| /third_party/mindspore/mindspore-src/source/tests/ut/cpp/pipeline/parse/ |
| D | parallel_if.cc | 128 // Feature: Parallel if transformation 129 // Description: Check parallel if transformatin for test code with single if/else. 133 // Feature: Parallel if transformation 134 // Description: Check parallel if transformatin for test code with if-by-if. 138 // Feature: Parallel if transformation 139 // Description: Check parallel if transformatin for test code with if-in-if. 143 // Feature: Parallel if transformation 144 // Description: Check parallel if transformatin for test code with if-elif-else. 149 // Feature: Parallel if transformation 150 // Description: Check parallel if transformatin for if/else(while return). [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/frontend/parallel/pass/ |
| D | label_micro_interleaved_index.cc | 17 #include "frontend/parallel/pass/label_micro_interleaved_index.h" 27 #include "frontend/parallel/step_parallel.h" 30 namespace parallel { namespace 70 bool is_pipeline = (pipeline_micro >= 0 && input_cnode->HasPrimalAttr(parallel::MICRO)); in SpreadMicroInterleavedIndexForForwardCommNodes() 71 …if (is_pipeline && GetValue<int64_t>(input_cnode->GetPrimalAttr(parallel::MICRO)) != pipeline_micr… in SpreadMicroInterleavedIndexForForwardCommNodes() 77 if (pipeline_micro >= 0 && !input_cnode->HasPrimalAttr(parallel::MICRO)) { in SpreadMicroInterleavedIndexForForwardCommNodes() 81 …input_cnode->AddAttr(parallel::MICRO_INTERLEAVED_INDEX, MakeValue<size_t>(micro_interleaved_index)… in SpreadMicroInterleavedIndexForForwardCommNodes() 82 …input_cnode->AddAttr(parallel::MICRO_INTERLEAVED_FORWARD_COMM_ORDER, MakeValue<size_t>(forward_ord… in SpreadMicroInterleavedIndexForForwardCommNodes() 114 if (!forward_node->HasAttr(parallel::MICRO_INTERLEAVED_INDEX) || in LabelMicroInterleavedIndexForBackwardCommNodes() 115 !forward_node->HasAttr(parallel::MICRO_INTERLEAVED_FORWARD_COMM_ORDER)) { in LabelMicroInterleavedIndexForBackwardCommNodes() [all …]
|
| D | label_fine_grained_interleaved_index.cc | 17 #include "frontend/parallel/pass/label_fine_grained_interleaved_index.h" 27 #include "frontend/parallel/step_parallel.h" 28 #include "frontend/parallel/step_parallel_utils.h" 31 namespace parallel { namespace 80 …pre_cnode->AddAttr(parallel::MICRO_INTERLEAVED_INDEX, MakeValue<size_t>(fine_grained_interleaved_i… in SpreadFineGrainedInterleavedIndexForForwardCommNodes() 81 pre_cnode->AddPrimalAttr(parallel::FINE_GRAINED_INTERLEAVED_BLOCK, in SpreadFineGrainedInterleavedIndexForForwardCommNodes() 95 (parallel::IsSomePrimitiveList(pre_cnode, {ALL_GATHER, ALL_REDUCE, REDUCE_SCATTER}))) { in SpreadFineGrainedInterleavedIndexForForwardCommNodes() 96 pre_cnode->AddPrimalAttr(parallel::FINE_GRAINED_INTERLEAVED_BLOCK, in SpreadFineGrainedInterleavedIndexForForwardCommNodes() 98 …pre_cnode->AddAttr(parallel::MICRO_INTERLEAVED_INDEX, MakeValue<size_t>(fine_grained_interleaved_i… in SpreadFineGrainedInterleavedIndexForForwardCommNodes() 99 …pre_cnode->AddAttr(parallel::MICRO_INTERLEAVED_FORWARD_COMM_ORDER, MakeValue<size_t>(forward_order… in SpreadFineGrainedInterleavedIndexForForwardCommNodes() [all …]
|
| D | overlap_opt_shard_in_pipeline.cc | 17 #include "frontend/parallel/pass/overlap_opt_shard_in_pipeline.h" 26 #include "frontend/parallel/ops_info/ops_utils.h" 27 #include "frontend/parallel/device_manager.h" 29 #include "frontend/parallel/step_parallel_utils.h" 34 namespace parallel { namespace 43 if (allgather_instance_name.find(parallel::PARALLEL_OPTIMIZER) == std::string::npos) { in is_allgather_comm_ops() 58 auto micro = GetValue<int64_t>(recv_node->GetPrimalAttr(parallel::MICRO)); in is_first_receive() 59 if (micro != 0 || recv_node->HasPrimalAttr(parallel::PIPELINE_PARAM)) { in is_first_receive() 75 if (parallel::g_device_manager == nullptr) { in OverlapOptShardInPipeline() 76 MS_LOG(INFO) << "parallel::g_device_manager is not initialized."; in OverlapOptShardInPipeline() [all …]
