 {
1820 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1821 }
1822
task_index_to_char(unsigned int state)1823 static inline char task_index_to_char(unsigned int state)
1824 {
1825 static const char state_char[] = "RSDTtXZPI";
1826
1827 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1828
1829 return state_char[state];
1830 }
1831
task_state_to_char(struct task_struct * tsk)1832 static inline char task_state_to_char(struct task_struct *tsk)
1833 {
1834 return task_index_to_char(task_state_index(tsk));
1835 }
1836
1837 /**
1838 * is_global_init - check if a task structure is init. Since init
1839 * is free to have sub-threads we need to check tgid.
1840 * @tsk: Task structure to be checked.
1841 *
1842 * Check if a task structure is the first user space task the kernel created.
1843 *
1844 * Return: 1 if the task structure is init. 0 otherwise.
1845 */
is_global_init(struct task_struct * tsk)1846 static inline int is_global_init(struct task_struct *tsk)
1847 {
1848 return task_tgid_nr(tsk) == 1;
1849 }
1850
1851 extern struct pid *cad_pid;
1852
1853 /*
1854 * Per process flags
1855 */
1856 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1857 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1858 #define PF_EXITING 0x00000004 /* Getting shut down */
1859 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1860 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1861 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1862 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1863 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1864 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1865 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1866 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1867 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1868 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1869 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1870 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1871 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1872 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
1873 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1874 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1875 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1876 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1877 * I am cleaning dirty pages from some other bdi. */
1878 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1879 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1880 #define PF__HOLE__00800000 0x00800000
1881 #define PF_FROZEN PF__HOLE__00800000 /* Frozen for system suspend */
1882 #define PF__HOLE__01000000 0x01000000
1883 #define PF__HOLE__02000000 0x02000000
1884 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1885 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1886 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1887 #define PF__HOLE__20000000 0x20000000
1888 #define PF__HOLE__40000000 0x40000000
1889 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1890
1891 /*
1892 * Only the _current_ task can read/write to tsk->flags, but other
1893 * tasks can access tsk->flags in readonly mode for example
1894 * with tsk_used_math (like during threaded core dumping).
1895 * There is however an exception to this rule during ptrace
1896 * or during fork: the ptracer task is allowed to write to the
1897 * child->flags of its traced child (same goes for fork, the parent
1898 * can write to the child->flags), because we're guaranteed the
1899 * child is not running and in turn not changing child->flags
1900 * at the same time the parent does it.
1901 */
1902 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1903 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1904 #define clear_used_math() clear_stopped_child_used_math(current)
1905 #define set_used_math() set_stopped_child_used_math(current)
1906
1907 #define conditional_stopped_child_used_math(condition, child) \
1908 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1909
1910 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1911
1912 #define copy_to_stopped_child_used_math(child) \
1913 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1914
1915 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1916 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1917 #define used_math() tsk_used_math(current)
1918
is_percpu_thread(void)1919 static __always_inline bool is_percpu_thread(void)
1920 {
1921 #ifdef CONFIG_SMP
1922 return (current->flags & PF_NO_SETAFFINITY) &&
1923 (current->nr_cpus_allowed == 1);
1924 #else
1925 return true;
1926 #endif
1927 }
1928
1929 /* Per-process atomic flags. */
1930 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1931 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1932 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1933 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1934 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1935 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1936 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1937 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1938
1939 #define TASK_PFA_TEST(name, func) \
1940 static inline bool task_##func(struct task_struct *p) \
1941 { return test_bit(PFA_##name, &p->atomic_flags); }
1942
1943 #define TASK_PFA_SET(name, func) \
1944 static inline void task_set_##func(struct task_struct *p) \
1945 { set_bit(PFA_##name, &p->atomic_flags); }
1946
1947 #define TASK_PFA_CLEAR(name, func) \
1948 static inline void task_clear_##func(struct task_struct *p) \
1949 { clear_bit(PFA_##name, &p->atomic_flags); }
1950
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1951 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1952 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1953
1954 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1955 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1956 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1957
1958 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1959 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1960 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1961
1962 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1963 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1964 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1965
1966 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1967 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1968 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1969
