1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects. Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 // message Foo {
45 // optional string text = 1;
46 // repeated int32 numbers = 2;
47 // }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 // std::string data; // Will store a serialized version of the message.
53 //
54 // {
55 // // Create a message and serialize it.
56 // Foo foo;
57 // foo.set_text("Hello World!");
58 // foo.add_numbers(1);
59 // foo.add_numbers(5);
60 // foo.add_numbers(42);
61 //
62 // foo.SerializeToString(&data);
63 // }
64 //
65 // {
66 // // Parse the serialized message and check that it contains the
67 // // correct data.
68 // Foo foo;
69 // foo.ParseFromString(data);
70 //
71 // assert(foo.text() == "Hello World!");
72 // assert(foo.numbers_size() == 3);
73 // assert(foo.numbers(0) == 1);
74 // assert(foo.numbers(1) == 5);
75 // assert(foo.numbers(2) == 42);
76 // }
77 //
78 // {
79 // // Same as the last block, but do it dynamically via the Message
80 // // reflection interface.
81 // Message* foo = new Foo;
82 // const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 // // Get the descriptors for the fields we're interested in and verify
85 // // their types.
86 // const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 // assert(text_field != nullptr);
88 // assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 // const FieldDescriptor* numbers_field = descriptor->
91 // FindFieldByName("numbers");
92 // assert(numbers_field != nullptr);
93 // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 // // Parse the message.
97 // foo->ParseFromString(data);
98 //
99 // // Use the reflection interface to examine the contents.
100 // const Reflection* reflection = foo->GetReflection();
101 // assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 // assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 // delete foo;
108 // }
109
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112
113 #include <iosfwd>
114 #include <string>
115 #include <type_traits>
116 #include <vector>
117
118 #include <google/protobuf/stubs/casts.h>
119 #include <google/protobuf/stubs/common.h>
120 #include <google/protobuf/arena.h>
121 #include <google/protobuf/descriptor.h>
122 #include <google/protobuf/generated_message_reflection.h>
123 #include <google/protobuf/message_lite.h>
124 #include <google/protobuf/port.h>
125
126
127 #define GOOGLE_PROTOBUF_HAS_ONEOF
128 #define GOOGLE_PROTOBUF_HAS_ARENAS
129
130 #include <google/protobuf/port_def.inc>
131
132 #ifdef SWIG
133 #error "You cannot SWIG proto headers"
134 #endif
135
136 namespace google {
137 namespace protobuf {
138
139 // Defined in this file.
140 class Message;
141 class Reflection;
142 class MessageFactory;
143
144 // Defined in other files.
145 class AssignDescriptorsHelper;
146 class DynamicMessageFactory;
147 class MapKey;
148 class MapValueConstRef;
149 class MapValueRef;
150 class MapIterator;
151 class MapReflectionTester;
152
153 namespace internal {
154 struct DescriptorTable;
155 class MapFieldBase;
156 }
157 class UnknownFieldSet; // unknown_field_set.h
158 namespace io {
159 class ZeroCopyInputStream; // zero_copy_stream.h
160 class ZeroCopyOutputStream; // zero_copy_stream.h
161 class CodedInputStream; // coded_stream.h
162 class CodedOutputStream; // coded_stream.h
163 } // namespace io
164 namespace python {
165 class MapReflectionFriend; // scalar_map_container.h
166 }
167 namespace expr {
168 class CelMapReflectionFriend; // field_backed_map_impl.cc
169 }
170
171 namespace internal {
172 class MapFieldPrinterHelper; // text_format.cc
173 }
174 namespace util {
175 class MessageDifferencer;
176 }
177
178
179 namespace internal {
180 class ReflectionAccessor; // message.cc
181 class ReflectionOps; // reflection_ops.h
182 class MapKeySorter; // wire_format.cc
183 class WireFormat; // wire_format.h
184 class MapFieldReflectionTest; // map_test.cc
185 } // namespace internal
186
187 template <typename T>
188 class RepeatedField; // repeated_field.h
189
190 template <typename T>
191 class RepeatedPtrField; // repeated_field.h
192
193 // A container to hold message metadata.
194 struct Metadata {
195 const Descriptor* descriptor;
196 const Reflection* reflection;
197 };
198
199 namespace internal {
200 template <class To>
GetPointerAtOffset(Message * message,uint32 offset)201 inline To* GetPointerAtOffset(Message* message, uint32 offset) {
202 return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
203 }
204
205 template <class To>
GetConstPointerAtOffset(const Message * message,uint32 offset)206 const To* GetConstPointerAtOffset(const Message* message, uint32 offset) {
207 return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
208 offset);
209 }
210
211 template <class To>
GetConstRefAtOffset(const Message & message,uint32 offset)212 const To& GetConstRefAtOffset(const Message& message, uint32 offset) {
213 return *GetConstPointerAtOffset<To>(&message, offset);
214 }
215
216 bool CreateUnknownEnumValues(const FieldDescriptor* field);
217 } // namespace internal
218
219 // Abstract interface for protocol messages.