|
| D | slice_activation_in_cell_share_recompute.cc | 17 #include "frontend/parallel/pass/slice_activation_in_cell_share_recompute.h" 21 #include "frontend/parallel/step_parallel.h" 22 #include "frontend/parallel/step_parallel_utils.h" 23 #include "frontend/parallel/graph_util/graph_utils.h" 24 #include "frontend/parallel/tensor_layout/construct_operator.h" 30 namespace parallel { namespace 32 CNodePtr CreateStridedSliceCNode(const parallel::Shape &begin, const parallel::Shape &end, in CreateStridedSliceCNode() 33 const parallel::Shape &strides, const AnfNodePtr &node) { in CreateStridedSliceCNode() 34 auto slice_op = parallel::CreateStridedSliceOp(0, begin, end, strides); in CreateStridedSliceCNode() 35 auto slice_input = parallel::CreateInput(slice_op, node, parallel::STRIDEDSLICE); in CreateStridedSliceCNode() [all …]
|
| D | full_micro_interleaved_order_control.cc | 17 #include "frontend/parallel/pass/full_micro_interleaved_order_control.h" 28 #include "frontend/parallel/step_parallel.h" 31 namespace parallel { namespace 53 if (!prim1->HasAttr(parallel::GROUP) || !prim2->HasAttr(parallel::GROUP)) { in CheckCommNodeEqual() 56 auto group1 = GetValue<std::string>(prim1->GetAttr(parallel::GROUP)); in CheckCommNodeEqual() 57 auto group2 = GetValue<std::string>(prim2->GetAttr(parallel::GROUP)); in CheckCommNodeEqual() 80 …if (!common::AnfAlgo::IsCommunicationOp(cnode) || !cnode->HasAttr(parallel::MICRO_INTERLEAVED_FORW… in ExtractInterLeavedCommNode() 81 !cnode->HasAttr(parallel::MICRO_INTERLEAVED_INDEX) || cnode->HasAttr(kAttrDuplicated)) { in ExtractInterLeavedCommNode() 89 if (pipeline_micro >= 0 && cnode->HasPrimalAttr(parallel::MICRO) && in ExtractInterLeavedCommNode() 90 GetValue<int64_t>(cnode->GetPrimalAttr(parallel::MICRO)) != pipeline_micro) { in ExtractInterLeavedCommNode() [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/ut/python/parallel/ |
| D | test_mul_softmax_net.py | 63 Feature: distribute operator softmax in auto parallel. 64 Description: data parallel softmax net in auto parallel. 78 Feature: distribute operator softmax in auto parallel. 79 Description: data parallel and half repeat softmax net in auto parallel. 93 Feature: distribute operator softmax in auto parallel. 94 Description: model parallel softmax net in auto parallel. 108 Feature: distribute operator softmax in auto parallel. 109 Description: model parallel with repeate softmax net in auto parallel. 123 Feature: distribute operator softmax in auto parallel. 124 Description: model parallel with half repeate softmax net in auto parallel. [all …]
|
| D | test_unsortedsegmentsum.py | 81 Feature: distribute operator unsorted_segment_sum in auto parallel. 82 …Description: unsorted_segment_sum net with model [arallel strategy in semi auto parallel, slice 1d. 96 Feature: distribute operator unsorted_segment_sum in auto parallel. 97 Description: unsorted_segment_sum net with no slice strategy in semi auto parallel, slice 1d. 111 Feature: distribute operator unsorted_segment_sum in auto parallel. 112 …Description: unsorted_segment_sum net with model parallel strategy in semi auto parallel, slice 2d. 126 Feature: distribute operator unsorted_segment_sum in auto parallel. 127 …Description: unsorted_segment_sum net with model parallel strategy in semi auto parallel, slice 3d. 141 Feature: distribute operator unsorted_segment_sum in auto parallel. 142 … Description: unsorted_segment_sum net with strategy in semi auto parallel, slice different inputs. [all …]
|