1970 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1971 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1972
1973 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1974 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1975 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1976
1977 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1978 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1979
1980 static inline void
1981 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1982 {
1983 current->flags &= ~flags;
1984 current->flags |= orig_flags & flags;
1985 }
1986
1987 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1988 extern int task_can_attach(struct task_struct *p);
1989 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1990 extern void dl_bw_free(int cpu, u64 dl_bw);
1991 #ifdef CONFIG_SMP
1992
1993 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1994 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1995
1996 /**
1997 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1998 * @p: the task
1999 * @new_mask: CPU affinity mask
2000 *
2001 * Return: zero if successful, or a negative error code
2002 */
2003 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
2004 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
2005 extern void release_user_cpus_ptr(struct task_struct *p);
2006 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
2007 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
2008 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
2009 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2010 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2011 {
2012 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2013 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2014 {
2015 if (!cpumask_test_cpu(0, new_mask))
2016 return -EINVAL;
2017 return 0;
2018 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2019 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
2020 {
2021 if (src->user_cpus_ptr)
2022 return -EINVAL;
2023 return 0;
2024 }
release_user_cpus_ptr(struct task_struct * p)2025 static inline void release_user_cpus_ptr(struct task_struct *p)
2026 {
2027 WARN_ON(p->user_cpus_ptr);
2028 }
2029
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)2030 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
2031 {
2032 return 0;
2033 }
2034 #endif
2035
2036 extern int yield_to(struct task_struct *p, bool preempt);
2037 extern void set_user_nice(struct task_struct *p, long nice);
2038 extern int task_prio(const struct task_struct *p);
2039
2040 /**
2041 * task_nice - return the nice value of a given task.
2042 * @p: the task in question.
2043 *
2044 * Return: The nice value [ -20 ... 0 ... 19 ].
2045 */
task_nice(const struct task_struct * p)2046 static inline int task_nice(const struct task_struct *p)
2047 {
2048 return PRIO_TO_NICE((p)->static_prio);
2049 }
2050
2051 extern int can_nice(const struct task_struct *p, const int nice);
2052 extern int task_curr(const struct task_struct *p);
2053 extern int idle_cpu(int cpu);
2054 extern int available_idle_cpu(int cpu);
2055 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
2056 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
2057 extern void sched_set_fifo(struct task_struct *p);
2058 extern void sched_set_fifo_low(struct task_struct *p);
2059 extern void sched_set_normal(struct task_struct *p, int nice);
2060 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
2061 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
2062 extern struct task_struct *idle_task(int cpu);
2063
2064 /**
2065 * is_idle_task - is the specified task an idle task?
2066 * @p: the task in question.
2067 *
2068 * Return: 1 if @p is an idle task. 0 otherwise.
2069 */
is_idle_task(const struct task_struct * p)2070 static __always_inline bool is_idle_task(const struct task_struct *p)
2071 {
2072 return !!(p->flags & PF_IDLE);
2073 }
2074
2075 extern struct task_struct *curr_task(int cpu);
2076 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2077
2078 void yield(void);
2079
2080 union thread_union {
2081 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
2082 struct task_struct task;
2083 #endif
2084 #ifndef CONFIG_THREAD_INFO_IN_TASK
2085 struct thread_info thread_info;
2086 #endif
2087 unsigned long stack[THREAD_SIZE/sizeof(long)];
2088 };
2089
2090 #ifndef CONFIG_THREAD_INFO_IN_TASK
2091 extern struct thread_info init_thread_info;
2092 #endif
2093
2094 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
2095
2096 #ifdef CONFIG_THREAD_INFO_IN_TASK
2097 # define task_thread_info(task) (&(task)->thread_info)
2098 #elif !defined(__HAVE_THREAD_FUNCTIONS)
2099 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
2100 #endif
2101
2102 /*
2103 * find a task by one of its numerical ids
2104 *
2105 * find_task_by_pid_ns():
2106 * finds a task by its pid in the specified namespace
2107 * find_task_by_vpid():
2108 * finds a task by its virtual pid
2109 *
2110 * see also find_vpid() etc in include/linux/pid.h
2111 */
2112
2113 extern struct task_struct *find_task_by_vpid(pid_t nr);
2114 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
2115
2116 /*
2117 * find a task by its virtual pid and get the task struct
2118 */
2119 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
2120
2121 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2122 extern int wake_up_process(struct task_struct *tsk);
2123 extern void wake_up_new_task(struct task_struct *tsk);
2124
2125 #ifdef CONFIG_SMP
2126 extern void kick_process(struct task_struct *tsk);
2127 #else
kick_process(struct task_struct * tsk)2128 static inline void kick_process(struct task_struct *tsk) { }
2129 #endif
2130
2131 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2132
set_task_comm(struct task_struct * tsk,const char * from)2133 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2134 {
2135 __set_task_comm(tsk, from, false);
2136 }
2137
2138 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2139 #define get_task_comm(buf, tsk) ({ \
2140 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
2141 __get_task_comm(buf, sizeof(buf), tsk); \
2142 })
2143
2144 #ifdef CONFIG_SMP
scheduler_ipi(void)2145 static __always_inline void scheduler_ipi(void)
2146 {
2147 /*
2148 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2149 * TIF_NEED_RESCHED remotely (for the first time) will also send
2150 * this IPI.
