| /third_party/typescript/tests/baselines/reference/ |
| D | library-reference-8.trace.json | 2 …olving type reference directive 'alpha', containing file '/test/foo.ts', root directory '/test/typ… 3 "Resolving with primary search path '/test/types'.", 4 "File '/test/types/alpha/package.json' does not exist.", 5 "File '/test/types/alpha/index.d.ts' exist - use it as a name resolution result.", 6 … "Resolving real path for '/test/types/alpha/index.d.ts', result '/test/types/alpha/index.d.ts'.", 7 …"======== Type reference directive 'alpha' was successfully resolved to '/test/types/alpha/index.d… 8 …"======== Resolving type reference directive 'beta', containing file '/test/foo.ts', root director… 9 "Resolving with primary search path '/test/types'.", 10 "File '/test/types/beta/package.json' does not exist.", 11 "File '/test/types/beta/index.d.ts' exist - use it as a name resolution result.", [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/probability/distribution/ |
| D | test_beta.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 15 """test cases for Beta distribution""" 29 Test class: probability of Beta distribution. 33 self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) 40 Test pdf. 42 beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0])) 46 tol = 1e-6 47 assert (np.abs(output.asnumpy() - expect_pdf) < tol).all() 51 Test class: log probability of Beta distribution. 55 self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/ |
| D | test_func_layer_norm.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 28 def layer_norm_forward_func(input_x, normalized_shape, gamma, beta, eps=1e-7): argument 29 return layer_norm(input_x, normalized_shape, gamma, beta, eps) 32 def layer_norm_backward_func(input_x, normalized_shape, gamma, beta, eps=1e-7): argument 33 return ops.grad(layer_norm_forward_func, (0, 2, 3))(input_x, normalized_shape, gamma, beta, eps) 38 def layer_norm_forward_func_np(input_x, normalized_shape, gamma, beta, eps=1e-7): argument 39 mean_np = np.mean(input_x, axis=-1, keepdims=True) 40 var_np = np.var(input_x, axis=-1, keepdims=True) 41 x_norm = (input_x - mean_np) / np.sqrt(var_np + eps) 42 return gamma * x_norm + beta [all …]
|
| D | test_ops_softplus.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 28 def generate_expect_forward_output(x, beta=1, threshold=20): argument 29 sacling_input = beta * x 30 output = (1 / beta) * np.log(1 + np.exp(sacling_input)) 35 def softplus_forward_func(x, beta=1, threshold=20): argument 36 return softplus(x, beta, threshold) 40 def softplus_backward_func(x, beta=1, threshold=20): argument 41 return ops.grad(softplus_forward_func, (0))(x, beta, threshold) 45 def softplus_vmap_func(x, beta=1, threshold=20): argument 46 return ops.vmap(softplus_forward_func, in_axes=(0, None, None), out_axes=0)(x, beta, threshold) [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/ascend/ |
| D | test_layer_norm_v3.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 30 def construct(self, input_x, gamma, beta): argument 31 return self.layernorm(input_x, gamma, beta) 40 Feature: test LayerNormV3 forward. 41 Description: test LayerNormV3 inputs. 47 beta = Tensor(np.ones([3]), mindspore.float32) 49 output, mean, variance = net(input_x, gamma, beta) 51 expect_output = np.array([[-0.22474468, 1., 2.22474468], [-0.22474468, 1., 2.22474468]]) 55 assert np.allclose(output.asnumpy(), expect_output, atol=1e-6) 56 assert np.allclose(mean.asnumpy(), expect_mean, atol=1e-6) [all …]
|