| D | test_lerp.py | 9 from parallel.utils.utils import compile_net, ParallelValidator 55 Feature: test Lerp auto parallel 56 Description: auto parallel when 'weight' is tensor 67 Feature: test Lerp auto parallel 68 Description: auto parallel when 'weight' is float 79 Feature: test Lerp model parallel 80 Description: model parallel when 'weight' is tensor 91 Feature: test Lerp model parallel 92 Description: model parallel when 'weight' is float 103 Feature: test Lerp model parallel with repeated calculation [all …]
|
| D | test_sparse_gather_v2.py | 82 Feature: distribute operator SparseGatherV2 in auto parallel. 83 Description: gather net with strategy in semi auto parallel, gather axis is 1. 95 Feature: distribute operator SparseGatherV2 in auto parallel. 96 Description: gather net with strategy in semi auto parallel, gather axis is 1. 107 Feature: distribute operator SparseGatherV2 in auto parallel. 108 Description: gather net with strategy in semi auto parallel, gather axis is 1. 119 Feature: distribute operator SparseGatherV2 in auto parallel. 120 Description: gather net with strategy in semi auto parallel, gather axis is 1. 131 Feature: distribute operator SparseGatherV2 in auto parallel. 132 Description: gather net with strategy in semi auto parallel, gather axis is 0. [all …]
|
| D | test_kldiv_loss.py | 21 from parallel.utils.utils import ParallelValidator, compile_net 44 Features: test KLDivLoss auto parallel 45 Description: auto parallel, reduction is 'mean' 58 Features: test KLDivLoss auto parallel 59 Description: auto parallel, reduction is 'none' 72 Features: test KLDivLoss auto parallel 73 Description: auto parallel, reduction is 'sum' 86 Features: test KLDivLoss data parallel 87 Description: data parallel, reduction is 'mean' 102 Features: test KLDivLoss data parallel [all …]
|
| D | test_gather_v2.py | 25 from parallel.utils.utils import ParallelValidator 97 Feature: distribute operator gather in auto parallel. 98 Description: gather net with strategy in semi auto parallel, gather axis is 0. 111 Feature: distribute operator gather in auto parallel. 112 Description: gather net with strategy in semi auto parallel, gather axis is 0. 125 Feature: distribute operator gather in auto parallel. 126 Description: gather net with strategy in semi auto parallel, gather axis is 0. 139 Feature: distribute operator gather in auto parallel. 140 Description: gather net with strategy in semi auto parallel, gather axis is 1. 153 Feature: distribute operator gather in auto parallel. [all …]
|
| D | test_batch_matmul.py | 58 Feature: distribute operator batch_matmul in auto parallel. 59 Description: mul-batch_matmul net with data parallel strategy in semi auto parallel. 71 Feature: distribute operator batch_matmul in auto parallel. 72 Description: mul-batch_matmul net with model parallel strategy in semi auto parallel. 84 Feature: distribute operator batch_matmul in auto parallel. 85 Description: mul-batch_matmul net with mixed strategy in semi auto parallel. 97 Feature: distribute operator batch_matmul in auto parallel. 98 Description: mul-batch_matmul net in auto parallel. 109 Feature: distribute operator batch_matmul in auto parallel. 110 Description: mul-batch_matmul net with repeated strategy in semi auto parallel. [all …]
|
| D | test_softmax_gather_net.py | 83 Feature: distribute operator gather in auto parallel. 84 Description: gather and softmax net with strategy in semi auto parallel, gather axis is 0. 98 Feature: distribute operator gather in auto parallel. 99 Description: gather and softmax net with strategy in semi auto parallel, gather axis is 0. 113 Feature: distribute operator gather in auto parallel. 114 Description: gather and softmax net with strategy in semi auto parallel, gather axis is 0. 128 Feature: distribute operator gather in auto parallel. 129 Description: gather and softmax net with strategy in semi auto parallel, gather axis is 1. 143 Feature: distribute operator gather in auto parallel. 144 Description: gather net with strategy in semi auto parallel, gather axis is 1. [all …]