2151 */
2152 preempt_fold_need_resched();
2153 }
2154 #else
scheduler_ipi(void)2155 static inline void scheduler_ipi(void) { }
2156 #endif
2157
2158 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2159
2160 /*
2161 * Set thread flags in other task's structures.
2162 * See asm/thread_info.h for TIF_xxxx flags available:
2163 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2164 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2165 {
2166 set_ti_thread_flag(task_thread_info(tsk), flag);
2167 }
2168
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2169 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2170 {
2171 clear_ti_thread_flag(task_thread_info(tsk), flag);
2172 }
2173
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2174 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2175 bool value)
2176 {
2177 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2178 }
2179
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2180 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2181 {
2182 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2183 }
2184
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2185 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2186 {
2187 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2188 }
2189
test_tsk_thread_flag(struct task_struct * tsk,int flag)2190 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2191 {
2192 return test_ti_thread_flag(task_thread_info(tsk), flag);
2193 }
2194
set_tsk_need_resched(struct task_struct * tsk)2195 static inline void set_tsk_need_resched(struct task_struct *tsk)
2196 {
2197 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2198 }
2199
clear_tsk_need_resched(struct task_struct * tsk)2200 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2201 {
2202 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2203 }
2204
test_tsk_need_resched(struct task_struct * tsk)2205 static inline int test_tsk_need_resched(struct task_struct *tsk)
2206 {
2207 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2208 }
2209
2210 /*
2211 * cond_resched() and cond_resched_lock(): latency reduction via
2212 * explicit rescheduling in places that are safe. The return
2213 * value indicates whether a reschedule was done in fact.
2214 * cond_resched_lock() will drop the spinlock before scheduling,
2215 */
2216 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2217 extern int __cond_resched(void);
2218
2219 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2220
2221 void sched_dynamic_klp_enable(void);
2222 void sched_dynamic_klp_disable(void);
2223
2224 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2225
_cond_resched(void)2226 static __always_inline int _cond_resched(void)
2227 {
2228 return static_call_mod(cond_resched)();
2229 }
2230
2231 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2232
2233 extern int dynamic_cond_resched(void);
2234
_cond_resched(void)2235 static __always_inline int _cond_resched(void)
2236 {
2237 return dynamic_cond_resched();
2238 }
2239
2240 #else /* !CONFIG_PREEMPTION */
2241
_cond_resched(void)2242 static inline int _cond_resched(void)
2243 {
2244 klp_sched_try_switch();
2245 return __cond_resched();
2246 }
2247
2248 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2249
2250 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2251
_cond_resched(void)2252 static inline int _cond_resched(void)
2253 {
2254 klp_sched_try_switch();
2255 return 0;
2256 }
2257
2258 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2259
2260 #define cond_resched() ({ \
2261 __might_resched(__FILE__, __LINE__, 0); \
2262 _cond_resched(); \
2263 })
2264
2265 extern int __cond_resched_lock(spinlock_t *lock);
2266 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2267 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2268
2269 #define MIGHT_RESCHED_RCU_SHIFT 8
2270 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2271
2272 #ifndef CONFIG_PREEMPT_RT
2273 /*
2274 * Non RT kernels have an elevated preempt count due to the held lock,
2275 * but are not allowed to be inside a RCU read side critical section
2276 */
2277 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2278 #else
2279 /*
2280 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2281 * cond_resched*lock() has to take that into account because it checks for
2282 * preempt_count() and rcu_preempt_depth().