| D | test_add_layernorm.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 17 """test where""" 32 def generate_expect_forward_output(x1, x2, gamma, beta, eps=1e-5): argument 35 rstdOut = np.power((res.var(1).reshape(2, 1) + eps), -0.5) 36 y = rstdOut * (res - meanOut) * gamma + beta 42 self.layernorm = P.LayerNorm(begin_norm_axis=-1, 43 begin_params_axis=-1, 44 epsilon=1e-5) 46 def construct(self, x1, x2, gamma, beta): argument 48 y, meanOut, rstdOut = self.layernorm(res, gamma, beta) [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/sparse/ |
| D | test_csr_add.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 59 Feature: Test function csr_add. 60 Description: Test CSRTensor matrix add. 65 beta = Tensor(1, mstype.float32) 67 c = csr_add(csra, csrb, alpha, beta) 75 beta = Tensor(-1, mstype.float32) 76 c = csr_add(csra, csrb, alpha, beta) 91 Feature: Test ops SparseMatrixAdd. 92 Description: Test CSRTensor matrix add. 97 beta = Tensor(1, mstype.float32) [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/ut/python/parallel/ |
| D | test_group_norm.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 36 self.eps = 1e-5 38 def construct(self, x, num_groups, gamma, beta): argument 39 out = self.group_norm(x, num_groups, gamma, beta, self.eps)[0] 45 Feature: test GroupNorm parallel. 46 Description: test GroupNorm parallel 56 beta = Tensor(np.ones(shape=(num_channels,)), dtype=mstype.float32) 60 phase = compile_net(net, x, num_groups, gamma, beta) 62 assert validator.check_node_inputs_has('GroupNorm-0', ['StridedSlice-0', num_groups]) 67 Feature: test GroupNorm parallel with input rank3(N,C,D). [all …]
|
| D | test_gamma.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 38 def construct(self, shape, alpha, beta): argument 39 out = self.uniform_real(shape, alpha, beta) 45 Features: test UniformReal auto parallel 54 beta = Tensor(np.array([1.0]), ms.float32) 55 compile_net(net, shape, alpha, beta) 60 Features: test UniformReal data parallel 68 beta = Tensor(np.array([1.0]), ms.float32) 69 phase = compile_net(net, shape, alpha, beta) 72 assert validator.check_node_attrs("Gamma-0", {"seed": 2, "seed2": 2}) [all …]
|
| D | test_layout_extend_layernorm.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 67 self.beta = Parameter(x_beta, "beta") 70 out1, _, _ = self.layernorm(y, self.gamma, self.beta) 77 beta = Tensor(np.ones([16, 32]), dtype=ms.float32) variable 81 Feature: test layout extend 88 net = Net(gamma, beta, layout1, begin_norm_axis=2) 96 Feature: test layout extend for multi shard 103 net = Net(gamma, beta, layout1, begin_norm_axis=2) 111 Feature: test layout extend for multi shard 118 net = Net(gamma, beta, layout1, begin_norm_axis=2) [all …]
|
| /third_party/skia/third_party/externals/abseil-cpp/absl/random/ |
| D | beta_distribution_test.cc | 7 // https://www.apache.org/licenses/LICENSE-2.0 46 class BetaDistributionInterfaceTest : public ::testing::Test {}; 48 // double-double arithmetic is not supported well by either GCC or Clang; see 65 std::exp(std::log((std::numeric_limits<TypeParam>::max)()) - in TYPED_TEST() 72 TypeParam(1e-20), TypeParam(1e-12), TypeParam(1e-8), TypeParam(1e-4), in TYPED_TEST() 73 TypeParam(1e-3), TypeParam(0.1), TypeParam(0.25), in TYPED_TEST() 74 std::nextafter(TypeParam(0.5), TypeParam(0)), // 0.5 - epsilon in TYPED_TEST() 77 std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon in TYPED_TEST() 99 for (TypeParam beta : kValues) { in TYPED_TEST() local 101 INFO, absl::StrFormat("Smoke test for Beta(%a, %a)", alpha, beta)); in TYPED_TEST() [all …]
|
| /third_party/rust/crates/bitflags/tests/ |