|
| D | test_arithmetic.py | 73 Feature: distribute operator sub in auto parallel. 74 Description: matmul-sub net with strategy in semi auto parallel. 103 Feature: distribute operator sub in auto parallel. 104 Description: matmul-sub net with strategy in semi auto parallel. 131 Feature: distribute operator sub in auto parallel. 132 Description: matmul-sub net with strategy in semi auto parallel. 160 Feature: distribute operator sub in auto parallel. 161 Description: matmul-add net with strategy in semi auto parallel. 190 Feature: distribute operator sub in auto parallel. 191 Description: matmul-add net with strategy in semi auto parallel. [all …]
|
| D | test_stridedslice.py | 24 from parallel.utils.utils import ParallelValidator 285 Feature: distribute operator stridedslice in auto parallel mode. 286 Description: test stridedslice with strides no 1 split in semi auto parallel. 299 Feature: distribute operator stridedslice in auto parallel mode. 300 Description: test stridedslice with begin size is smaller in semi auto parallel. 312 Feature: distribute operator stridedslice in auto parallel mode. 313 Description: test stridedslice of parameter in semi auto parallel. 325 Feature: distribute operator stridedslice in auto parallel mode. 326 Description: test stridedslice with begin mask no 0 split in semi auto parallel. 338 Feature: distribute operator stridedslice in auto parallel mode. [all …]
|
| D | test_split_ext.py | 82 Feature: test SplitWithSize auto parallel 83 Description: auto parallel 93 Feature: test SplitWithSize model parallel 94 Description: model parallel 104 Feature: test SplitWithSize parallel with invalid strategy 105 Description: model parallel 116 Feature: test SplitWithSize parallel skip_redistribution 117 Description: model parallel 130 Feature: test SplitTensor auto parallel 131 Description: auto parallel [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/frontend/optimizer/ |
| D | slice_activation_in_recompute.cc | 28 #include "frontend/parallel/tensor_layout/construct_operator.h" 29 #include "frontend/parallel/graph_util/graph_utils.h" 30 #include "frontend/parallel/step_parallel.h" 38 CNodePtr CreateStridedSliceCNode(const parallel::Shape &begin, const parallel::Shape &end, in CreateStridedSliceCNode() 39 const parallel::Shape &strides, const AnfNodePtr &node) { in CreateStridedSliceCNode() 40 auto slice_op = parallel::CreateStridedSliceOp(0, begin, end, strides); in CreateStridedSliceCNode() 41 auto slice_input = parallel::CreateInput(slice_op, node, parallel::STRIDEDSLICE); in CreateStridedSliceCNode() 48 auto op = parallel::CreateAllGatherOp(group); in CreateAllGatherCNode() 49 auto allgather_input = parallel::CreateInput(op, node, "recompute_slice_allgather"); in CreateAllGatherCNode() 55 std::vector<parallel::Group> InferRepeatedRankList(const CNodePtr &cnode) { in InferRepeatedRankList() [all …]
|
| D | comm_op_reuse_tag.cc | 24 #include "frontend/parallel/ops_info/ops_utils.h" 25 #include "frontend/parallel/device_manager.h" 27 #include "frontend/parallel/step_parallel_utils.h" 62 if (parallel::g_device_manager == nullptr) { in AddCommOpReuseTag() 63 MS_LOG(INFO) << "parallel::g_device_manager is not initialized."; in AddCommOpReuseTag() 68 if (!parallel::IsAutoParallelCareGraph(graph)) { in AddCommOpReuseTag() 81 …if (comm_prim->HasAttr(parallel::FUSION) && GetValue<int64_t>(comm_prim->GetAttr(parallel::FUSION)… in AddCommOpReuseTag() 84 (void)comm_prim->AddAttr(parallel::COMM_REUSE, MakeValue(true)); in AddCommOpReuseTag() 87 if (comm_prim->HasAttr(parallel::GROUP)) { in AddCommOpReuseTag() 88 group_name = GetValue<std::string>(comm_prim->GetAttr(parallel::GROUP)); in AddCommOpReuseTag() [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/ccsrc/pipeline/jit/ps/ |