2283 */
2284 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2285 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2286 #endif
2287
2288 #define cond_resched_lock(lock) ({ \
2289 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2290 __cond_resched_lock(lock); \
2291 })
2292
2293 #define cond_resched_rwlock_read(lock) ({ \
2294 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2295 __cond_resched_rwlock_read(lock); \
2296 })
2297
2298 #define cond_resched_rwlock_write(lock) ({ \
2299 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2300 __cond_resched_rwlock_write(lock); \
2301 })
2302
cond_resched_rcu(void)2303 static inline void cond_resched_rcu(void)
2304 {
2305 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2306 rcu_read_unlock();
2307 cond_resched();
2308 rcu_read_lock();
2309 #endif
2310 }
2311
2312 #ifdef CONFIG_PREEMPT_DYNAMIC
2313
2314 extern bool preempt_model_none(void);
2315 extern bool preempt_model_voluntary(void);
2316 extern bool preempt_model_full(void);
2317
2318 #else
2319
preempt_model_none(void)2320 static inline bool preempt_model_none(void)
2321 {
2322 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2323 }
preempt_model_voluntary(void)2324 static inline bool preempt_model_voluntary(void)
2325 {
2326 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2327 }
preempt_model_full(void)2328 static inline bool preempt_model_full(void)
2329 {
2330 return IS_ENABLED(CONFIG_PREEMPT);
2331 }
2332
2333 #endif
2334
preempt_model_rt(void)2335 static inline bool preempt_model_rt(void)
2336 {
2337 return IS_ENABLED(CONFIG_PREEMPT_RT);
2338 }
2339
2340 /*
2341 * Does the preemption model allow non-cooperative preemption?
2342 *
2343 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2344 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2345 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2346 * PREEMPT_NONE model.
2347 */
preempt_model_preemptible(void)2348 static inline bool preempt_model_preemptible(void)
2349 {
2350 return preempt_model_full() || preempt_model_rt();
2351 }
2352
2353 /*
2354 * Does a critical section need to be broken due to another
2355 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2356 * but a general need for low latency)
2357 */
spin_needbreak(spinlock_t * lock)2358 static inline int spin_needbreak(spinlock_t *lock)
2359 {
2360 #ifdef CONFIG_PREEMPTION
2361 return spin_is_contended(lock);
2362 #else
2363 return 0;
2364 #endif
2365 }
2366
2367 /*
2368 * Check if a rwlock is contended.
2369 * Returns non-zero if there is another task waiting on the rwlock.
2370 * Returns zero if the lock is not contended or the system / underlying
2371 * rwlock implementation does not support contention detection.
2372 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2373 * for low latency.
2374 */
rwlock_needbreak(rwlock_t * lock)2375 static inline int rwlock_needbreak(rwlock_t *lock)
2376 {
2377 #ifdef CONFIG_PREEMPTION
2378 return rwlock_is_contended(lock);
2379 #else
2380 return 0;
2381 #endif
2382 }
2383
need_resched(void)2384 static __always_inline bool need_resched(void)
2385 {
2386 return unlikely(tif_need_resched());
2387 }
2388
2389 /*
2390 * Wrappers for p->thread_info->cpu access. No-op on UP.
2391 */
2392 #ifdef CONFIG_SMP
2393
task_cpu(const struct task_struct * p)2394 static inline unsigned int task_cpu(const struct task_struct *p)
2395 {
2396 return READ_ONCE(task_thread_info(p)->cpu);
2397 }
2398
2399 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2400
2401 #else
2402
task_cpu(const struct task_struct * p)2403 static inline unsigned int task_cpu(const struct task_struct *p)
2404 {
2405 return 0;
2406 }
2407
set_task_cpu(struct task_struct * p,unsigned int cpu)2408 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2409 {
2410 }
2411
2412 #endif /* CONFIG_SMP */
2413
2414 extern bool sched_task_on_rq(struct task_struct *p);
2415 extern unsigned long get_wchan(struct task_struct *p);
2416 extern struct task_struct *cpu_curr_snapshot(int cpu);
2417
2418 /*
2419 * In order to reduce various lock holder preemption latencies provide an
2420 * interface to see if a vCPU is currently running or not.
2421 *
2422 * This allows us to terminate optimistic spin loops and block, analogous to
2423 * the native optimistic spin heuristic of testing if the lock owner task is
2424 * running or not.