| D | compile.rs | 10 #[test] 12 prepare_stderr_files("tests/compile-fail").unwrap(); in fail() 15 t.compile_fail("tests/compile-fail/**/*.rs"); in fail() 18 #[test] 21 t.pass("tests/compile-pass/**/*.rs"); in pass() 26 // having some message to check makes sure user-facing errors are sensical. 28 // The approach we use is to run the test on all compilers, but only check stderr 29 // output on beta (which is the next stable release). We do this by default ignoring 30 // any `.stderr` files in the `compile-fail` directory, and copying `.stderr.beta` files 31 // when we happen to be running on a beta compiler. [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/dyn_shape_dev/ |
| D | test_layer_norm.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 25 def layer_norm_forward_func(input_x, gamma, beta): argument 26 return ops.LayerNorm(begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7)(input_x, gamma, beta) 30 def layer_norm_backward_func(input_x, gamma, beta): argument 31 return ops.grad(layer_norm_forward_func, (0, 1, 2))(input_x, gamma, beta) 34 def layer_norm_dyn_shape_func(input_x, gamma, beta): argument 35 return ops.LayerNorm(begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7)(input_x, gamma, beta) 47 Description: test op layer norm. 53 beta = ms.Tensor(np.zeros([3]), ms.float32) 54 output, mean, variance = layer_norm_forward_func(input_x, gamma, beta) [all …]
|
| /third_party/skia/third_party/externals/abseil-cpp/absl/random/internal/ |
| D | distribution_test_util.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 25 // NOTE: The functions in this file are test only, and are should not be used in 26 // non-test code. 32 // http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%205%20-%20Normality%20Testing.pdf 49 // Computes the Z-score for a set of data with the given distribution moments 58 // Computes the maximum distance from the mean tolerable, for Z-Tests that are 73 // Beta(p, q) = Gamma(p) * Gamma(q) / Gamma(p+q) 74 double beta(double p, double q); 82 // Implements the incomplete regularized beta function, AS63, BETAIN. 87 // `p` is beta parameter p, `q` is beta parameter q. [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/cpu/ |
| D | test_smoothl1loss_op.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 27 def smoothl1loss(beta, reduction): argument 32 net = nn.SmoothL1Loss(beta, reduction) 54 Description: test the rightness of SmoothL1Loss cpu kernel. 58 beta = 1.0 59 loss = smoothl1loss(beta, reduction) 67 beta = 1 / 9 68 loss = smoothl1loss(beta, reduction) 88 def smoothl1loss_grad(beta): argument 94 net = nn.SmoothL1Loss(beta) [all …]
|
| D | test_apply_power_sign.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 37 self.beta = 0.9 41 self.sign_decay, self.beta, grad) 47 Feature: test ops ApplyPowerSign. 54 expect_var = [[5.95575690e-01, 3.89676481e-01], 55 [9.85252112e-02, 4.88201708e-01]] 56 expect_m = [[5.70000052e-01, 5.19999981e-01], 57 [1.89999998e-01, 6.20000064e-01]] 72 def construct(self, lr, logbase, sign_decay, beta, grad): argument 73 return self.vmap_grad(self.var, self.m, lr, logbase, sign_decay, beta, grad) [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/gpu/ |
| D | test_smoothl1loss_op.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 27 def smoothl1loss(beta, reduction): argument 32 net = nn.SmoothL1Loss(beta, reduction) 54 Description: test the rightness of SmoothL1Loss cpu kernel. 58 beta = 1.0 59 loss = smoothl1loss(beta, reduction) 67 beta = 1 / 9 68 loss = smoothl1loss(beta, reduction) 88 def smoothl1loss_grad(beta): argument 94 net = nn.SmoothL1Loss(beta) [all …]
|