| D | pipeline_split.cc | 30 #include "frontend/parallel/pipeline_transformer/pipeline_transformer.h" 31 #include "frontend/parallel/pipeline_transformer/pipeline_interleave.h" 32 #include "frontend/parallel/pipeline_transformer/fold_pipeline_transformer.h" 33 #include "frontend/parallel/dynamic_shape/dynamic_shape.h" 34 #include "frontend/parallel/step_parallel.h" 35 #include "frontend/parallel/step_parallel_utils.h" 36 #include "frontend/parallel/graph_util/pipeline_split_utils.h" 37 #include "frontend/parallel/parameter_manager.h" 86 auto virtual_dataset_node = mindspore::parallel::CreateCNodeByInputsAndAttr( in CreateVirtualDataset() 87 func_graph, mindspore::parallel::VIRTUAL_DATA_SET, mindspore::parallel::VIRTUAL_DATA_SET, in CreateVirtualDataset() [all …]
|
| D | pass.cc | 41 #include "frontend/parallel/dynamic_shape/dynamic_shape.h" 42 #include "frontend/parallel/step_parallel.h" 43 #include "frontend/parallel/step_auto_parallel.h" 44 #include "frontend/parallel/graph_util/pipeline_split_utils.h" 45 #include "frontend/parallel/pipeline_transformer/pipeline_scheduler.h" 46 #include "frontend/parallel/pipeline_transformer/pipeline_interleave.h" 47 #include "frontend/parallel/pipeline_transformer/gpipe_interleave_scheduler.h" 48 #include "frontend/parallel/pass/merge_comm.h" 49 #include "frontend/parallel/cache_embedding/cache_embedding.h" 50 #include "frontend/parallel/cache_embedding/ps_embedding_cache_inserter.h" [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/ut/cpp/python_input/gtest_input/pipeline/parse/ |
| D | parallel_if.py | 37 Feature: Parallel if transformation 73 Feature: Parallel if transformation 128 Feature: Parallel if transformation 180 Feature: Parallel if transformation 232 # Location of additional if/else: if/else parallel with loop, 233 # if/else parallel with if/else, if/else inside if. 236 Feature: Parallel if transformation. 255 Feature: Parallel if transformation. 278 Feature: Parallel if transformation. 300 Feature: Parallel if transformation. [all …]
|
| /third_party/mindspore/mindspore-src/source/mindspore/python/mindspore/parallel/_transformer/ |
| D | op_parallel_config.py | 16 Parallel Config for the Parallel Training. 25 from mindspore.parallel._utils import _get_parallel_mode 46 …Config for MoE structure, which includes setting data parallel, model parallel and expert parallel. 49 data_parallel (int): The data parallel way. Default: 1 50 model_parallel (int): The model parallel way. Default: 1 51 expert_parallel (int): The expert parallel way. Default: 1 98 OpParallelConfig for the setting data parallel and model parallel. 101 data_parallel (int): The data parallel way. Default: 1 102 model_parallel (int): The model parallel way. Default: 1 138 PPConfig for the setting data parallel, model parallel [all …]
|
| /third_party/curl/docs/cmdline-opts/ |
| D | parallel-immediate.md | 4 Long: parallel-immediate 5 Help: Do not wait for multiplexing (with --parallel) 11 - parallel 12 - parallel-max 14 - --parallel-immediate -Z $URL -o file1 $URL -o file2 17 # `--parallel-immediate` 19 When doing parallel transfers, this option instructs curl that it should 20 rather prefer opening up more connections in parallel at once rather than
|
| /third_party/mindspore/mindspore-src/source/mindspore/lite/test/ut/python/ |
| D | test_server_inference_api.py | 23 # ============================ Context.parallel ============================ 28 context.parallel.workers_num = "4" 35 context.parallel.workers_num = -4 42 context.parallel.config_info = 1 49 context.parallel.config_info = {1: {"test": "test"}} 56 context.parallel.config_info = {"test": "test"} 63 context.parallel.config_info = {"test": {1: "test"}} 70 context.parallel.config_info = {"test": {"test": 1}} 77 context.parallel.config_path = 1 84 context.parallel.config_path = "test.cfg" [all …]
|