• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103 #ifdef CONFIG_MEM_PURGEABLE
104 #include <linux/mm_purgeable.h>
105 #endif
106 #include <asm/pgalloc.h>
107 #include <linux/uaccess.h>
108 #include <asm/mmu_context.h>
109 #include <asm/cacheflush.h>
110 #include <asm/tlbflush.h>
111 
112 #include <trace/events/sched.h>
113 
114 #define CREATE_TRACE_POINTS
115 #include <trace/events/task.h>
116 #include <linux/hck/lite_hck_ced.h>
117 
118 /*
119  * Minimum number of threads to boot the kernel
120  */
121 #define MIN_THREADS 20
122 
123 /*
124  * Maximum number of threads
125  */
126 #define MAX_THREADS FUTEX_TID_MASK
127 
128 /*
129  * Protected counters by write_lock_irq(&tasklist_lock)
130  */
131 unsigned long total_forks;	/* Handle normal Linux uptimes. */
132 int nr_threads;			/* The idle threads do not count.. */
133 
134 static int max_threads;		/* tunable limit on nr_threads */
135 
136 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
137 
138 static const char * const resident_page_types[] = {
139 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
140 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
141 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
142 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144 
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146 
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148 
149 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)150 int lockdep_tasklist_lock_is_held(void)
151 {
152 	return lockdep_is_held(&tasklist_lock);
153 }
154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
155 #endif /* #ifdef CONFIG_PROVE_RCU */
156 
nr_processes(void)157 int nr_processes(void)
158 {
159 	int cpu;
160 	int total = 0;
161 
162 	for_each_possible_cpu(cpu)
163 		total += per_cpu(process_counts, cpu);
164 
165 	return total;
166 }
167 
arch_release_task_struct(struct task_struct * tsk)168 void __weak arch_release_task_struct(struct task_struct *tsk)
169 {
170 }
171 
172 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
173 static struct kmem_cache *task_struct_cachep;
174 
alloc_task_struct_node(int node)175 static inline struct task_struct *alloc_task_struct_node(int node)
176 {
177 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
178 }
179 
free_task_struct(struct task_struct * tsk)180 static inline void free_task_struct(struct task_struct *tsk)
181 {
182 	kmem_cache_free(task_struct_cachep, tsk);
183 }
184 #endif
185 
186 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
try_release_thread_stack_to_cache(struct vm_struct * vm)207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
213 			continue;
214 		return true;
215 	}
216 	return false;
217 }
218 
thread_stack_free_rcu(struct rcu_head * rh)219 static void thread_stack_free_rcu(struct rcu_head *rh)
220 {
221 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
222 
223 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
224 		return;
225 
226 	vfree(vm_stack);
227 }
228 
thread_stack_delayed_free(struct task_struct * tsk)229 static void thread_stack_delayed_free(struct task_struct *tsk)
230 {
231 	struct vm_stack *vm_stack = tsk->stack;
232 
233 	vm_stack->stack_vm_area = tsk->stack_vm_area;
234 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
235 }
236 
free_vm_stack_cache(unsigned int cpu)237 static int free_vm_stack_cache(unsigned int cpu)
238 {
239 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
240 	int i;
241 
242 	for (i = 0; i < NR_CACHED_STACKS; i++) {
243 		struct vm_struct *vm_stack = cached_vm_stacks[i];
244 
245 		if (!vm_stack)
246 			continue;
247 
248 		vfree(vm_stack->addr);
249 		cached_vm_stacks[i] = NULL;
250 	}
251 
252 	return 0;
253 }
254 
memcg_charge_kernel_stack(struct vm_struct * vm)255 static int memcg_charge_kernel_stack(struct vm_struct *vm)
256 {
257 	int i;
258 	int ret;
259 	int nr_charged = 0;
260 
261 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
262 
263 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
265 		if (ret)
266 			goto err;
267 		nr_charged++;
268 	}
269 	return 0;
270 err:
271 	for (i = 0; i < nr_charged; i++)
272 		memcg_kmem_uncharge_page(vm->pages[i], 0);
273 	return ret;
274 }
275 
alloc_thread_stack_node(struct task_struct * tsk,int node)276 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
277 {
278 	struct vm_struct *vm;
279 	void *stack;
280 	int i;
281 
282 	for (i = 0; i < NR_CACHED_STACKS; i++) {
283 		struct vm_struct *s;
284 
285 		s = this_cpu_xchg(cached_stacks[i], NULL);
286 
287 		if (!s)
288 			continue;
289 
290 		/* Reset stack metadata. */
291 		kasan_unpoison_range(s->addr, THREAD_SIZE);
292 
293 		stack = kasan_reset_tag(s->addr);
294 
295 		/* Clear stale pointers from reused stack. */
296 		memset(stack, 0, THREAD_SIZE);
297 
298 		if (memcg_charge_kernel_stack(s)) {
299 			vfree(s->addr);
300 			return -ENOMEM;
301 		}
302 
303 		tsk->stack_vm_area = s;
304 		tsk->stack = stack;
305 		return 0;
306 	}
307 
308 	/*
309 	 * Allocated stacks are cached and later reused by new threads,
310 	 * so memcg accounting is performed manually on assigning/releasing
311 	 * stacks to tasks. Drop __GFP_ACCOUNT.
312 	 */
313 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
314 				     VMALLOC_START, VMALLOC_END,
315 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
316 				     PAGE_KERNEL,
317 				     0, node, __builtin_return_address(0));
318 	if (!stack)
319 		return -ENOMEM;
320 
321 	vm = find_vm_area(stack);
322 	if (memcg_charge_kernel_stack(vm)) {
323 		vfree(stack);
324 		return -ENOMEM;
325 	}
326 	/*
327 	 * We can't call find_vm_area() in interrupt context, and
328 	 * free_thread_stack() can be called in interrupt context,
329 	 * so cache the vm_struct.
330 	 */
331 	tsk->stack_vm_area = vm;
332 	stack = kasan_reset_tag(stack);
333 	tsk->stack = stack;
334 	return 0;
335 }
336 
free_thread_stack(struct task_struct * tsk)337 static void free_thread_stack(struct task_struct *tsk)
338 {
339 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
340 		thread_stack_delayed_free(tsk);
341 
342 	tsk->stack = NULL;
343 	tsk->stack_vm_area = NULL;
344 }
345 
346 #  else /* !CONFIG_VMAP_STACK */
347 
thread_stack_free_rcu(struct rcu_head * rh)348 static void thread_stack_free_rcu(struct rcu_head *rh)
349 {
350 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
351 }
352 
thread_stack_delayed_free(struct task_struct * tsk)353 static void thread_stack_delayed_free(struct task_struct *tsk)
354 {
355 	struct rcu_head *rh = tsk->stack;
356 
357 	call_rcu(rh, thread_stack_free_rcu);
358 }
359 
alloc_thread_stack_node(struct task_struct * tsk,int node)360 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
361 {
362 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
363 					     THREAD_SIZE_ORDER);
364 
365 	if (likely(page)) {
366 		tsk->stack = kasan_reset_tag(page_address(page));
367 		return 0;
368 	}
369 	return -ENOMEM;
370 }
371 
free_thread_stack(struct task_struct * tsk)372 static void free_thread_stack(struct task_struct *tsk)
373 {
374 	thread_stack_delayed_free(tsk);
375 	tsk->stack = NULL;
376 }
377 
378 #  endif /* CONFIG_VMAP_STACK */
379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
380 
381 static struct kmem_cache *thread_stack_cache;
382 
thread_stack_free_rcu(struct rcu_head * rh)383 static void thread_stack_free_rcu(struct rcu_head *rh)
384 {
385 	kmem_cache_free(thread_stack_cache, rh);
386 }
387 
thread_stack_delayed_free(struct task_struct * tsk)388 static void thread_stack_delayed_free(struct task_struct *tsk)
389 {
390 	struct rcu_head *rh = tsk->stack;
391 
392 	call_rcu(rh, thread_stack_free_rcu);
393 }
394 
alloc_thread_stack_node(struct task_struct * tsk,int node)395 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
396 {
397 	unsigned long *stack;
398 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
399 	stack = kasan_reset_tag(stack);
400 	tsk->stack = stack;
401 	return stack ? 0 : -ENOMEM;
402 }
403 
free_thread_stack(struct task_struct * tsk)404 static void free_thread_stack(struct task_struct *tsk)
405 {
406 	thread_stack_delayed_free(tsk);
407 	tsk->stack = NULL;
408 }
409 
thread_stack_cache_init(void)410 void thread_stack_cache_init(void)
411 {
412 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
413 					THREAD_SIZE, THREAD_SIZE, 0, 0,
414 					THREAD_SIZE, NULL);
415 	BUG_ON(thread_stack_cache == NULL);
416 }
417 
418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
419 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
420 
alloc_thread_stack_node(struct task_struct * tsk,int node)421 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
422 {
423 	unsigned long *stack;
424 
425 	stack = arch_alloc_thread_stack_node(tsk, node);
426 	tsk->stack = stack;
427 	return stack ? 0 : -ENOMEM;
428 }
429 
free_thread_stack(struct task_struct * tsk)430 static void free_thread_stack(struct task_struct *tsk)
431 {
432 	arch_free_thread_stack(tsk);
433 	tsk->stack = NULL;
434 }
435 
436 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
437 
438 /* SLAB cache for signal_struct structures (tsk->signal) */
439 static struct kmem_cache *signal_cachep;
440 
441 /* SLAB cache for sighand_struct structures (tsk->sighand) */
442 struct kmem_cache *sighand_cachep;
443 
444 /* SLAB cache for files_struct structures (tsk->files) */
445 struct kmem_cache *files_cachep;
446 
447 /* SLAB cache for fs_struct structures (tsk->fs) */
448 struct kmem_cache *fs_cachep;
449 
450 /* SLAB cache for vm_area_struct structures */
451 static struct kmem_cache *vm_area_cachep;
452 
453 /* SLAB cache for mm_struct structures (tsk->mm) */
454 static struct kmem_cache *mm_cachep;
455 
456 #ifdef CONFIG_PER_VMA_LOCK
457 
458 /* SLAB cache for vm_area_struct.lock */
459 static struct kmem_cache *vma_lock_cachep;
460 
vma_lock_alloc(struct vm_area_struct * vma)461 static bool vma_lock_alloc(struct vm_area_struct *vma)
462 {
463 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
464 	if (!vma->vm_lock)
465 		return false;
466 
467 	init_rwsem(&vma->vm_lock->lock);
468 	vma->vm_lock_seq = -1;
469 
470 	return true;
471 }
472 
vma_lock_free(struct vm_area_struct * vma)473 static inline void vma_lock_free(struct vm_area_struct *vma)
474 {
475 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
476 }
477 
478 #else /* CONFIG_PER_VMA_LOCK */
479 
vma_lock_alloc(struct vm_area_struct * vma)480 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)481 static inline void vma_lock_free(struct vm_area_struct *vma) {}
482 
483 #endif /* CONFIG_PER_VMA_LOCK */
484 
vm_area_alloc(struct mm_struct * mm)485 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
486 {
487 	struct vm_area_struct *vma;
488 
489 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
490 	if (!vma)
491 		return NULL;
492 
493 	vma_init(vma, mm);
494 	if (!vma_lock_alloc(vma)) {
495 		kmem_cache_free(vm_area_cachep, vma);
496 		return NULL;
497 	}
498 
499 	return vma;
500 }
501 
vm_area_dup(struct vm_area_struct * orig)502 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
503 {
504 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
505 
506 	if (!new)
507 		return NULL;
508 
509 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
510 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
511 	/*
512 	 * orig->shared.rb may be modified concurrently, but the clone
513 	 * will be reinitialized.
514 	 */
515 	data_race(memcpy(new, orig, sizeof(*new)));
516 	if (!vma_lock_alloc(new)) {
517 		kmem_cache_free(vm_area_cachep, new);
518 		return NULL;
519 	}
520 	INIT_LIST_HEAD(&new->anon_vma_chain);
521 	vma_numab_state_init(new);
522 	dup_anon_vma_name(orig, new);
523 
524 	return new;
525 }
526 
__vm_area_free(struct vm_area_struct * vma)527 void __vm_area_free(struct vm_area_struct *vma)
528 {
529 	vma_numab_state_free(vma);
530 	free_anon_vma_name(vma);
531 	vma_lock_free(vma);
532 	kmem_cache_free(vm_area_cachep, vma);
533 }
534 
535 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)536 static void vm_area_free_rcu_cb(struct rcu_head *head)
537 {
538 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
539 						  vm_rcu);
540 
541 	/* The vma should not be locked while being destroyed. */
542 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
543 	__vm_area_free(vma);
544 }
545 #endif
546 
vm_area_free(struct vm_area_struct * vma)547 void vm_area_free(struct vm_area_struct *vma)
548 {
549 #ifdef CONFIG_PER_VMA_LOCK
550 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
551 #else
552 	__vm_area_free(vma);
553 #endif
554 }
555 
account_kernel_stack(struct task_struct * tsk,int account)556 static void account_kernel_stack(struct task_struct *tsk, int account)
557 {
558 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
559 		struct vm_struct *vm = task_stack_vm_area(tsk);
560 		int i;
561 
562 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
563 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
564 					      account * (PAGE_SIZE / 1024));
565 	} else {
566 		void *stack = task_stack_page(tsk);
567 
568 		/* All stack pages are in the same node. */
569 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
570 				      account * (THREAD_SIZE / 1024));
571 	}
572 }
573 
exit_task_stack_account(struct task_struct * tsk)574 void exit_task_stack_account(struct task_struct *tsk)
575 {
576 	account_kernel_stack(tsk, -1);
577 
578 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
579 		struct vm_struct *vm;
580 		int i;
581 
582 		vm = task_stack_vm_area(tsk);
583 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
584 			memcg_kmem_uncharge_page(vm->pages[i], 0);
585 	}
586 }
587 
release_task_stack(struct task_struct * tsk)588 static void release_task_stack(struct task_struct *tsk)
589 {
590 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
591 		return;  /* Better to leak the stack than to free prematurely */
592 
593 	free_thread_stack(tsk);
594 }
595 
596 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)597 void put_task_stack(struct task_struct *tsk)
598 {
599 	if (refcount_dec_and_test(&tsk->stack_refcount))
600 		release_task_stack(tsk);
601 }
602 #endif
603 
free_task(struct task_struct * tsk)604 void free_task(struct task_struct *tsk)
605 {
606 #ifdef CONFIG_SECCOMP
607 	WARN_ON_ONCE(tsk->seccomp.filter);
608 #endif
609 	release_user_cpus_ptr(tsk);
610 	scs_release(tsk);
611 
612 #ifndef CONFIG_THREAD_INFO_IN_TASK
613 	/*
614 	 * The task is finally done with both the stack and thread_info,
615 	 * so free both.