2425 */
2426 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2427 static inline bool vcpu_is_preempted(int cpu)
2428 {
2429 return false;
2430 }
2431 #endif
2432
2433 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2434 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2435
2436 #ifndef TASK_SIZE_OF
2437 #define TASK_SIZE_OF(tsk) TASK_SIZE
2438 #endif
2439
2440 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2441 static inline bool owner_on_cpu(struct task_struct *owner)
2442 {
2443 /*
2444 * As lock holder preemption issue, we both skip spinning if
2445 * task is not on cpu or its cpu is preempted
2446 */
2447 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2448 }
2449
2450 /* Returns effective CPU energy utilization, as seen by the scheduler */
2451 unsigned long sched_cpu_util(int cpu);
2452 #endif /* CONFIG_SMP */
2453
2454 #ifdef CONFIG_RSEQ
2455
2456 /*
2457 * Map the event mask on the user-space ABI enum rseq_cs_flags
2458 * for direct mask checks.
2459 */
2460 enum rseq_event_mask_bits {
2461 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2462 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2463 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2464 };
2465
2466 enum rseq_event_mask {
2467 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2468 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2469 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2470 };
2471
rseq_set_notify_resume(struct task_struct * t)2472 static inline void rseq_set_notify_resume(struct task_struct *t)
2473 {
2474 if (t->rseq)
2475 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2476 }
2477
2478 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2479
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2480 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2481 struct pt_regs *regs)
2482 {
2483 if (current->rseq)
2484 __rseq_handle_notify_resume(ksig, regs);
2485 }
2486
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2487 static inline void rseq_signal_deliver(struct ksignal *ksig,
2488 struct pt_regs *regs)
2489 {
2490 preempt_disable();
2491 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2492 preempt_enable();
2493 rseq_handle_notify_resume(ksig, regs);
2494 }
2495
2496 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2497 static inline void rseq_preempt(struct task_struct *t)
2498 {
2499 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2500 rseq_set_notify_resume(t);
2501 }
2502
2503 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2504 static inline void rseq_migrate(struct task_struct *t)
2505 {
2506 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2507 rseq_set_notify_resume(t);
2508 }
2509
2510 /*
2511 * If parent process has a registered restartable sequences area, the
2512 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2513 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2514 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2515 {
2516 if (clone_flags & CLONE_VM) {
2517 t->rseq = NULL;
2518 t->rseq_len = 0;
2519 t->rseq_sig = 0;
2520 t->rseq_event_mask = 0;
2521 } else {
2522 t->rseq = current->rseq;
2523 t->rseq_len = current->rseq_len;
2524 t->rseq_sig = current->rseq_sig;
2525 t->rseq_event_mask = current->rseq_event_mask;
2526 }
2527 }
2528
rseq_execve(struct task_struct * t)2529 static inline void rseq_execve(struct task_struct *t)
2530 {
2531 t->rseq = NULL;
2532 t->rseq_len = 0;
2533 t->rseq_sig = 0;
2534 t->rseq_event_mask = 0;
2535 }
2536
2537 #else
2538
rseq_set_notify_resume(struct task_struct * t)2539 static inline void rseq_set_notify_resume(struct task_struct *t)
2540 {
2541 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2542 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2543 struct pt_regs *regs)
2544 {
2545 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2546 static inline void rseq_signal_deliver(struct ksignal *ksig,
2547 struct pt_regs *regs)
2548 {
2549 }
rseq_preempt(struct task_struct * t)2550 static inline void rseq_preempt(struct task_struct *t)
2551 {
2552 }
rseq_migrate(struct task_struct * t)2553 static inline void rseq_migrate(struct task_struct *t)
2554 {
2555 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2556 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2557 {
2558 }
rseq_execve(struct task_struct * t)2559 static inline void rseq_execve(struct task_struct *t)
2560 {
2561 }
2562
2563 #endif
2564
2565 #ifdef CONFIG_DEBUG_RSEQ
2566
2567 void rseq_syscall(struct pt_regs *regs);
2568
2569 #else
2570
rseq_syscall(struct pt_regs * regs)2571 static inline void rseq_syscall(struct pt_regs *regs)
2572 {
2573 }
2574
2575 #endif
2576
2577 #ifdef CONFIG_SCHED_CORE
2578 extern void sched_core_free(struct task_struct *tsk);
2579 extern void sched_core_fork(struct task_struct *p);
2580 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2581 unsigned long uaddr);
2582 extern int sched_core_idle_cpu(int cpu);
2583 #else
sched_core_free(struct task_struct * tsk)2584 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2585 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2586 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2587 #endif
2588
2589 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2590
2591 #endif
2592