| D | test_sparse_addmm_op.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 30 def construct(self, input_indices, input_values, input_shape, x2_dense, x3_dense, alpha, beta): argument 31 …return self.sparse_addmm(input_indices, input_values, input_shape, x2_dense, x3_dense, alpha, beta) 39 Feature: SparseAddmm gpu TEST. 40 Description: 2d int32 test case for SparseAddmm 51 beta = Tensor(np.array([1]), mstype.int32) 54 y_dense = net(input_indices, input_values, input_shape, x2_dense, x3_dense, alpha, beta) 65 Feature: SparseAddmm gpu TEST. 66 Description: 2d int32 test case for SparseAddmm 77 beta = Tensor(np.array([1]), mstype.int64) [all …]
|
| D | test_sspaddmm_op.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 32 x2_shape, x3_dense, alpha, beta): argument 34 x2_values, x2_shape, x3_dense, alpha, beta) 42 Feature: test Sspaddmm ops in gpu. 43 Description: test the ops in dynamic shape. 57 beta = Tensor(1, dtype=mstype.int32) 60 x2_values_dyn, x2_shape_dyn, x3_dense_dyn, alpha, beta) 72 x3_dense, alpha, beta) 83 Feature: Sspaddmm gpu TEST. 84 Description: 2d int32 test case for Sspaddmm [all …]
|
| /third_party/rust/crates/clap/.github/workflows/ |
| D | rust-next.yml | 1 name: rust-next 4 - cron: '3 3 3 * *' 9 test: 10 name: Test 15 - build: stable 16 os: ubuntu-latest 19 - build: linux 20 os: ubuntu-latest 21 rust: "beta" 23 - build: windows [all …]
|
| /third_party/python/Lib/test/ |
| D | test_getopt.py | 2 # David Goodger <dgoodger@bigfoot.com> 2000-08-19 4 from test.support import verbose, run_doctest 5 from test.support.os_helper import EnvironmentVarGuard 45 self.assertEqual(opts, [('-a', '')]) 49 self.assertEqual(opts, [('-a', '1')]) 53 #self.assertEqual(opts, [('-a', '1')]) 57 self.assertEqual(opts, [('-a', '1')]) 61 self.assertEqual(opts, [('-a', '1')]) 69 self.assertEqual(opts, [('--abc', '')]) 73 self.assertEqual(opts, [('--abc', '1')]) [all …]
|
| /third_party/rust/crates/lazy-static.rs/ |
| D | appveyor.yml | 12 - TARGET: i686-pc-windows-gnu 14 - TARGET: i686-pc-windows-msvc 16 - TARGET: x86_64-pc-windows-gnu 18 - TARGET: x86_64-pc-windows-msvc 20 # Beta channel 21 - TARGET: i686-pc-windows-gnu 22 CHANNEL: beta 23 - TARGET: i686-pc-windows-msvc 24 CHANNEL: beta 25 - TARGET: x86_64-pc-windows-gnu [all …]
|
| /third_party/mindspore/mindspore-src/source/tests/st/ops/ascend/test_tbe_ops/ |
| D | test_smooth_l1_loss_grad.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 38 def smoothl1loss_grad(beta): argument 44 net = nn.SmoothL1Loss(beta) 56 Description: test the rightness of SmoothL1LossGrad cpu kernel. 60 epsilon = 1e-6 62 beta = 1.0 63 dx = smoothl1loss_grad(beta) 64 dx1_expect = np.array([-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093, 65 0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229, 66 0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995, [all …]
|
| /third_party/rust/crates/termcolor/.github/workflows/ |
| D | ci.yml | 6 - master 8 - cron: '00 01 * * *' 10 test: 11 name: test 12 runs-on: ${{ matrix.os }} 16 - pinned 17 - pinned-win 18 - stable 19 - beta 20 - nightly [all …]
|
| /third_party/toybox/tests/ |
| D | cut.test | 7 [ -f testing.sh ] && . testing.sh 11 # Creating test file for testing cut 13 alpha:beta:gamma:delta:epsilon:zeta:eta:theta:iota:kappa:lambda:mu 16 testing "-b a,a,a" "cut -b 3,3,3 abc.txt" "e\np\ne\n" "" "" 17 testing "-b overlaps" "cut -b 1-3,2-5,7-9,9-10 abc.txt" \ 19 testing "-b encapsulated" "cut -b 3-8,4-6 abc.txt" "e:two:\npha:be\ne quic\n" \ 21 testing "-bO overlaps" \ 22 "cut --output-delimiter ' ' -b 1-3,2-5,7-9,9-10 abc.txt" \ 23 "one:t o:th\nalpha beta\nthe q ick \n" "" "" 24 testing "high-low error" "cut -b 8-3 abc.txt 2>/dev/null || echo err" "err\n" \ [all …]
|