616 	 */
617 	release_task_stack(tsk);
618 #else
619 	/*
620 	 * If the task had a separate stack allocation, it should be gone
621 	 * by now.
622 	 */
623 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
624 #endif
625 	rt_mutex_debug_task_free(tsk);
626 	ftrace_graph_exit_task(tsk);
627 	arch_release_task_struct(tsk);
628 	if (tsk->flags & PF_KTHREAD)
629 		free_kthread_struct(tsk);
630 	bpf_task_storage_free(tsk);
631 	free_task_struct(tsk);
632 }
633 EXPORT_SYMBOL(free_task);
634 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)635 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
636 {
637 	struct file *exe_file;
638 
639 	exe_file = get_mm_exe_file(oldmm);
640 	RCU_INIT_POINTER(mm->exe_file, exe_file);
641 	/*
642 	 * We depend on the oldmm having properly denied write access to the
643 	 * exe_file already.
644 	 */
645 	if (exe_file && deny_write_access(exe_file))
646 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
647 }
648 
649 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)650 static __latent_entropy int dup_mmap(struct mm_struct *mm,
651 					struct mm_struct *oldmm)
652 {
653 	struct vm_area_struct *mpnt, *tmp;
654 	int retval;
655 	unsigned long charge = 0;
656 	LIST_HEAD(uf);
657 	VMA_ITERATOR(old_vmi, oldmm, 0);
658 	VMA_ITERATOR(vmi, mm, 0);
659 
660 	uprobe_start_dup_mmap();
661 	if (mmap_write_lock_killable(oldmm)) {
662 		retval = -EINTR;
663 		goto fail_uprobe_end;
664 	}
665 	flush_cache_dup_mm(oldmm);
666 	uprobe_dup_mmap(oldmm, mm);
667 	/*
668 	 * Not linked in yet - no deadlock potential:
669 	 */
670 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
671 
672 	/* No ordering required: file already has been exposed. */
673 	dup_mm_exe_file(mm, oldmm);
674 
675 	mm->total_vm = oldmm->total_vm;
676 	mm->data_vm = oldmm->data_vm;
677 	mm->exec_vm = oldmm->exec_vm;
678 	mm->stack_vm = oldmm->stack_vm;
679 
680 	retval = ksm_fork(mm, oldmm);
681 	if (retval)
682 		goto out;
683 	khugepaged_fork(mm, oldmm);
684 
685 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
686 	if (retval)
687 		goto out;
688 
689 	mt_clear_in_rcu(vmi.mas.tree);
690 	for_each_vma(old_vmi, mpnt) {
691 		struct file *file;
692 
693 		vma_start_write(mpnt);
694 		if (mpnt->vm_flags & VM_DONTCOPY) {
695 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
696 			continue;
697 		}
698 		charge = 0;
699 		/*
700 		 * Don't duplicate many vmas if we've been oom-killed (for
701 		 * example)
702 		 */
703 		if (fatal_signal_pending(current)) {
704 			retval = -EINTR;
705 			goto loop_out;
706 		}
707 		if (mpnt->vm_flags & VM_ACCOUNT) {
708 			unsigned long len = vma_pages(mpnt);
709 
710 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
711 				goto fail_nomem;
712 			charge = len;
713 		}
714 		tmp = vm_area_dup(mpnt);
715 		if (!tmp)
716 			goto fail_nomem;
717 		retval = vma_dup_policy(mpnt, tmp);
718 		if (retval)
719 			goto fail_nomem_policy;
720 		tmp->vm_mm = mm;
721 		retval = dup_userfaultfd(tmp, &uf);
722 		if (retval)
723 			goto fail_nomem_anon_vma_fork;
724 		if (tmp->vm_flags & VM_WIPEONFORK) {
725 			/*
726 			 * VM_WIPEONFORK gets a clean slate in the child.
727 			 * Don't prepare anon_vma until fault since we don't
728 			 * copy page for current vma.
729 			 */
730 			tmp->anon_vma = NULL;
731 		} else if (anon_vma_fork(tmp, mpnt))
732 			goto fail_nomem_anon_vma_fork;
733 		vm_flags_clear(tmp, VM_LOCKED_MASK);
734 		file = tmp->vm_file;
735 		if (file) {
736 			struct address_space *mapping = file->f_mapping;
737 
738 			get_file(file);
739 			i_mmap_lock_write(mapping);
740 			if (tmp->vm_flags & VM_SHARED)
741 				mapping_allow_writable(mapping);
742 			flush_dcache_mmap_lock(mapping);
743 			/* insert tmp into the share list, just after mpnt */
744 			vma_interval_tree_insert_after(tmp, mpnt,
745 					&mapping->i_mmap);
746 			flush_dcache_mmap_unlock(mapping);
747 			i_mmap_unlock_write(mapping);
748 		}
749 
750 		/*
751 		 * Copy/update hugetlb private vma information.
752 		 */
753 		if (is_vm_hugetlb_page(tmp))
754 			hugetlb_dup_vma_private(tmp);
755 
756 		/* Link the vma into the MT */
757 		if (vma_iter_bulk_store(&vmi, tmp))
758 			goto fail_nomem_vmi_store;
759 
760 		mm->map_count++;
761 		if (!(tmp->vm_flags & VM_WIPEONFORK))
762 			retval = copy_page_range(tmp, mpnt);
763 
764 		if (tmp->vm_ops && tmp->vm_ops->open)
765 			tmp->vm_ops->open(tmp);
766 
767 		if (retval)
768 			goto loop_out;
769 	}
770 	/* a new mm has just been created */
771 	retval = arch_dup_mmap(oldmm, mm);
772 loop_out:
773 	vma_iter_free(&vmi);
774 	if (!retval)
775 		mt_set_in_rcu(vmi.mas.tree);
776 out:
777 	mmap_write_unlock(mm);
778 	flush_tlb_mm(oldmm);
779 	mmap_write_unlock(oldmm);
780 	dup_userfaultfd_complete(&uf);
781 fail_uprobe_end:
782 	uprobe_end_dup_mmap();
783 	return retval;
784 
785 fail_nomem_vmi_store:
786 	unlink_anon_vmas(tmp);
787 fail_nomem_anon_vma_fork:
788 	mpol_put(vma_policy(tmp));
789 fail_nomem_policy:
790 	vm_area_free(tmp);
791 fail_nomem:
792 	retval = -ENOMEM;
793 	vm_unacct_memory(charge);
794 	goto loop_out;
795 }
796 
mm_alloc_pgd(struct mm_struct * mm)797 static inline int mm_alloc_pgd(struct mm_struct *mm)
798 {
799 #ifdef CONFIG_MEM_PURGEABLE
800 	mm_init_uxpgd(mm);
801 #endif
802 	mm->pgd = pgd_alloc(mm);
803 	if (unlikely(!mm->pgd))
804 		return -ENOMEM;
805 	return 0;
806 }
807 
mm_free_pgd(struct mm_struct * mm)808 static inline void mm_free_pgd(struct mm_struct *mm)
809 {
810 	pgd_free(mm, mm->pgd);
811 #ifdef CONFIG_MEM_PURGEABLE
812 	mm_clear_uxpgd(mm);
813 #endif
814 }
815 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)816 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
817 {
818 	mmap_write_lock(oldmm);
819 	dup_mm_exe_file(mm, oldmm);
820 	mmap_write_unlock(oldmm);
821 	return 0;
822 }
823 #define mm_alloc_pgd(mm)	(0)
824 #define mm_free_pgd(mm)
825 #endif /* CONFIG_MMU */
826 
check_mm(struct mm_struct * mm)827 static void check_mm(struct mm_struct *mm)
828 {
829 	int i;
830 
831 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
832 			 "Please make sure 'struct resident_page_types[]' is updated as well");
833 
834 	for (i = 0; i < NR_MM_COUNTERS; i++) {
835 		long x = percpu_counter_sum(&mm->rss_stat[i]);
836 
837 		if (unlikely(x))
838 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
839 				 mm, resident_page_types[i], x);
840 	}
841 
842 	if (mm_pgtables_bytes(mm))
843 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
844 				mm_pgtables_bytes(mm));
845 
846 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
847 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
848 #endif
849 }
850 
851 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
852 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
853 
do_check_lazy_tlb(void * arg)854 static void do_check_lazy_tlb(void *arg)
855 {
856 	struct mm_struct *mm = arg;
857 
858 	WARN_ON_ONCE(current->active_mm == mm);
859 }
860 
do_shoot_lazy_tlb(void * arg)861 static void do_shoot_lazy_tlb(void *arg)
862 {
863 	struct mm_struct *mm = arg;
864 
865 	if (current->active_mm == mm) {
866 		WARN_ON_ONCE(current->mm);
867 		current->active_mm = &init_mm;
868 		switch_mm(mm, &init_mm, current);
869 	}
870 }
871 
cleanup_lazy_tlbs(struct mm_struct * mm)872 static void cleanup_lazy_tlbs(struct mm_struct *mm)
873 {
874 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
875 		/*
876 		 * In this case, lazy tlb mms are refounted and would not reach
877 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
878 		 */
879 		return;
880 	}
881 
882 	/*
883 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
884 	 * requires lazy mm users to switch to another mm when the refcount
885 	 * drops to zero, before the mm is freed. This requires IPIs here to
886 	 * switch kernel threads to init_mm.
887 	 *
888 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
889 	 * switch with the final userspace teardown TLB flush which leaves the
890 	 * mm lazy on this CPU but no others, reducing the need for additional
891 	 * IPIs here. There are cases where a final IPI is still required here,
892 	 * such as the final mmdrop being performed on a different CPU than the
893 	 * one exiting, or kernel threads using the mm when userspace exits.
894 	 *
895 	 * IPI overheads have not found to be expensive, but they could be
896 	 * reduced in a number of possible ways, for example (roughly
897 	 * increasing order of complexity):
898 	 * - The last lazy reference created by exit_mm() could instead switch
899 	 *   to init_mm, however it's probable this will run on the same CPU
900 	 *   immediately afterwards, so this may not reduce IPIs much.
901 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
902 	 * - CPUs store active_mm where it can be remotely checked without a
903 	 *   lock, to filter out false-positives in the cpumask.
904 	 * - After mm_users or mm_count reaches zero, switching away from the
905 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
906 	 *   with some batching or delaying of the final IPIs.
907 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
908 	 *   switching to avoid IPIs completely.
909 	 */
910 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
911 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
912 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
913 }
914 
915 /*
916  * Called when the last reference to the mm
917  * is dropped: either by a lazy thread or by
918  * mmput. Free the page directory and the mm.
919  */
__mmdrop(struct mm_struct * mm)920 void __mmdrop(struct mm_struct *mm)
921 {
922 	BUG_ON(mm == &init_mm);
923 	WARN_ON_ONCE(mm == current->mm);
924 
925 	/* Ensure no CPUs are using this as their lazy tlb mm */
926 	cleanup_lazy_tlbs(mm);
927 
928 	WARN_ON_ONCE(mm == current->active_mm);
929 	mm_free_pgd(mm);
930 	destroy_context(mm);
931 	mmu_notifier_subscriptions_destroy(mm);
932 	check_mm(mm);
933 	put_user_ns(mm->user_ns);
934 	mm_pasid_drop(mm);
935 	mm_destroy_cid(mm);
936 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
937 
938 	free_mm(mm);
939 }
940 EXPORT_SYMBOL_GPL(__mmdrop);
941 
mmdrop_async_fn(struct work_struct * work)942 static void mmdrop_async_fn(struct work_struct *work)
943 {
944 	struct mm_struct *mm;
945 
946 	mm = container_of(work, struct mm_struct, async_put_work);
947 	__mmdrop(mm);
948 }
949 
mmdrop_async(struct mm_struct * mm)950 static void mmdrop_async(struct mm_struct *mm)
951 {
952 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
953 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
954 		schedule_work(&mm->async_put_work);
955 	}
956 }
957 
free_signal_struct(struct signal_struct * sig)958 static inline void free_signal_struct(struct signal_struct *sig)
959 {
960 	taskstats_tgid_free(sig);
961 	sched_autogroup_exit(sig);
962 	/*
963 	 * __mmdrop is not safe to call from softirq context on x86 due to
964 	 * pgd_dtor so postpone it to the async context
965 	 */
966 	if (sig->oom_mm)
967 		mmdrop_async(sig->oom_mm);
968 	kmem_cache_free(signal_cachep, sig);
969 }
970 
put_signal_struct(struct signal_struct * sig)971 static inline void put_signal_struct(struct signal_struct *sig)
972 {
973 	if (refcount_dec_and_test(&sig->sigcnt))
974 		free_signal_struct(sig);
975 }
976 
__put_task_struct(struct task_struct * tsk)977 void __put_task_struct(struct task_struct *tsk)
978 {
979 	WARN_ON(!tsk->exit_state);
980 	WARN_ON(refcount_read(&tsk->usage));
981 	WARN_ON(tsk == current);
982 
983 	io_uring_free(tsk);
984 	cgroup_free(tsk);
985 	task_numa_free(tsk, true);
986 	security_task_free(tsk);
987 	exit_creds(tsk);
988 	delayacct_tsk_free(tsk);
989 	put_signal_struct(tsk->signal);
990 	sched_core_free(tsk);
991 	free_task(tsk);
992 }
993 EXPORT_SYMBOL_GPL(__put_task_struct);
994 
__put_task_struct_rcu_cb(struct rcu_head * rhp)995 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
996 {
997 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
998 
999 	__put_task_struct(task);
1000 }
1001 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1002 
arch_task_cache_init(void)1003 void __init __weak arch_task_cache_init(void) { }
1004 
1005 /*
1006  * set_max_threads
1007  */
set_max_threads(unsigned int max_threads_suggested)1008 static void set_max_threads(unsigned int max_threads_suggested)
1009 {
1010 	u64 threads;
1011 	unsigned long nr_pages = totalram_pages();
1012 
1013 	/*
1014 	 * The number of threads shall be limited such that the thread
1015 	 * structures may only consume a small part of the available memory.
1016 	 */
1017 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1018 		threads = MAX_THREADS;
1019 	else
1020 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1021 				    (u64) THREAD_SIZE * 8UL);
1022 
1023 	if (threads > max_threads_suggested)
1024 		threads = max_threads_suggested;
1025 
1026 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1027 }
1028 
1029 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1030 /* Initialized by the architecture: */
1031 int arch_task_struct_size __read_mostly;
1032 #endif
1033 
1034 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1035 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1036 {
1037 	/* Fetch thread_struct whitelist for the architecture. */
1038 	arch_thread_struct_whitelist(offset, size);
1039 
1040 	/*
1041 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1042 	 * adjust offset to position of thread_struct in task_struct.
1043 	 */
1044 	if (unlikely(*size == 0))
1045 		*offset = 0;
1046 	else
1047 		*offset += offsetof(struct task_struct, thread);
1048 }
1049 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1050 
fork_init(void)1051 void __init fork_init(void)
1052 {
1053 	int i;
1054 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1055 #ifndef ARCH_MIN_TASKALIGN
1056 #define ARCH_MIN_TASKALIGN	0
1057 #endif
1058 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1059 	unsigned long useroffset, usersize;
1060 
1061 	/* create a slab on which task_structs can be allocated */
1062 	task_struct_whitelist(&useroffset, &usersize);
1063 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1064 			arch_task_struct_size, align,
1065 			SLAB_PANIC|SLAB_ACCOUNT,
1066 			useroffset, usersize, NULL);
1067 #endif
1068 
1069 	/* do the arch specific task caches init */
1070 	arch_task_cache_init();
1071 
1072 	set_max_threads(MAX_THREADS);
1073 
1074 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1075 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1076 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1077 		init_task.signal->rlim[RLIMIT_NPROC];
1078 
1079 	for (i = 0; i < UCOUNT_COUNTS; i++)
1080 		init_user_ns.ucount_max[i] = max_threads/2;
1081 
1082 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1083 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1084 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1085 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1086 
1087 #ifdef CONFIG_VMAP_STACK
1088 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1089 			  NULL, free_vm_stack_cache);
1090 #endif
1091 
1092 	scs_init();
1093 
1094 	lockdep_init_task(&init_task);
1095 	uprobes_init();
1096 }
1097 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1098 int __weak arch_dup_task_struct(struct task_struct *dst,
1099 					       struct task_struct *src)
1100 {
1101 	*dst = *src;
1102 	return 0;
1103 }
1104 
set_task_stack_end_magic(struct task_struct * tsk)1105 void set_task_stack_end_magic(struct task_struct *tsk)
1106 {
1107 	unsigned long *stackend;
1108 
1109 	stackend = end_of_stack(tsk);
1110 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1111 }
1112 
dup_task_struct(struct task_struct * orig,int node)1113 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1114 {
1115 	struct task_struct *tsk;
1116 	int err;
1117 
1118 	if (node == NUMA_NO_NODE)
1119 		node = tsk_fork_get_node(orig);
1120 	tsk = alloc_task_struct_node(node);
1121 	if (!tsk)
1122 		return NULL;
1123 
1124 	err = arch_dup_task_struct(tsk, orig);
1125 	if (err)
1126 		goto free_tsk;
1127 
1128 #ifdef CONFIG_ACCESS_TOKENID
1129 	tsk->token = orig->token;
1130 	tsk->ftoken = 0;
1131 #endif
1132 
1133 	err = alloc_thread_stack_node(tsk, node);
1134 	if (err)
1135 		goto free_tsk;
1136 
1137 #ifdef CONFIG_THREAD_INFO_IN_TASK
1138 	refcount_set(&tsk->stack_refcount, 1);
1139 #endif
1140 	account_kernel_stack(tsk, 1);
1141 
1142 	err = scs_prepare(tsk, node);
1143 	if (err)
1144 		goto free_stack;
1145 
1146 #ifdef CONFIG_SECCOMP
1147 	/*
1148 	 * We must handle setting up seccomp filters once we're under
1149 	 * the sighand lock in case orig has changed between now and
1150 	 * then. Until then, filter must be NULL to avoid messing up
1151 	 * the usage counts on the error path calling free_task.
1152 	 */
1153 	tsk->seccomp.filter = NULL;
1154 #endif
1155 
1156 	setup_thread_stack(tsk, orig);
1157 	clear_user_return_notifier(tsk);
1158 	clear_tsk_need_resched(tsk);
1159 	set_task_stack_end_magic(tsk);
1160 	clear_syscall_work_syscall_user_dispatch(tsk);
1161 
1162 #ifdef CONFIG_STACKPROTECTOR
1163 	tsk->stack_canary = get_random_canary();
1164 #endif
1165 	if (orig->cpus_ptr == &orig->cpus_mask)
1166 		tsk->cpus_ptr = &tsk->cpus_mask;
1167 	dup_user_cpus_ptr(tsk, orig, node);
1168 
1169 	/*
1170 	 * One for the user space visible state that goes away when reaped.
1171 	 * One for the scheduler.
1172 	 */
1173 	refcount_set(&tsk->rcu_users, 2);
1174 	/* One for the rcu users */
1175 	refcount_set(&tsk->usage, 1);
1176 #ifdef CONFIG_BLK_DEV_IO_TRACE
1177 	tsk->btrace_seq = 0;
1178 #endif
1179 	tsk->splice_pipe = NULL;
1180 	tsk->task_frag.page = NULL;
1181 	tsk->wake_q.next = NULL;
1182 	tsk->worker_private = NULL;
1183 
1184 	kcov_task_init(tsk);
1185 	kmsan_task_create(tsk);
1186 	kmap_local_fork(tsk);
1187 
1188 #ifdef CONFIG_FAULT_INJECTION
1189 	tsk->fail_nth = 0;
1190 #endif
1191 
1192 #ifdef CONFIG_BLK_CGROUP
1193 	tsk->throttle_disk = NULL;
1194 	tsk->use_memdelay = 0;
1195 #endif
1196 
1197 #ifdef CONFIG_IOMMU_SVA
1198 	tsk->pasid_activated = 0;
1199 #endif
1200 
1201 #ifdef CONFIG_MEMCG
1202 	tsk->active_memcg = NULL;
1203 #endif
1204 
1205 #ifdef CONFIG_CPU_SUP_INTEL
1206 	tsk->reported_split_lock = 0;
1207 #endif
1208 
1209 #ifdef CONFIG_SCHED_MM_CID
1210 	tsk->mm_cid = -1;
1211 	tsk->last_mm_cid = -1;
1212 	tsk->mm_cid_active = 0;
1213 	tsk->migrate_from_cpu = -1;
1214 #endif
1215 	return tsk;
1216 
1217 free_stack:
1218 	exit_task_stack_account(tsk);
1219 	free_thread_stack(tsk);
1220 free_tsk:
1221 	free_task_struct(tsk);
1222 	return NULL;
1223 }
1224 
1225 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1226 
1227 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1228 
coredump_filter_setup(char * s)1229 static int __init coredump_filter_setup(char *s)
1230 {
1231 	default_dump_filter =
1232 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1233 		MMF_DUMP_FILTER_MASK;
1234 	return 1;
1235 }
1236 
1237 __setup("coredump_filter=", coredump_filter_setup);
1238 
1239 #include <linux/init_task.h>
1240 
mm_init_aio(struct mm_struct * mm)1241 static void mm_init_aio(struct mm_struct *mm)
1242 {
1243 #ifdef CONFIG_AIO
1244 	spin_lock_init(&mm->ioctx_lock);
1245 	mm->ioctx_table = NULL;
1246 #endif
1247 }
1248 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1249 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1250 					   struct task_struct *p)
1251 {
1252 #ifdef CONFIG_MEMCG
1253 	if (mm->owner == p)
1254 		WRITE_ONCE(mm->owner, NULL);
1255 #endif
1256 }
1257 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1258 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1259 {
1260 #ifdef CONFIG_MEMCG
1261 	mm->owner = p;
1262 #endif
1263 }
1264 
mm_init_uprobes_state(struct mm_struct * mm)1265 static void mm_init_uprobes_state(struct mm_struct *mm)
1266 {
1267 #ifdef CONFIG_UPROBES
1268 	mm->uprobes_state.xol_area = NULL;
1269 #endif
1270 }
1271 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1272 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1273 	struct user_namespace *user_ns)
1274 {
1275 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1276 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1277 	atomic_set(&mm->mm_users, 1);
1278 	atomic_set(&mm->mm_count, 1);
1279 	seqcount_init(&mm->write_protect_seq);
1280 	mmap_init_lock(mm);
1281 	INIT_LIST_HEAD(&mm->mmlist);
1282 #ifdef CONFIG_PER_VMA_LOCK
1283 	mm->mm_lock_seq = 0;
1284 #endif
1285 	mm_pgtables_bytes_init(mm);
1286 	mm->map_count = 0;
1287 	mm->locked_vm = 0;
1288 	atomic64_set(&mm->pinned_vm, 0);
1289 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1290 	spin_lock_init(&mm->page_table_lock);
1291 	spin_lock_init(&mm->arg_lock);
1292 	mm_init_cpumask(mm);
1293 	mm_init_aio(mm);
1294 	mm_init_owner(mm, p);
1295 	mm_pasid_init(mm);
1296 	RCU_INIT_POINTER(mm->exe_file, NULL);
1297 	mmu_notifier_subscriptions_init(mm);
1298 	init_tlb_flush_pending(mm);
1299 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1300 	mm->pmd_huge_pte = NULL;
1301 #endif
1302 	mm_init_uprobes_state(mm);
1303 	hugetlb_count_init(mm);
1304 
1305 	if (current->mm) {
1306 		mm->flags = mmf_init_flags(current->mm->flags);
1307 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1308 	} else {
1309 		mm->flags = default_dump_filter;
1310 		mm->def_flags = 0;
1311 	}
1312 
1313 	if (mm_alloc_pgd(mm))
1314 		goto fail_nopgd;
1315 
1316 	if (init_new_context(p, mm))
1317 		goto fail_nocontext;
1318 
1319 	if (mm_alloc_cid(mm))
1320 		goto fail_cid;
1321 
1322 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1323 				     NR_MM_COUNTERS))
1324 		goto fail_pcpu;
1325 
1326 	mm->user_ns = get_user_ns(user_ns);
1327 	lru_gen_init_mm(mm);
1328 	return mm;
1329 
1330 fail_pcpu:
1331 	mm_destroy_cid(mm);
1332 fail_cid:
1333 	destroy_context(mm);
1334 fail_nocontext:
1335 	mm_free_pgd(mm);
1336 fail_nopgd:
1337 	free_mm(mm);
1338 	return NULL;
1339 }
1340 
1341 /*
1342  * Allocate and initialize an mm_struct.
1343  */
mm_alloc(void)1344 struct mm_struct *mm_alloc(void)
1345 {
1346 	struct mm_struct *mm;
1347 
1348 	mm = allocate_mm();
1349 	if (!mm)
1350 		return NULL;
1351 
1352 	memset(mm, 0, sizeof(*mm));
1353 	return mm_init(mm, current, current_user_ns());
1354 }
1355 
__mmput(struct mm_struct * mm)1356 static inline void __mmput(struct mm_struct *mm)
1357 {
1358 	VM_BUG_ON(atomic_read(&mm->mm_users));
1359 
1360 	uprobe_clear_state(mm);
1361 	exit_aio(mm);
1362 	ksm_exit(mm);
1363 	khugepaged_exit(mm); /* must run before exit_mmap */
1364 	exit_mmap(mm);
1365 	mm_put_huge_zero_page(mm);
1366 	set_mm_exe_file(mm, NULL);
1367 	if (!list_empty(&mm->mmlist)) {
1368 		spin_lock(&mmlist_lock);
1369 		list_del(&mm->mmlist);
1370 		spin_unlock(&mmlist_lock);
1371 	}
1372 	if (mm->binfmt)
1373 		module_put(mm->binfmt->module);
1374 	lru_gen_del_mm(mm);
1375 	mmdrop(mm);
1376 }
1377 
1378 /*
1379  * Decrement the use count and release all resources for an mm.
1380  */
mmput(struct mm_struct * mm)1381 void mmput(struct mm_struct *mm)
1382 {
1383 	might_sleep();
1384 
1385 	if (atomic_dec_and_test(&mm->mm_users))
1386 		__mmput(mm);
1387 }
1388 EXPORT_SYMBOL_GPL(mmput);
1389 
1390 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1391 static void mmput_async_fn(struct work_struct *work)
1392 {
1393 	struct mm_struct *mm = container_of(work, struct mm_struct,
1394 					    async_put_work);
1395 
1396 	__mmput(mm);
1397 }
1398 
mmput_async(struct mm_struct * mm)1399 void mmput_async(struct mm_struct *mm)
1400 {
1401 	if (atomic_dec_and_test(&mm->mm_users)) {
1402 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1403 		schedule_work(&mm->async_put_work);
1404 	}
1405 }
1406 EXPORT_SYMBOL_GPL(mmput_async);
1407 #endif
1408 
1409 /**
1410  * set_mm_exe_file - change a reference to the mm's executable file
1411  *
1412  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1413  *
1414  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1415  * invocations: in mmput() nobody alive left, in execve it happens before
1416  * the new mm is made visible to anyone.
1417  *
1418  * Can only fail if new_exe_file != NULL.
1419  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1420 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1421 {
1422 	struct file *old_exe_file;
1423 
1424 	/*
1425 	 * It is safe to dereference the exe_file without RCU as
1426 	 * this function is only called if nobody else can access
1427 	 * this mm -- see comment above for justification.
1428 	 */
1429 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1430 
1431 	if (new_exe_file) {
1432 		/*
1433 		 * We expect the caller (i.e., sys_execve) to already denied
1434 		 * write access, so this is unlikely to fail.
1435 		 */
1436 		if (unlikely(deny_write_access(new_exe_file)))
1437 			return -EACCES;
1438 		get_file(new_exe_file);
1439 	}
1440 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1441 	if (old_exe_file) {
1442 		allow_write_access(old_exe_file);
1443 		fput(old_exe_file);
1444 	}
1445 	return 0;
1446 }
1447 
1448 /**
1449  * replace_mm_exe_file - replace a reference to the mm's executable file
1450  *
1451  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1452  *
1453  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1454  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1455 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1456 {
1457 	struct vm_area_struct *vma;
1458 	struct file *old_exe_file;
1459 	int ret = 0;
1460 
1461 	/* Forbid mm->exe_file change if old file still mapped. */
1462 	old_exe_file = get_mm_exe_file(mm);
1463 	if (old_exe_file) {
1464 		VMA_ITERATOR(vmi, mm, 0);
1465 		mmap_read_lock(mm);
1466 		for_each_vma(vmi, vma) {
1467 			if (!vma->vm_file)
1468 				continue;
1469 			if (path_equal(&vma->vm_file->f_path,
1470 				       &old_exe_file->f_path)) {
1471 				ret = -EBUSY;
1472 				break;
1473 			}
1474 		}
1475 		mmap_read_unlock(mm);
1476 		fput(old_exe_file);
1477 		if (ret)
1478 			return ret;
1479 	}
1480 
1481 	ret = deny_write_access(new_exe_file);
1482 	if (ret)
1483 		return -EACCES;
1484 	get_file(new_exe_file);
1485 
1486 	/* set the new file */
1487 	mmap_write_lock(mm);
1488 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1489 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1490 	mmap_write_unlock(mm);
1491 
1492 	if (old_exe_file) {
1493 		allow_write_access(old_exe_file);
1494 		fput(old_exe_file);
1495 	}
1496 	return 0;
1497 }
1498 
1499 /**
1500  * get_mm_exe_file - acquire a reference to the mm's executable file
1501  *
1502  * Returns %NULL if mm has no associated executable file.
1503  * User must release file via fput().
1504  */
get_mm_exe_file(struct mm_struct * mm)1505 struct file *get_mm_exe_file(struct mm_struct *mm)
1506 {
1507 	struct file *exe_file;
1508 
1509 	rcu_read_lock();
1510 	exe_file = rcu_dereference(mm->exe_file);
1511 	if (exe_file && !get_file_rcu(exe_file))
1512 		exe_file = NULL;
1513 	rcu_read_unlock();
1514 	return exe_file;
1515 }
1516 
1517 /**
1518  * get_task_exe_file - acquire a reference to the task's executable file
1519  *
1520  * Returns %NULL if task's mm (if any) has no associated executable file or
1521  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1522  * User must release file via fput().
1523  */
get_task_exe_file(struct task_struct * task)1524 struct file *get_task_exe_file(struct task_struct *task)
1525 {
1526 	struct file *exe_file = NULL;
1527 	struct mm_struct *mm;
1528 
1529 	task_lock(task);
1530 	mm = task->mm;
1531 	if (mm) {
1532 		if (!(task->flags & PF_KTHREAD))
1533 			exe_file = get_mm_exe_file(mm);
1534 	}
1535 	task_unlock(task);
1536 	return exe_file;
1537 }
1538 
1539 /**
1540  * get_task_mm - acquire a reference to the task's mm
1541  *
1542  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1543  * this kernel workthread has transiently adopted a user mm with use_mm,
1544  * to do its AIO) is not set and if so returns a reference to it, after
1545  * bumping up the use count.  User must release the mm via mmput()
1546  * after use.  Typically used by /proc and ptrace.
1547  */
get_task_mm(struct task_struct * task)1548 struct mm_struct *get_task_mm(struct task_struct *task)
1549 {
1550 	struct mm_struct *mm;
1551 
1552 	task_lock(task);
1553 	mm = task->mm;
1554 	if (mm) {
1555 		if (task->flags & PF_KTHREAD)
1556 			mm = NULL;
1557 		else
1558 			mmget(mm);
1559 	}
1560 	task_unlock(task);
1561 	return mm;
1562 }
1563 EXPORT_SYMBOL_GPL(get_task_mm);
1564 
mm_access(struct task_struct * task,unsigned int mode)1565 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1566 {
1567 	struct mm_struct *mm;
1568 	int err;
1569 
1570 	err =  down_read_killable(&task->signal->exec_update_lock);
1571 	if (err)
1572 		return ERR_PTR(err);
1573 
1574 	mm = get_task_mm(task);
1575 	if (mm && mm != current->mm &&
1576 			!ptrace_may_access(task, mode)) {
1577 		mmput(mm);
1578 		mm = ERR_PTR(-EACCES);
1579 	}
1580 	up_read(&task->signal->exec_update_lock);
1581 
1582 	return mm;
1583 }
1584 
complete_vfork_done(struct task_struct * tsk)1585 static void complete_vfork_done(struct task_struct *tsk)
1586 {
1587 	struct completion *vfork;
1588 
1589 	task_lock(tsk);
1590 	vfork = tsk->vfork_done;
1591 	if (likely(vfork)) {
1592 		tsk->vfork_done = NULL;
1593 		complete(vfork);
1594 	}
1595 	task_unlock(tsk);
1596 }
1597 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1598 static int wait_for_vfork_done(struct task_struct *child,
1599 				struct completion *vfork)
1600 {
1601 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1602 	int killed;
1603 
1604 	cgroup_enter_frozen();
1605 	killed = wait_for_completion_state(vfork, state);
1606 	cgroup_leave_frozen(false);
1607 
1608 	if (killed) {
1609 		task_lock(child);
1610 		child->vfork_done = NULL;
1611 		task_unlock(child);
1612 	}
1613 
1614 	put_task_struct(child);
1615 	return killed;
1616 }
1617 
1618 /* Please note the differences between mmput and mm_release.
1619  * mmput is called whenever we stop holding onto a mm_struct,
1620  * error success whatever.
1621  *
1622  * mm_release is called after a mm_struct has been removed
1623  * from the current process.
1624  *
1625  * This difference is important for error handling, when we
1626  * only half set up a mm_struct for a new process and need to restore
1627  * the old one.  Because we mmput the new mm_struct before
1628  * restoring the old one. . .
1629  * Eric Biederman 10 January 1998
1630  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1631 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1632 {
1633 	uprobe_free_utask(tsk);
1634 
1635 	/* Get rid of any cached register state */
1636 	deactivate_mm(tsk, mm);
1637 
1638 	/*
1639 	 * Signal userspace if we're not exiting with a core dump
1640 	 * because we want to leave the value intact for debugging
1641 	 * purposes.
1642 	 */
1643 	if (tsk->clear_child_tid) {
1644 		if (atomic_read(&mm->mm_users) > 1) {
1645 			/*
1646 			 * We don't check the error code - if userspace has
1647 			 * not set up a proper pointer then tough luck.
1648 			 */
1649 			put_user(0, tsk->clear_child_tid);
1650 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1651 					1, NULL, NULL, 0, 0);
1652 		}
1653 		tsk->clear_child_tid = NULL;
1654 	}
1655 
1656 	/*
1657 	 * All done, finally we can wake up parent and return this mm to him.
1658 	 * Also kthread_stop() uses this completion for synchronization.
1659 	 */
1660 	if (tsk->vfork_done)
1661 		complete_vfork_done(tsk);
1662 }
1663 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1664 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1665 {
1666 	futex_exit_release(tsk);
1667 	mm_release(tsk, mm);
1668 }
1669 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1670 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1671 {
1672 	futex_exec_release(tsk);
1673 	mm_release(tsk, mm);
1674 }
1675 
1676 /**
1677  * dup_mm() - duplicates an existing mm structure
1678  * @tsk: the task_struct with which the new mm will be associated.
1679  * @oldmm: the mm to duplicate.
1680  *
1681  * Allocates a new mm structure and duplicates the provided @oldmm structure
1682  * content into it.
1683  *
1684  * Return: the duplicated mm or NULL on failure.
1685  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1686 static struct mm_struct *dup_mm(struct task_struct *tsk,
1687 				struct mm_struct *oldmm)
1688 {
1689 	struct mm_struct *mm;
1690 	int err;
1691 
1692 	mm = allocate_mm();
1693 	if (!mm)
1694 		goto fail_nomem;
1695 
1696 	memcpy(mm, oldmm, sizeof(*mm));
1697 
1698 	if (!mm_init(mm, tsk, mm->user_ns))
1699 		goto fail_nomem;
1700 
1701 	err = dup_mmap(mm, oldmm);
1702 	if (err)
1703 		goto free_pt;
1704 
1705 	mm->hiwater_rss = get_mm_rss(mm);
1706 	mm->hiwater_vm = mm->total_vm;
1707 
1708 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1709 		goto free_pt;
1710 
1711 	return mm;
1712 
1713 free_pt:
1714 	/* don't put binfmt in mmput, we haven't got module yet */
1715 	mm->binfmt = NULL;
1716 	mm_init_owner(mm, NULL);
1717 	mmput(mm);
1718 
1719 fail_nomem:
1720 	return NULL;
1721 }
1722 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1723 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1724 {
1725 	struct mm_struct *mm, *oldmm;
1726 
1727 	tsk->min_flt = tsk->maj_flt = 0;
1728 	tsk->nvcsw = tsk->nivcsw = 0;
1729 #ifdef CONFIG_DETECT_HUNG_TASK
1730 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1731 	tsk->last_switch_time = 0;
1732 #endif
1733 
1734 	tsk->mm = NULL;
1735 	tsk->active_mm = NULL;
1736 
1737 	/*
1738 	 * Are we cloning a kernel thread?
1739 	 *
1740 	 * We need to steal a active VM for that..
1741 	 */
1742 	oldmm = current->mm;
1743 	if (!oldmm)
1744 		return 0;
1745 
1746 	if (clone_flags & CLONE_VM) {
1747 		mmget(oldmm);
1748 		mm = oldmm;
1749 	} else {
1750 		mm = dup_mm(tsk, current->mm);
1751 		if (!mm)
1752 			return -ENOMEM;
1753 	}
1754 
1755 	tsk->mm = mm;
1756 	tsk->active_mm = mm;
1757 	sched_mm_cid_fork(tsk);
1758 	return 0;
1759 }
1760 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1761 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1762 {
1763 	struct fs_struct *fs = current->fs;
1764 	if (clone_flags & CLONE_FS) {
1765 		/* tsk->fs is already what we want */
1766 		spin_lock(&fs->lock);
1767 		if (fs->in_exec) {
1768 			spin_unlock(&fs->lock);
1769 			return -EAGAIN;
1770 		}
1771 		fs->users++;
1772 		spin_unlock(&fs->lock);
1773 		return 0;
1774 	}
1775 	tsk->fs = copy_fs_struct(fs);
1776 	if (!tsk->fs)
1777 		return -ENOMEM;
1778 	return 0;
1779 }
1780 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1781 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1782 		      int no_files)
1783 {
1784 	struct files_struct *oldf, *newf;
1785 
1786 	/*
1787 	 * A background process may not have any files ...
1788 	 */
1789 	oldf = current->files;
1790 	if (!oldf)
1791 		return 0;
1792 
1793 	if (no_files) {
1794 		tsk->files = NULL;
1795 		return 0;
1796 	}
1797 
1798 	if (clone_flags & CLONE_FILES) {
1799 		atomic_inc(&oldf->count);
1800 		return 0;
1801 	}
1802 
1803 	newf = dup_fd(oldf, NULL);
1804 	if (IS_ERR(newf))
1805 		return PTR_ERR(newf);
1806 
1807 	tsk->files = newf;
1808 	return 0;
1809 }
1810 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1811 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1812 {
1813 	struct sighand_struct *sig;
1814 
1815 	if (clone_flags & CLONE_SIGHAND) {
1816 		refcount_inc(&current->sighand->count);
1817 		return 0;
1818 	}
1819 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1820 	RCU_INIT_POINTER(tsk->sighand, sig);
1821 	if (!sig)
1822 		return -ENOMEM;
1823 
1824 	refcount_set(&sig->count, 1);
1825 	spin_lock_irq(&current->sighand->siglock);
1826 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1827 	spin_unlock_irq(&current->sighand->siglock);
1828 
1829 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1830 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1831 		flush_signal_handlers(tsk, 0);
1832 
1833 	return 0;
1834 }
1835 
__cleanup_sighand(struct sighand_struct * sighand)1836 void __cleanup_sighand(struct sighand_struct *sighand)
1837 {
1838 	if (refcount_dec_and_test(&sighand->count)) {
1839 		signalfd_cleanup(sighand);
1840 		/*
1841 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1842 		 * without an RCU grace period, see __lock_task_sighand().
1843 		 */
1844 		kmem_cache_free(sighand_cachep, sighand);
1845 	}
1846 }
1847 
1848 /*
1849  * Initialize POSIX timer handling for a thread group.
1850  */
posix_cpu_timers_init_group(struct signal_struct * sig)1851 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1852 {
1853 	struct posix_cputimers *pct = &sig->posix_cputimers;
1854 	unsigned long cpu_limit;
1855 
1856 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1857 	posix_cputimers_group_init(pct, cpu_limit);
1858 }
1859 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1860 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1861 {
1862 	struct signal_struct *sig;
1863 
1864 	if (clone_flags & CLONE_THREAD)
1865 		return 0;
1866 
1867 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1868 	tsk->signal = sig;
1869 	if (!sig)
1870 		return -ENOMEM;
1871 
1872 	sig->nr_threads = 1;
1873 	sig->quick_threads = 1;
1874 	atomic_set(&sig->live, 1);
1875 	refcount_set(&sig->sigcnt, 1);
1876 
1877 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1878 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1879 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1880 
1881 	init_waitqueue_head(&sig->wait_chldexit);
1882 	sig->curr_target = tsk;
1883 	init_sigpending(&sig->shared_pending);
1884 	INIT_HLIST_HEAD(&sig->multiprocess);
1885 	seqlock_init(&sig->stats_lock);
1886 	prev_cputime_init(&sig->prev_cputime);
1887 
1888 #ifdef CONFIG_POSIX_TIMERS
1889 	INIT_LIST_HEAD(&sig->posix_timers);
1890 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1891 	sig->real_timer.function = it_real_fn;
1892 #endif
1893 
1894 	task_lock(current->group_leader);
1895 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1896 	task_unlock(current->group_leader);
1897 
1898 	posix_cpu_timers_init_group(sig);
1899 
1900 	tty_audit_fork(sig);
1901 	sched_autogroup_fork(sig);
1902 
1903 	sig->oom_score_adj = current->signal->oom_score_adj;
1904 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1905 
1906 	mutex_init(&sig->cred_guard_mutex);
1907 	init_rwsem(&sig->exec_update_lock);
1908 
1909 	return 0;
1910 }
1911 
copy_seccomp(struct task_struct * p)1912 static void copy_seccomp(struct task_struct *p)
1913 {
1914 #ifdef CONFIG_SECCOMP
1915 	/*
1916 	 * Must be called with sighand->lock held, which is common to
1917 	 * all threads in the group. Holding cred_guard_mutex is not
1918 	 * needed because this new task is not yet running and cannot
1919 	 * be racing exec.
1920 	 */
1921 	assert_spin_locked(&current->sighand->siglock);
1922 
1923 	/* Ref-count the new filter user, and assign it. */
1924 	get_seccomp_filter(current);
1925 	p->seccomp = current->seccomp;
1926 
1927 	/*
1928 	 * Explicitly enable no_new_privs here in case it got set
1929 	 * between the task_struct being duplicated and holding the
1930 	 * sighand lock. The seccomp state and nnp must be in sync.
1931 	 */
1932 	if (task_no_new_privs(current))
1933 		task_set_no_new_privs(p);
1934 
1935 	/*
1936 	 * If the parent gained a seccomp mode after copying thread
1937 	 * flags and between before we held the sighand lock, we have
1938 	 * to manually enable the seccomp thread flag here.
1939 	 */
1940 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1941 		set_task_syscall_work(p, SECCOMP);
1942 #endif
1943 }
1944 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1945 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1946 {
1947 	current->clear_child_tid = tidptr;
1948 
1949 	return task_pid_vnr(current);
1950 }
1951 
rt_mutex_init_task(struct task_struct * p)1952 static void rt_mutex_init_task(struct task_struct *p)
1953 {
1954 	raw_spin_lock_init(&p->pi_lock);
1955 #ifdef CONFIG_RT_MUTEXES
1956 	p->pi_waiters = RB_ROOT_CACHED;
1957 	p->pi_top_task = NULL;
1958 	p->pi_blocked_on = NULL;
1959 #endif
1960 }
1961 
init_task_pid_links(struct task_struct * task)1962 static inline void init_task_pid_links(struct task_struct *task)
1963 {
1964 	enum pid_type type;
1965 
1966 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1967 		INIT_HLIST_NODE(&task->pid_links[type]);
1968 }
1969 
1970 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1971 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1972 {
1973 	if (type == PIDTYPE_PID)
1974 		task->thread_pid = pid;
1975 	else
1976 		task->signal->pids[type] = pid;
1977 }
1978 
rcu_copy_process(struct task_struct * p)1979 static inline void rcu_copy_process(struct task_struct *p)
1980 {
1981 #ifdef CONFIG_PREEMPT_RCU
1982 	p->rcu_read_lock_nesting = 0;
1983 	p->rcu_read_unlock_special.s = 0;
1984 	p->rcu_blocked_node = NULL;
1985 	INIT_LIST_HEAD(&p->rcu_node_entry);
1986 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1987 #ifdef CONFIG_TASKS_RCU
1988 	p->rcu_tasks_holdout = false;
1989 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1990 	p->rcu_tasks_idle_cpu = -1;
1991 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1992 #endif /* #ifdef CONFIG_TASKS_RCU */
1993 #ifdef CONFIG_TASKS_TRACE_RCU
1994 	p->trc_reader_nesting = 0;
1995 	p->trc_reader_special.s = 0;
1996 	INIT_LIST_HEAD(&p->trc_holdout_list);
1997 	INIT_LIST_HEAD(&p->trc_blkd_node);
1998 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1999 }
2000 
pidfd_pid(const struct file * file)2001 struct pid *pidfd_pid(const struct file *file)
2002 {
2003 	if (file->f_op == &pidfd_fops)
2004 		return file->private_data;
2005 
2006 	return ERR_PTR(-EBADF);
2007 }
2008 
pidfd_release(struct inode * inode,struct file * file)2009 static int pidfd_release(struct inode *inode, struct file *file)
2010 {
2011 	struct pid *pid = file->private_data;
2012 
2013 	file->private_data = NULL;
2014 	put_pid(pid);
2015 	return 0;
2016 }
2017 
2018 #ifdef CONFIG_PROC_FS
2019 /**
2020  * pidfd_show_fdinfo - print information about a pidfd
2021  * @m: proc fdinfo file
2022  * @f: file referencing a pidfd
2023  *
2024  * Pid:
2025  * This function will print the pid that a given pidfd refers to in the
2026  * pid namespace of the procfs instance.
2027  * If the pid namespace of the process is not a descendant of the pid
2028  * namespace of the procfs instance 0 will be shown as its pid. This is
2029  * similar to calling getppid() on a process whose parent is outside of
2030  * its pid namespace.
2031  *
2032  * NSpid:
2033  * If pid namespaces are supported then this function will also print
2034  * the pid of a given pidfd refers to for all descendant pid namespaces
2035  * starting from the current pid namespace of the instance, i.e. the
2036  * Pid field and the first entry in the NSpid field will be identical.
2037  * If the pid namespace of the process is not a descendant of the pid
2038  * namespace of the procfs instance 0 will be shown as its first NSpid
2039  * entry and no others will be shown.
2040  * Note that this differs from the Pid and NSpid fields in
2041  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2042  * the  pid namespace of the procfs instance. The difference becomes
2043  * obvious when sending around a pidfd between pid namespaces from a
2044  * different branch of the tree, i.e. where no ancestral relation is
2045  * present between the pid namespaces:
2046  * - create two new pid namespaces ns1 and ns2 in the initial pid
2047  *   namespace (also take care to create new mount namespaces in the
2048  *   new pid namespace and mount procfs)
2049  * - create a process with a pidfd in ns1
2050  * - send pidfd from ns1 to ns2
2051  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2052  *   have exactly one entry, which is 0
2053  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2054 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2055 {
2056 	struct pid *pid = f->private_data;
2057 	struct pid_namespace *ns;
2058 	pid_t nr = -1;
2059 
2060 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2061 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2062 		nr = pid_nr_ns(pid, ns);
2063 	}
2064 
2065 	seq_put_decimal_ll(m, "Pid:\t", nr);
2066 
2067 #ifdef CONFIG_PID_NS
2068 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2069 	if (nr > 0) {
2070 		int i;
2071 
2072 		/* If nr is non-zero it means that 'pid' is valid and that
2073 		 * ns, i.e. the pid namespace associated with the procfs
2074 		 * instance, is in the pid namespace hierarchy of pid.
2075 		 * Start at one below the already printed level.
2076 		 */
2077 		for (i = ns->level + 1; i <= pid->level; i++)
2078 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2079 	}
2080 #endif
2081 	seq_putc(m, '\n');
2082 }
2083 #endif
2084 
2085 /*
2086  * Poll support for process exit notification.
2087  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2088 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2089 {
2090 	struct pid *pid = file->private_data;
2091 	__poll_t poll_flags = 0;
2092 
2093 	poll_wait(file, &pid->wait_pidfd, pts);
2094 
2095 	/*
2096 	 * Inform pollers only when the whole thread group exits.
2097 	 * If the thread group leader exits before all other threads in the
2098 	 * group, then poll(2) should block, similar to the wait(2) family.
2099 	 */
2100 	if (thread_group_exited(pid))
2101 		poll_flags = EPOLLIN | EPOLLRDNORM;
2102 
2103 	return poll_flags;
2104 }
2105 
2106 const struct file_operations pidfd_fops = {
2107 	.release = pidfd_release,
2108 	.poll = pidfd_poll,
2109 #ifdef CONFIG_PROC_FS
2110 	.show_fdinfo = pidfd_show_fdinfo,
2111 #endif
2112 };
2113 
2114 /**
2115  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2116  * @pid:   the struct pid for which to create a pidfd
2117  * @flags: flags of the new @pidfd
2118  * @pidfd: the pidfd to return
2119  *
2120  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2121  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2122 
2123  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2124  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2125  * pidfd file are prepared.
2126  *
2127  * If this function returns successfully the caller is responsible to either
2128  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2129  * order to install the pidfd into its file descriptor table or they must use
2130  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2131  * respectively.
2132  *
2133  * This function is useful when a pidfd must already be reserved but there
2134  * might still be points of failure afterwards and the caller wants to ensure
2135  * that no pidfd is leaked into its file descriptor table.
2136  *
2137  * Return: On success, a reserved pidfd is returned from the function and a new
2138  *         pidfd file is returned in the last argument to the function. On
2139  *         error, a negative error code is returned from the function and the
2140  *         last argument remains unchanged.
2141  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2142 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2143 {
2144 	int pidfd;
2145 	struct file *pidfd_file;
2146 
2147 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2148 		return -EINVAL;
2149 
2150 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2151 	if (pidfd < 0)
2152 		return pidfd;
2153 
2154 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2155 					flags | O_RDWR | O_CLOEXEC);
2156 	if (IS_ERR(pidfd_file)) {
2157 		put_unused_fd(pidfd);
2158 		return PTR_ERR(pidfd_file);
2159 	}
2160 	get_pid(pid); /* held by pidfd_file now */
2161 	*ret = pidfd_file;
2162 	return pidfd;
2163 }
2164 
2165 /**
2166  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2167  * @pid:   the struct pid for which to create a pidfd
2168  * @flags: flags of the new @pidfd
2169  * @pidfd: the pidfd to return
2170  *
2171  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2172  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2173  *
2174  * The helper verifies that @pid is used as a thread group leader.
2175  *
2176  * If this function returns successfully the caller is responsible to either
2177  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2178  * order to install the pidfd into its file descriptor table or they must use
2179  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2180  * respectively.
2181  *
2182  * This function is useful when a pidfd must already be reserved but there
2183  * might still be points of failure afterwards and the caller wants to ensure
2184  * that no pidfd is leaked into its file descriptor table.
2185  *
2186  * Return: On success, a reserved pidfd is returned from the function and a new
2187  *         pidfd file is returned in the last argument to the function. On
2188  *         error, a negative error code is returned from the function and the
2189  *         last argument remains unchanged.
2190  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2191 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2192 {
2193 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2194 		return -EINVAL;
2195 
2196 	return __pidfd_prepare(pid, flags, ret);
2197 }
2198 
__delayed_free_task(struct rcu_head * rhp)2199 static void __delayed_free_task(struct rcu_head *rhp)
2200 {
2201 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2202 
2203 	free_task(tsk);
2204 }
2205 
delayed_free_task(struct task_struct * tsk)2206 static __always_inline void delayed_free_task(struct task_struct *tsk)
2207 {
2208 	if (IS_ENABLED(CONFIG_MEMCG))
2209 		call_rcu(&tsk->rcu, __delayed_free_task);
2210 	else
2211 		free_task(tsk);
2212 }
2213 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2214 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2215 {
2216 	/* Skip if kernel thread */
2217 	if (!tsk->mm)
2218 		return;
2219 
2220 	/* Skip if spawning a thread or using vfork */
2221 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2222 		return;
2223 
2224 	/* We need to synchronize with __set_oom_adj */
2225 	mutex_lock(&oom_adj_mutex);
2226 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2227 	/* Update the values in case they were changed after copy_signal */
2228 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2229 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2230 	mutex_unlock(&oom_adj_mutex);
2231 }
2232 
2233 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2234 static void rv_task_fork(struct task_struct *p)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2239 		p->rv[i].da_mon.monitoring = false;
2240 }
2241 #else
2242 #define rv_task_fork(p) do {} while (0)
2243 #endif
2244 
2245 /*
2246  * This creates a new process as a copy of the old one,
2247  * but does not actually start it yet.
2248  *
2249  * It copies the registers, and all the appropriate
2250  * parts of the process environment (as per the clone
2251  * flags). The actual kick-off is left to the caller.
2252  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2253 __latent_entropy struct task_struct *copy_process(
2254 					struct pid *pid,
2255 					int trace,
2256 					int node,
2257 					struct kernel_clone_args *args)
2258 {
2259 	int pidfd = -1, retval;
2260 	struct task_struct *p;
2261 	struct multiprocess_signals delayed;
2262 	struct file *pidfile = NULL;
2263 	const u64 clone_flags = args->flags;
2264 	struct nsproxy *nsp = current->nsproxy;
2265 
2266 	/*
2267 	 * Don't allow sharing the root directory with processes in a different
2268 	 * namespace
2269 	 */
2270 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2271 		return ERR_PTR(-EINVAL);
2272 
2273 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2274 		return ERR_PTR(-EINVAL);
2275 
2276 	/*
2277 	 * Thread groups must share signals as well, and detached threads
2278 	 * can only be started up within the thread group.
2279 	 */
2280 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2281 		return ERR_PTR(-EINVAL);
2282 
2283 	/*
2284 	 * Shared signal handlers imply shared VM. By way of the above,
2285 	 * thread groups also imply shared VM. Blocking this case allows
2286 	 * for various simplifications in other code.
2287 	 */
2288 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2289 		return ERR_PTR(-EINVAL);
2290 
2291 	/*
2292 	 * Siblings of global init remain as zombies on exit since they are
2293 	 * not reaped by their parent (swapper). To solve this and to avoid
2294 	 * multi-rooted process trees, prevent global and container-inits
2295 	 * from creating siblings.
2296 	 */
2297 	if ((clone_flags & CLONE_PARENT) &&
2298 				current->signal->flags & SIGNAL_UNKILLABLE)
2299 		return ERR_PTR(-EINVAL);
2300 
2301 	/*
2302 	 * If the new process will be in a different pid or user namespace
2303 	 * do not allow it to share a thread group with the forking task.
2304 	 */
2305 	if (clone_flags & CLONE_THREAD) {
2306 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2307 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2308 			return ERR_PTR(-EINVAL);
2309 	}
2310 
2311 	if (clone_flags & CLONE_PIDFD) {
2312 		/*
2313 		 * - CLONE_DETACHED is blocked so that we can potentially
2314 		 *   reuse it later for CLONE_PIDFD.
2315 		 * - CLONE_THREAD is blocked until someone really needs it.
2316 		 */
2317 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2318 			return ERR_PTR(-EINVAL);
2319 	}
2320 
2321 	/*
2322 	 * Force any signals received before this point to be delivered
2323 	 * before the fork happens.  Collect up signals sent to multiple
2324 	 * processes that happen during the fork and delay them so that
2325 	 * they appear to happen after the fork.
2326 	 */
2327 	sigemptyset(&delayed.signal);
2328 	INIT_HLIST_NODE(&delayed.node);
2329 
2330 	spin_lock_irq(&current->sighand->siglock);
2331 	if (!(clone_flags & CLONE_THREAD))
2332 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2333 	recalc_sigpending();
2334 	spin_unlock_irq(&current->sighand->siglock);
2335 	retval = -ERESTARTNOINTR;
2336 	if (task_sigpending(current))
2337 		goto fork_out;
2338 
2339 	retval = -ENOMEM;
2340 	p = dup_task_struct(current, node);
2341 	if (!p)
2342 		goto fork_out;
2343 	p->flags &= ~PF_KTHREAD;
2344 	if (args->kthread)
2345 		p->flags |= PF_KTHREAD;
2346 	if (args->user_worker) {
2347 		/*
2348 		 * Mark us a user worker, and block any signal that isn't
2349 		 * fatal or STOP
2350 		 */
2351 		p->flags |= PF_USER_WORKER;
2352 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2353 	}
2354 	if (args->io_thread)
2355 		p->flags |= PF_IO_WORKER;
2356 
2357 	if (args->name)
2358 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2359 
2360 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2361 	/*
2362 	 * Clear TID on mm_release()?
2363 	 */
2364 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2365 
2366 	ftrace_graph_init_task(p);
2367 
2368 	rt_mutex_init_task(p);
2369 
2370 	lockdep_assert_irqs_enabled();
2371 #ifdef CONFIG_PROVE_LOCKING
2372 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2373 #endif
2374 	retval = copy_creds(p, clone_flags);
2375 	if (retval < 0)
2376 		goto bad_fork_free;
2377 
2378 	retval = -EAGAIN;
2379 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2380 		if (p->real_cred->user != INIT_USER &&
2381 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2382 			goto bad_fork_cleanup_count;
2383 	}
2384 	current->flags &= ~PF_NPROC_EXCEEDED;
2385 
2386 	/*
2387 	 * If multiple threads are within copy_process(), then this check
2388 	 * triggers too late. This doesn't hurt, the check is only there
2389 	 * to stop root fork bombs.
2390 	 */
2391 	retval = -EAGAIN;
2392 	if (data_race(nr_threads >= max_threads))
2393 		goto bad_fork_cleanup_count;
2394 
2395 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2396 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2397 	p->flags |= PF_FORKNOEXEC;
2398 	INIT_LIST_HEAD(&p->children);
2399 	INIT_LIST_HEAD(&p->sibling);
2400 	rcu_copy_process(p);
2401 	p->vfork_done = NULL;
2402 	spin_lock_init(&p->alloc_lock);
2403 
2404 	init_sigpending(&p->pending);
2405 
2406 	p->utime = p->stime = p->gtime = 0;
2407 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2408 	p->utimescaled = p->stimescaled = 0;
2409 #endif
2410 	prev_cputime_init(&p->prev_cputime);
2411 
2412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2413 	seqcount_init(&p->vtime.seqcount);
2414 	p->vtime.starttime = 0;
2415 	p->vtime.state = VTIME_INACTIVE;
2416 #endif
2417 
2418 #ifdef CONFIG_IO_URING
2419 	p->io_uring = NULL;
2420 #endif
2421 
2422 #if defined(SPLIT_RSS_COUNTING)
2423 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2424 #endif
2425 
2426 	p->default_timer_slack_ns = current->timer_slack_ns;
2427 
2428 #ifdef CONFIG_PSI
2429 	p->psi_flags = 0;
2430 #endif
2431 
2432 	task_io_accounting_init(&p->ioac);
2433 	acct_clear_integrals(p);
2434 
2435 	posix_cputimers_init(&p->posix_cputimers);
2436 	tick_dep_init_task(p);
2437 
2438 	p->io_context = NULL;
2439 	audit_set_context(p, NULL);
2440 	cgroup_fork(p);
2441 	if (args->kthread) {
2442 		if (!set_kthread_struct(p))
2443 			goto bad_fork_cleanup_delayacct;
2444 	}
2445 #ifdef CONFIG_NUMA
2446 	p->mempolicy = mpol_dup(p->mempolicy);
2447 	if (IS_ERR(p->mempolicy)) {
2448 		retval = PTR_ERR(p->mempolicy);
2449 		p->mempolicy = NULL;
2450 		goto bad_fork_cleanup_delayacct;
2451 	}
2452 #endif
2453 #ifdef CONFIG_CPUSETS
2454 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2455 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2456 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2457 #endif
2458 #ifdef CONFIG_TRACE_IRQFLAGS
2459 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2460 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2461 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2462 	p->softirqs_enabled		= 1;
2463 	p->softirq_context		= 0;
2464 #endif
2465 
2466 	p->pagefault_disabled = 0;
2467 
2468 #ifdef CONFIG_LOCKDEP
2469 	lockdep_init_task(p);
2470 #endif
2471 
2472 #ifdef CONFIG_DEBUG_MUTEXES
2473 	p->blocked_on = NULL; /* not blocked yet */
2474 #endif
2475 #ifdef CONFIG_BCACHE
2476 	p->sequential_io	= 0;
2477 	p->sequential_io_avg	= 0;
2478 #endif
2479 #ifdef CONFIG_BPF_SYSCALL
2480 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2481 	p->bpf_ctx = NULL;
2482 #endif
2483 
2484 	/* Perform scheduler related setup. Assign this task to a CPU. */
2485 	retval = sched_fork(clone_flags, p);
2486 	if (retval)
2487 		goto bad_fork_cleanup_policy;
2488 
2489 	retval = perf_event_init_task(p, clone_flags);
2490 	if (retval)
2491 		goto bad_fork_cleanup_policy;
2492 	retval = audit_alloc(p);
2493 	if (retval)
2494 		goto bad_fork_cleanup_perf;
2495 	/* copy all the process information */
2496 	shm_init_task(p);
2497 	retval = security_task_alloc(p, clone_flags);
2498 	if (retval)
2499 		goto bad_fork_cleanup_audit;
2500 	retval = copy_semundo(clone_flags, p);
2501 	if (retval)
2502 		goto bad_fork_cleanup_security;
2503 	retval = copy_files(clone_flags, p, args->no_files);
2504 	if (retval)
2505 		goto bad_fork_cleanup_semundo;
2506 	retval = copy_fs(clone_flags, p);
2507 	if (retval)
2508 		goto bad_fork_cleanup_files;
2509 	retval = copy_sighand(clone_flags, p);
2510 	if (retval)
2511 		goto bad_fork_cleanup_fs;
2512 	retval = copy_signal(clone_flags, p);
2513 	if (retval)
2514 		goto bad_fork_cleanup_sighand;
2515 	retval = copy_mm(clone_flags, p);
2516 	if (retval)
2517 		goto bad_fork_cleanup_signal;
2518 	retval = copy_namespaces(clone_flags, p);
2519 	if (retval)
2520 		goto bad_fork_cleanup_mm;
2521 	retval = copy_io(clone_flags, p);
2522 	if (retval)
2523 		goto bad_fork_cleanup_namespaces;
2524 	retval = copy_thread(p, args);
2525 	if (retval)
2526 		goto bad_fork_cleanup_io;
2527 
2528 	stackleak_task_init(p);
2529 
2530 	if (pid != &init_struct_pid) {
2531 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2532 				args->set_tid_size);
2533 		if (IS_ERR(pid)) {
2534 			retval = PTR_ERR(pid);
2535 			goto bad_fork_cleanup_thread;
2536 		}
2537 	}
2538 
2539 	/*
2540 	 * This has to happen after we've potentially unshared the file
2541 	 * descriptor table (so that the pidfd doesn't leak into the child
2542 	 * if the fd table isn't shared).
2543 	 */
2544 	if (clone_flags & CLONE_PIDFD) {
2545 		/* Note that no task has been attached to @pid yet. */
2546 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2547 		if (retval < 0)
2548 			goto bad_fork_free_pid;
2549 		pidfd = retval;
2550 
2551 		retval = put_user(pidfd, args->pidfd);
2552 		if (retval)
2553 			goto bad_fork_put_pidfd;
2554 	}
2555 
2556 #ifdef CONFIG_BLOCK
2557 	p->plug = NULL;
2558 #endif
2559 	futex_init_task(p);
2560 
2561 	/*
2562 	 * sigaltstack should be cleared when sharing the same VM
2563 	 */
2564 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2565 		sas_ss_reset(p);
2566 
2567 	/*
2568 	 * Syscall tracing and stepping should be turned off in the
2569 	 * child regardless of CLONE_PTRACE.
2570 	 */
2571 	user_disable_single_step(p);
2572 	clear_task_syscall_work(p, SYSCALL_TRACE);
2573 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2574 	clear_task_syscall_work(p, SYSCALL_EMU);
2575 #endif
2576 	clear_tsk_latency_tracing(p);
2577 
2578 	/* ok, now we should be set up.. */
2579 	p->pid = pid_nr(pid);
2580 	if (clone_flags & CLONE_THREAD) {
2581 		p->group_leader = current->group_leader;
2582 		p->tgid = current->tgid;
2583 	} else {
2584 		p->group_leader = p;
2585 		p->tgid = p->pid;
2586 	}
2587 
2588 	p->nr_dirtied = 0;
2589 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2590 	p->dirty_paused_when = 0;
2591 
2592 	p->pdeath_signal = 0;
2593 	INIT_LIST_HEAD(&p->thread_group);
2594 	p->task_works = NULL;
2595 	clear_posix_cputimers_work(p);
2596 
2597 #ifdef CONFIG_KRETPROBES
2598 	p->kretprobe_instances.first = NULL;
2599 #endif
2600 #ifdef CONFIG_RETHOOK
2601 	p->rethooks.first = NULL;
2602 #endif
2603 
2604 	/*
2605 	 * Ensure that the cgroup subsystem policies allow the new process to be
2606 	 * forked. It should be noted that the new process's css_set can be changed
2607 	 * between here and cgroup_post_fork() if an organisation operation is in
2608 	 * progress.
2609 	 */
2610 	retval = cgroup_can_fork(p, args);
2611 	if (retval)
2612 		goto bad_fork_put_pidfd;
2613 
2614 	/*
2615 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2616 	 * the new task on the correct runqueue. All this *before* the task
2617 	 * becomes visible.
2618 	 *
2619 	 * This isn't part of ->can_fork() because while the re-cloning is
2620 	 * cgroup specific, it unconditionally needs to place the task on a
2621 	 * runqueue.
2622 	 */
2623 	sched_cgroup_fork(p, args);
2624 
2625 	/*
2626 	 * From this point on we must avoid any synchronous user-space
2627 	 * communication until we take the tasklist-lock. In particular, we do
2628 	 * not want user-space to be able to predict the process start-time by
2629 	 * stalling fork(2) after we recorded the start_time but before it is
2630 	 * visible to the system.
2631 	 */
2632 
2633 	p->start_time = ktime_get_ns();
2634 	p->start_boottime = ktime_get_boottime_ns();
2635 
2636 	/*
2637 	 * Make it visible to the rest of the system, but dont wake it up yet.
2638 	 * Need tasklist lock for parent etc handling!
2639 	 */
2640 	write_lock_irq(&tasklist_lock);
2641 
2642 	/* CLONE_PARENT re-uses the old parent */
2643 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2644 		p->real_parent = current->real_parent;
2645 		p->parent_exec_id = current->parent_exec_id;
2646 		if (clone_flags & CLONE_THREAD)
2647 			p->exit_signal = -1;
2648 		else
2649 			p->exit_signal = current->group_leader->exit_signal;
2650 	} else {
2651 		p->real_parent = current;
2652 		p->parent_exec_id = current->self_exec_id;
2653 		p->exit_signal = args->exit_signal;
2654 	}
2655 
2656 	klp_copy_process(p);
2657 
2658 	sched_core_fork(p);
2659 
2660 	spin_lock(&current->sighand->siglock);
2661 
2662 	rv_task_fork(p);
2663 
2664 	rseq_fork(p, clone_flags);
2665 
2666 	/* Don't start children in a dying pid namespace */
2667 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2668 		retval = -ENOMEM;
2669 		goto bad_fork_cancel_cgroup;
2670 	}
2671 
2672 	/* Let kill terminate clone/fork in the middle */
2673 	if (fatal_signal_pending(current)) {
2674 		retval = -EINTR;
2675 		goto bad_fork_cancel_cgroup;
2676 	}
2677 
2678 	/* No more failure paths after this point. */
2679 
2680 	/*
2681 	 * Copy seccomp details explicitly here, in case they were changed
2682 	 * before holding sighand lock.
2683 	 */
2684 	copy_seccomp(p);
2685 
2686 	init_task_pid_links(p);
2687 	if (likely(p->pid)) {
2688 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2689 
2690 		init_task_pid(p, PIDTYPE_PID, pid);
2691 		if (thread_group_leader(p)) {
2692 			init_task_pid(p, PIDTYPE_TGID, pid);
2693 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2694 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2695 
2696 			if (is_child_reaper(pid)) {
2697 				ns_of_pid(pid)->child_reaper = p;
2698 				p->signal->flags |= SIGNAL_UNKILLABLE;
2699 			}
2700 			p->signal->shared_pending.signal = delayed.signal;
2701 			p->signal->tty = tty_kref_get(current->signal->tty);
2702 			/*
2703 			 * Inherit has_child_subreaper flag under the same
2704 			 * tasklist_lock with adding child to the process tree
2705 			 * for propagate_has_child_subreaper optimization.
2706 			 */
2707 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2708 							 p->real_parent->signal->is_child_subreaper;
2709 			list_add_tail(&p->sibling, &p->real_parent->children);
2710 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2711 			attach_pid(p, PIDTYPE_TGID);
2712 			attach_pid(p, PIDTYPE_PGID);
2713 			attach_pid(p, PIDTYPE_SID);
2714 			__this_cpu_inc(process_counts);
2715 		} else {
2716 			current->signal->nr_threads++;
2717 			current->signal->quick_threads++;
2718 			atomic_inc(&current->signal->live);
2719 			refcount_inc(&current->signal->sigcnt);
2720 			task_join_group_stop(p);
2721 			list_add_tail_rcu(&p->thread_group,
2722 					  &p->group_leader->thread_group);
2723 			list_add_tail_rcu(&p->thread_node,
2724 					  &p->signal->thread_head);
2725 		}
2726 		attach_pid(p, PIDTYPE_PID);
2727 		nr_threads++;
2728 	}
2729 	total_forks++;
2730 	hlist_del_init(&delayed.node);
2731 	spin_unlock(&current->sighand->siglock);
2732 	syscall_tracepoint_update(p);
2733 	write_unlock_irq(&tasklist_lock);
2734 
2735 	if (pidfile)
2736 		fd_install(pidfd, pidfile);
2737 
2738 	proc_fork_connector(p);
2739 	sched_post_fork(p);
2740 	cgroup_post_fork(p, args);
2741 	perf_event_fork(p);
2742 
2743 	trace_task_newtask(p, clone_flags);
2744 	uprobe_copy_process(p, clone_flags);
2745 	user_events_fork(p, clone_flags);
2746 
2747 	copy_oom_score_adj(clone_flags, p);
2748 
2749 	return p;
2750 
2751 bad_fork_cancel_cgroup:
2752 	sched_core_free(p);
2753 	spin_unlock(&current->sighand->siglock);
2754 	write_unlock_irq(&tasklist_lock);
2755 	cgroup_cancel_fork(p, args);
2756 bad_fork_put_pidfd:
2757 	if (clone_flags & CLONE_PIDFD) {
2758 		fput(pidfile);
2759 		put_unused_fd(pidfd);
2760 	}
2761 bad_fork_free_pid:
2762 	if (pid != &init_struct_pid)
2763 		free_pid(pid);
2764 bad_fork_cleanup_thread:
2765 	exit_thread(p);
2766 bad_fork_cleanup_io:
2767 	if (p->io_context)
2768 		exit_io_context(p);
2769 bad_fork_cleanup_namespaces:
2770 	exit_task_namespaces(p);
2771 bad_fork_cleanup_mm:
2772 	if (p->mm) {
2773 		mm_clear_owner(p->mm, p);
2774 		mmput(p->mm);
2775 	}
2776 bad_fork_cleanup_signal:
2777 	if (!(clone_flags & CLONE_THREAD))
2778 		free_signal_struct(p->signal);
2779 bad_fork_cleanup_sighand:
2780 	__cleanup_sighand(p->sighand);
2781 bad_fork_cleanup_fs:
2782 	exit_fs(p); /* blocking */
2783 bad_fork_cleanup_files:
2784 	exit_files(p); /* blocking */
2785 bad_fork_cleanup_semundo:
2786 	exit_sem(p);
2787 bad_fork_cleanup_security:
2788 	security_task_free(p);
2789 bad_fork_cleanup_audit:
2790 	audit_free(p);
2791 bad_fork_cleanup_perf:
2792 	perf_event_free_task(p);
2793 bad_fork_cleanup_policy:
2794 	lockdep_free_task(p);
2795 	free_task_load_ptrs(p);
2796 #ifdef CONFIG_NUMA
2797 	mpol_put(p->mempolicy);
2798 #endif
2799 bad_fork_cleanup_delayacct:
2800 	delayacct_tsk_free(p);
2801 bad_fork_cleanup_count:
2802 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2803 	exit_creds(p);
2804 bad_fork_free:
2805 	WRITE_ONCE(p->__state, TASK_DEAD);
2806 	exit_task_stack_account(p);
2807 	put_task_stack(p);
2808 	delayed_free_task(p);
2809 fork_out:
2810 	spin_lock_irq(&current->sighand->siglock);
2811 	hlist_del_init(&delayed.node);
2812 	spin_unlock_irq(&current->sighand->siglock);
2813 	return ERR_PTR(retval);
2814 }
2815 
init_idle_pids(struct task_struct * idle)2816 static inline void init_idle_pids(struct task_struct *idle)
2817 {
2818 	enum pid_type type;
2819 
2820 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2821 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2822 		init_task_pid(idle, type, &init_struct_pid);
2823 	}
2824 }
2825 
idle_dummy(void * dummy)2826 static int idle_dummy(void *dummy)
2827 {
2828 	/* This function is never called */
2829 	return 0;
2830 }
2831 
fork_idle(int cpu)2832 struct task_struct * __init fork_idle(int cpu)
2833 {
2834 	struct task_struct *task;
2835 	struct kernel_clone_args args = {
2836 		.flags		= CLONE_VM,
2837 		.fn		= &idle_dummy,
2838 		.fn_arg		= NULL,
2839 		.kthread	= 1,
2840 		.idle		= 1,
2841 	};
2842 
2843 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2844 	if (!IS_ERR(task)) {
2845 		init_idle_pids(task);
2846 		init_idle(task, cpu);
2847 	}
2848 
2849 	return task;
2850 }
2851 
2852 /*
2853  * This is like kernel_clone(), but shaved down and tailored to just
2854  * creating io_uring workers. It returns a created task, or an error pointer.
2855  * The returned task is inactive, and the caller must fire it up through
2856  * wake_up_new_task(p). All signals are blocked in the created task.
2857  */
create_io_thread(int (* fn)(void *),void * arg,int node)2858 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2859 {
2860 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2861 				CLONE_IO;
2862 	struct kernel_clone_args args = {
2863 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2864 				    CLONE_UNTRACED) & ~CSIGNAL),
2865 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2866 		.fn		= fn,
2867 		.fn_arg		= arg,
2868 		.io_thread	= 1,
2869 		.user_worker	= 1,
2870 	};
2871 
2872 	return copy_process(NULL, 0, node, &args);
2873 }
2874 
2875 /*
2876  *  Ok, this is the main fork-routine.
2877  *
2878  * It copies the process, and if successful kick-starts
2879  * it and waits for it to finish using the VM if required.
2880  *
2881  * args->exit_signal is expected to be checked for sanity by the caller.
2882  */
kernel_clone(struct kernel_clone_args * args)2883 pid_t kernel_clone(struct kernel_clone_args *args)
2884 {
2885 	u64 clone_flags = args->flags;
2886 	struct completion vfork;
2887 	struct pid *pid;
2888 	struct task_struct *p;
2889 	int trace = 0;
2890 	pid_t nr;
2891 
2892 	/*
2893 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2894 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2895 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2896 	 * field in struct clone_args and it still doesn't make sense to have
2897 	 * them both point at the same memory location. Performing this check
2898 	 * here has the advantage that we don't need to have a separate helper
2899 	 * to check for legacy clone().
2900 	 */
2901 	if ((args->flags & CLONE_PIDFD) &&
2902 	    (args->flags & CLONE_PARENT_SETTID) &&
2903 	    (args->pidfd == args->parent_tid))
2904 		return -EINVAL;
2905 
2906 	/*
2907 	 * Determine whether and which event to report to ptracer.  When
2908 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2909 	 * requested, no event is reported; otherwise, report if the event
2910 	 * for the type of forking is enabled.
2911 	 */
2912 	if (!(clone_flags & CLONE_UNTRACED)) {
2913 		if (clone_flags & CLONE_VFORK)
2914 			trace = PTRACE_EVENT_VFORK;
2915 		else if (args->exit_signal != SIGCHLD)
2916 			trace = PTRACE_EVENT_CLONE;
2917 		else
2918 			trace = PTRACE_EVENT_FORK;
2919 
2920 		if (likely(!ptrace_event_enabled(current, trace)))
2921 			trace = 0;
2922 	}
2923 
2924 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2925 	add_latent_entropy();
2926 
2927 	if (IS_ERR(p))
2928 		return PTR_ERR(p);
2929 
2930 	/*
2931 	 * Do this prior waking up the new thread - the thread pointer
2932 	 * might get invalid after that point, if the thread exits quickly.
2933 	 */
2934 	trace_sched_process_fork(current, p);
2935 
2936 	pid = get_task_pid(p, PIDTYPE_PID);
2937 	nr = pid_vnr(pid);
2938 
2939 	if (clone_flags & CLONE_PARENT_SETTID)
2940 		put_user(nr, args->parent_tid);
2941 
2942 	if (clone_flags & CLONE_VFORK) {
2943 		p->vfork_done = &vfork;
2944 		init_completion(&vfork);
2945 		get_task_struct(p);
2946 	}
2947 
2948 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2949 		/* lock the task to synchronize with memcg migration */
2950 		task_lock(p);
2951 		lru_gen_add_mm(p->mm);
2952 		task_unlock(p);
2953 	}
2954 
2955 	CALL_HCK_LITE_HOOK(ced_kernel_clone_lhck, p);
2956 	wake_up_new_task(p);
2957 
2958 	/* forking complete and child started to run, tell ptracer */
2959 	if (unlikely(trace))
2960 		ptrace_event_pid(trace, pid);
2961 
2962 	if (clone_flags & CLONE_VFORK) {
2963 		if (!wait_for_vfork_done(p, &vfork))
2964 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2965 	}
2966 
2967 	put_pid(pid);
2968 	return nr;
2969 }
2970 
2971 /*
2972  * Create a kernel thread.
2973  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2974 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2975 		    unsigned long flags)
2976 {
2977 	struct kernel_clone_args args = {
2978 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2979 				    CLONE_UNTRACED) & ~CSIGNAL),
2980 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2981 		.fn		= fn,
2982 		.fn_arg		= arg,
2983 		.name		= name,
2984 		.kthread	= 1,
2985 	};
2986 
2987 	return kernel_clone(&args);
2988 }
2989 
2990 /*
2991  * Create a user mode thread.
2992  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2993 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2994 {
2995 	struct kernel_clone_args args = {
2996 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2997 				    CLONE_UNTRACED) & ~CSIGNAL),
2998 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2999 		.fn		= fn,
3000 		.fn_arg		= arg,
3001 	};
3002 
3003 	return kernel_clone(&args);
3004 }
3005 
3006 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)3007 SYSCALL_DEFINE0(fork)
3008 {
3009 #ifdef CONFIG_MMU
3010 	struct kernel_clone_args args = {
3011 		.exit_signal = SIGCHLD,
3012 	};
3013 
3014 	return kernel_clone(&args);
3015 #else
3016 	/* can not support in nommu mode */
3017 	return -EINVAL;
3018 #endif
3019 }
3020 #endif
3021 
3022 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3023 SYSCALL_DEFINE0(vfork)
3024 {
3025 	struct kernel_clone_args args = {
3026 		.flags		= CLONE_VFORK | CLONE_VM,
3027 		.exit_signal	= SIGCHLD,
3028 	};
3029 
3030 	return kernel_clone(&args);
3031 }
3032 #endif
3033 
3034 #ifdef __ARCH_WANT_SYS_CLONE
3035 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3036 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3037 		 int __user *, parent_tidptr,
3038 		 unsigned long, tls,
3039 		 int __user *, child_tidptr)
3040 #elif defined(CONFIG_CLONE_BACKWARDS2)
3041 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3042 		 int __user *, parent_tidptr,
3043 		 int __user *, child_tidptr,
3044 		 unsigned long, tls)
3045 #elif defined(CONFIG_CLONE_BACKWARDS3)
3046 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3047 		int, stack_size,
3048 		int __user *, parent_tidptr,
3049 		int __user *, child_tidptr,
3050 		unsigned long, tls)
3051 #else
3052 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3053 		 int __user *, parent_tidptr,
3054 		 int __user *, child_tidptr,
3055 		 unsigned long, tls)
3056 #endif
3057 {
3058 	struct kernel_clone_args args = {
3059 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3060 		.pidfd		= parent_tidptr,
3061 		.child_tid	= child_tidptr,
3062 		.parent_tid	= parent_tidptr,
3063 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3064 		.stack		= newsp,
3065 		.tls		= tls,
3066 	};
3067 
3068 	return kernel_clone(&args);
3069 }
3070 #endif
3071 
3072 #ifdef __ARCH_WANT_SYS_CLONE3
3073 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3074 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3075 					      struct clone_args __user *uargs,
3076 					      size_t usize)
3077 {
3078 	int err;
3079 	struct clone_args args;
3080 	pid_t *kset_tid = kargs->set_tid;
3081 
3082 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3083 		     CLONE_ARGS_SIZE_VER0);
3084 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3085 		     CLONE_ARGS_SIZE_VER1);
3086 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3087 		     CLONE_ARGS_SIZE_VER2);
3088 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3089 
3090 	if (unlikely(usize > PAGE_SIZE))
3091 		return -E2BIG;
3092 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3093 		return -EINVAL;
3094 
3095 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3096 	if (err)
3097 		return err;
3098 
3099 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3100 		return -EINVAL;
3101 
3102 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3103 		return -EINVAL;
3104 
3105 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3106 		return -EINVAL;
3107 
3108 	/*
3109 	 * Verify that higher 32bits of exit_signal are unset and that
3110 	 * it is a valid signal
3111 	 */
3112 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3113 		     !valid_signal(args.exit_signal)))
3114 		return -EINVAL;
3115 
3116 	if ((args.flags & CLONE_INTO_CGROUP) &&
3117 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3118 		return -EINVAL;
3119 
3120 	*kargs = (struct kernel_clone_args){
3121 		.flags		= args.flags,
3122 		.pidfd		= u64_to_user_ptr(args.pidfd),
3123 		.child_tid	= u64_to_user_ptr(args.child_tid),
3124 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3125 		.exit_signal	= args.exit_signal,
3126 		.stack		= args.stack,
3127 		.stack_size	= args.stack_size,
3128 		.tls		= args.tls,
3129 		.set_tid_size	= args.set_tid_size,
3130 		.cgroup		= args.cgroup,
3131 	};
3132 
3133 	if (args.set_tid &&
3134 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3135 			(kargs->set_tid_size * sizeof(pid_t))))
3136 		return -EFAULT;
3137 
3138 	kargs->set_tid = kset_tid;
3139 
3140 	return 0;
3141 }
3142 
3143 /**
3144  * clone3_stack_valid - check and prepare stack
3145  * @kargs: kernel clone args
3146  *
3147  * Verify that the stack arguments userspace gave us are sane.
3148  * In addition, set the stack direction for userspace since it's easy for us to
3149  * determine.
3150  */
clone3_stack_valid(struct kernel_clone_args * kargs)3151 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3152 {
3153 	if (kargs->stack == 0) {
3154 		if (kargs->stack_size > 0)
3155 			return false;
3156 	} else {
3157 		if (kargs->stack_size == 0)
3158 			return false;
3159 
3160 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3161 			return false;
3162 
3163 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3164 		kargs->stack += kargs->stack_size;
3165 #endif
3166 	}
3167 
3168 	return true;
3169 }
3170 
clone3_args_valid(struct kernel_clone_args * kargs)3171 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3172 {
3173 	/* Verify that no unknown flags are passed along. */
3174 	if (kargs->flags &
3175 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3176 		return false;
3177 
3178 	/*
3179 	 * - make the CLONE_DETACHED bit reusable for clone3
3180 	 * - make the CSIGNAL bits reusable for clone3
3181 	 */
3182 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3183 		return false;
3184 
3185 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3186 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3187 		return false;
3188 
3189 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3190 	    kargs->exit_signal)
3191 		return false;
3192 
3193 	if (!clone3_stack_valid(kargs))
3194 		return false;
3195 
3196 	return true;
3197 }
3198 
3199 /**
3200  * clone3 - create a new process with specific properties
3201  * @uargs: argument structure
3202  * @size:  size of @uargs
3203  *
3204  * clone3() is the extensible successor to clone()/clone2().
3205  * It takes a struct as argument that is versioned by its size.
3206  *
3207  * Return: On success, a positive PID for the child process.
3208  *         On error, a negative errno number.
3209  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3210 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3211 {
3212 	int err;
3213 
3214 	struct kernel_clone_args kargs;
3215 	pid_t set_tid[MAX_PID_NS_LEVEL];
3216 
3217 	kargs.set_tid = set_tid;
3218 
3219 	err = copy_clone_args_from_user(&kargs, uargs, size);
3220 	if (err)
3221 		return err;
3222 
3223 	if (!clone3_args_valid(&kargs))
3224 		return -EINVAL;
3225 
3226 	return kernel_clone(&kargs);
3227 }
3228 #endif
3229 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3230 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3231 {
3232 	struct task_struct *leader, *parent, *child;
3233 	int res;
3234 
3235 	read_lock(&tasklist_lock);
3236 	leader = top = top->group_leader;
3237 down:
3238 	for_each_thread(leader, parent) {
3239 		list_for_each_entry(child, &parent->children, sibling) {
3240 			res = visitor(child, data);
3241 			if (res) {
3242 				if (res < 0)
3243 					goto out;
3244 				leader = child;
3245 				goto down;
3246 			}
3247 up:
3248 			;
3249 		}
3250 	}
3251 
3252 	if (leader != top) {
3253 		child = leader;
3254 		parent = child->real_parent;
3255 		leader = parent->group_leader;
3256 		goto up;
3257 	}
3258 out:
3259 	read_unlock(&tasklist_lock);
3260 }
3261 
3262 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3263 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3264 #endif
3265 
sighand_ctor(void * data)3266 static void sighand_ctor(void *data)
3267 {
3268 	struct sighand_struct *sighand = data;
3269 
3270 	spin_lock_init(&sighand->siglock);
3271 	init_waitqueue_head(&sighand->signalfd_wqh);
3272 }
3273 
mm_cache_init(void)3274 void __init mm_cache_init(void)
3275 {
3276 	unsigned int mm_size;
3277 
3278 	/*
3279 	 * The mm_cpumask is located at the end of mm_struct, and is
3280 	 * dynamically sized based on the maximum CPU number this system
3281 	 * can have, taking hotplug into account (nr_cpu_ids).
3282 	 */
3283 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3284 
3285 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3286 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3287 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3288 			offsetof(struct mm_struct, saved_auxv),
3289 			sizeof_field(struct mm_struct, saved_auxv),
3290 			NULL);
3291 }
3292 
proc_caches_init(void)3293 void __init proc_caches_init(void)
3294 {
3295 	sighand_cachep = kmem_cache_create("sighand_cache",
3296 			sizeof(struct sighand_struct), 0,
3297 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3298 			SLAB_ACCOUNT, sighand_ctor);
3299 	signal_cachep = kmem_cache_create("signal_cache",
3300 			sizeof(struct signal_struct), 0,
3301 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3302 			NULL);
3303 	files_cachep = kmem_cache_create("files_cache",
3304 			sizeof(struct files_struct), 0,
3305 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3306 			NULL);
3307 	fs_cachep = kmem_cache_create("fs_cache",
3308 			sizeof(struct fs_struct), 0,
3309 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3310 			NULL);
3311 
3312 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3313 #ifdef CONFIG_PER_VMA_LOCK
3314 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3315 #endif
3316 	mmap_init();
3317 	nsproxy_cache_init();
3318 }
3319 
3320 /*
3321  * Check constraints on flags passed to the unshare system call.
3322  */
check_unshare_flags(unsigned long unshare_flags)3323 static int check_unshare_flags(unsigned long unshare_flags)
3324 {
3325 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3326 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3327 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3328 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3329 				CLONE_NEWTIME))
3330 		return -EINVAL;
3331 	/*
3332 	 * Not implemented, but pretend it works if there is nothing
3333 	 * to unshare.  Note that unsharing the address space or the
3334 	 * signal handlers also need to unshare the signal queues (aka
3335 	 * CLONE_THREAD).
3336 	 */
3337 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3338 		if (!thread_group_empty(current))
3339 			return -EINVAL;
3340 	}
3341 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3342 		if (refcount_read(&current->sighand->count) > 1)
3343 			return -EINVAL;
3344 	}
3345 	if (unshare_flags & CLONE_VM) {
3346 		if (!current_is_single_threaded())
3347 			return -EINVAL;
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 /*
3354  * Unshare the filesystem structure if it is being shared
3355  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3356 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3357 {
3358 	struct fs_struct *fs = current->fs;
3359 
3360 	if (!(unshare_flags & CLONE_FS) || !fs)
3361 		return 0;
3362 
3363 	/* don't need lock here; in the worst case we'll do useless copy */
3364 	if (fs->users == 1)
3365 		return 0;
3366 
3367 	*new_fsp = copy_fs_struct(fs);
3368 	if (!*new_fsp)
3369 		return -ENOMEM;
3370 
3371 	return 0;
3372 }
3373 
3374 /*
3375  * Unshare file descriptor table if it is being shared
3376  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3377 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3378 {
3379 	struct files_struct *fd = current->files;
3380 
3381 	if ((unshare_flags & CLONE_FILES) &&
3382 	    (fd && atomic_read(&fd->count) > 1)) {
3383 		fd = dup_fd(fd, NULL);
3384 		if (IS_ERR(fd))
3385 			return PTR_ERR(fd);
3386 		*new_fdp = fd;
3387 	}
3388 
3389 	return 0;
3390 }
3391 
3392 /*
3393  * unshare allows a process to 'unshare' part of the process
3394  * context which was originally shared using clone.  copy_*
3395  * functions used by kernel_clone() cannot be used here directly
3396  * because they modify an inactive task_struct that is being
3397  * constructed. Here we are modifying the current, active,
3398  * task_struct.
3399  */
ksys_unshare(unsigned long unshare_flags)3400 int ksys_unshare(unsigned long unshare_flags)
3401 {
3402 	struct fs_struct *fs, *new_fs = NULL;
3403 	struct files_struct *new_fd = NULL;
3404 	struct cred *new_cred = NULL;
3405 	struct nsproxy *new_nsproxy = NULL;
3406 	int do_sysvsem = 0;
3407 	int err;
3408 
3409 	/*
3410 	 * If unsharing a user namespace must also unshare the thread group
3411 	 * and unshare the filesystem root and working directories.
3412 	 */
3413 	if (unshare_flags & CLONE_NEWUSER)
3414 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3415 	/*
3416 	 * If unsharing vm, must also unshare signal handlers.
3417 	 */
3418 	if (unshare_flags & CLONE_VM)
3419 		unshare_flags |= CLONE_SIGHAND;
3420 	/*
3421 	 * If unsharing a signal handlers, must also unshare the signal queues.
3422 	 */
3423 	if (unshare_flags & CLONE_SIGHAND)
3424 		unshare_flags |= CLONE_THREAD;
3425 	/*
3426 	 * If unsharing namespace, must also unshare filesystem information.
3427 	 */
3428 	if (unshare_flags & CLONE_NEWNS)
3429 		unshare_flags |= CLONE_FS;
3430 
3431 	err = check_unshare_flags(unshare_flags);
3432 	if (err)
3433 		goto bad_unshare_out;
3434 	/*
3435 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3436 	 * to a new ipc namespace, the semaphore arrays from the old
3437 	 * namespace are unreachable.
3438 	 */
3439 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3440 		do_sysvsem = 1;
3441 	err = unshare_fs(unshare_flags, &new_fs);
3442 	if (err)
3443 		goto bad_unshare_out;
3444 	err = unshare_fd(unshare_flags, &new_fd);
3445 	if (err)
3446 		goto bad_unshare_cleanup_fs;
3447 	err = unshare_userns(unshare_flags, &new_cred);
3448 	if (err)
3449 		goto bad_unshare_cleanup_fd;
3450 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3451 					 new_cred, new_fs);
3452 	if (err)
3453 		goto bad_unshare_cleanup_cred;
3454 
3455 	if (new_cred) {
3456 		err = set_cred_ucounts(new_cred);
3457 		if (err)
3458 			goto bad_unshare_cleanup_cred;
3459 	}
3460 
3461 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3462 		if (do_sysvsem) {
3463 			/*
3464 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3465 			 */
3466 			exit_sem(current);
3467 		}
3468 		if (unshare_flags & CLONE_NEWIPC) {
3469 			/* Orphan segments in old ns (see sem above). */
3470 			exit_shm(current);
3471 			shm_init_task(current);
3472 		}
3473 
3474 		if (new_nsproxy)
3475 			switch_task_namespaces(current, new_nsproxy);
3476 
3477 		task_lock(current);
3478 
3479 		if (new_fs) {
3480 			fs = current->fs;
3481 			spin_lock(&fs->lock);
3482 			current->fs = new_fs;
3483 			if (--fs->users)
3484 				new_fs = NULL;
3485 			else
3486 				new_fs = fs;
3487 			spin_unlock(&fs->lock);
3488 		}
3489 
3490 		if (new_fd)
3491 			swap(current->files, new_fd);
3492 
3493 		task_unlock(current);
3494 
3495 		if (new_cred) {
3496 			/* Install the new user namespace */
3497 			commit_creds(new_cred);
3498 			new_cred = NULL;
3499 		}
3500 	}
3501 
3502 	perf_event_namespaces(current);
3503 
3504 bad_unshare_cleanup_cred:
3505 	if (new_cred)
3506 		put_cred(new_cred);
3507 bad_unshare_cleanup_fd:
3508 	if (new_fd)
3509 		put_files_struct(new_fd);
3510 
3511 bad_unshare_cleanup_fs:
3512 	if (new_fs)
3513 		free_fs_struct(new_fs);
3514 
3515 bad_unshare_out:
3516 	return err;
3517 }
3518 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3519 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3520 {
3521 	return ksys_unshare(unshare_flags);
3522 }
3523 
3524 /*
3525  *	Helper to unshare the files of the current task.
3526  *	We don't want to expose copy_files internals to
3527  *	the exec layer of the kernel.
3528  */
3529 
unshare_files(void)3530 int unshare_files(void)
3531 {
3532 	struct task_struct *task = current;
3533 	struct files_struct *old, *copy = NULL;
3534 	int error;
3535 
3536 	error = unshare_fd(CLONE_FILES, &copy);
3537 	if (error || !copy)
3538 		return error;
3539 
3540 	old = task->files;
3541 	task_lock(task);
3542 	task->files = copy;
3543 	task_unlock(task);
3544 	put_files_struct(old);
3545 	return 0;
3546 }
3547 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3548 int sysctl_max_threads(struct ctl_table *table, int write,
3549 		       void *buffer, size_t *lenp, loff_t *ppos)
3550 {
3551 	struct ctl_table t;
3552 	int ret;
3553 	int threads = max_threads;
3554 	int min = 1;
3555 	int max = MAX_THREADS;
3556 
3557 	t = *table;
3558 	t.data = &threads;
3559 	t.extra1 = &min;
3560 	t.extra2 = &max;
3561 
3562 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3563 	if (ret || !write)
3564 		return ret;
3565 
3566 	max_threads = threads;
3567 
3568 	return 0;
3569 }
3570