220 //
221 // See also MessageLite, which contains most every-day operations. Message
222 // adds descriptors and reflection on top of that.
223 //
224 // The methods of this class that are virtual but not pure-virtual have
225 // default implementations based on reflection. Message classes which are
226 // optimized for speed will want to override these with faster implementations,
227 // but classes optimized for code size may be happy with keeping them. See
228 // the optimize_for option in descriptor.proto.
229 //
230 // Users must not derive from this class. Only the protocol compiler and
231 // the internal library are allowed to create subclasses.
232 class PROTOBUF_EXPORT Message : public MessageLite {
233 public:
234 constexpr Message() = default;
235
236 // Basic Operations ------------------------------------------------
237
238 // Construct a new instance of the same type. Ownership is passed to the
239 // caller. (This is also defined in MessageLite, but is defined again here
240 // for return-type covariance.)
241 Message* New() const override = 0;
242
243 // Construct a new instance on the arena. Ownership is passed to the caller
244 // if arena is a nullptr. Default implementation allows for API compatibility
245 // during the Arena transition.
New(Arena * arena)246 Message* New(Arena* arena) const override {
247 Message* message = New();
248 if (arena != nullptr) {
249 arena->Own(message);
250 }
251 return message;
252 }
253
254 // Make this message into a copy of the given message. The given message
255 // must have the same descriptor, but need not necessarily be the same class.
256 // By default this is just implemented as "Clear(); MergeFrom(from);".
257 virtual void CopyFrom(const Message& from);
258
259 // Merge the fields from the given message into this message. Singular
260 // fields will be overwritten, if specified in from, except for embedded
261 // messages which will be merged. Repeated fields will be concatenated.
262 // The given message must be of the same type as this message (i.e. the
263 // exact same class).
264 virtual void MergeFrom(const Message& from);
265
266 // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
267 // a nice error message.
268 void CheckInitialized() const;
269
270 // Slowly build a list of all required fields that are not set.
271 // This is much, much slower than IsInitialized() as it is implemented
272 // purely via reflection. Generally, you should not call this unless you
273 // have already determined that an error exists by calling IsInitialized().
274 void FindInitializationErrors(std::vector<std::string>* errors) const;
275
276 // Like FindInitializationErrors, but joins all the strings, delimited by
277 // commas, and returns them.
278 std::string InitializationErrorString() const override;
279
280 // Clears all unknown fields from this message and all embedded messages.
281 // Normally, if unknown tag numbers are encountered when parsing a message,
282 // the tag and value are stored in the message's UnknownFieldSet and
283 // then written back out when the message is serialized. This allows servers
284 // which simply route messages to other servers to pass through messages
285 // that have new field definitions which they don't yet know about. However,
286 // this behavior can have security implications. To avoid it, call this
287 // method after parsing.
288 //
289 // See Reflection::GetUnknownFields() for more on unknown fields.
290 virtual void DiscardUnknownFields();
291
292 // Computes (an estimate of) the total number of bytes currently used for
293 // storing the message in memory. The default implementation calls the
294 // Reflection object's SpaceUsed() method.
295 //
296 // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
297 // using reflection (rather than the generated code implementation for
298 // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
299 // fields defined for the proto.
300 virtual size_t SpaceUsedLong() const;
301
302 PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed()303 int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
304
305 // Debugging & Testing----------------------------------------------
306
307 // Generates a human readable form of this message, useful for debugging
308 // and other purposes.
309 std::string DebugString() const;
310 // Like DebugString(), but with less whitespace.
311 std::string ShortDebugString() const;
312 // Like DebugString(), but do not escape UTF-8 byte sequences.
313 std::string Utf8DebugString() const;
314 // Convenience function useful in GDB. Prints DebugString() to stdout.
315 void PrintDebugString() const;
316
317 // Reflection-based methods ----------------------------------------
318 // These methods are pure-virtual in MessageLite, but Message provides
319 // reflection-based default implementations.
320
321 std::string GetTypeName() const override;
322 void Clear() override;
323
324 // Returns whether all required fields have been set. Note that required
325 // fields no longer exist starting in proto3.
326 bool IsInitialized() const override;
327
328 void CheckTypeAndMergeFrom(const MessageLite& other) override;
329 // Reflective parser
330 const char* _InternalParse(const char* ptr,
331 internal::ParseContext* ctx) override;
332 size_t ByteSizeLong() const override;
333 uint8* _InternalSerialize(uint8* target,
334 io::EpsCopyOutputStream* stream) const override;
335
336 private:
337 // This is called only by the default implementation of ByteSize(), to
338 // update the cached size. If you override ByteSize(), you do not need
339 // to override this. If you do not override ByteSize(), you MUST override
340 // this; the default implementation will crash.
341 //
342 // The method is private because subclasses should never call it; only
343 // override it. Yes, C++ lets you do that. Crazy, huh?
344 virtual void SetCachedSize(int size) const;
345
346 public:
347 // Introspection ---------------------------------------------------
348
349
350 // Get a non-owning pointer to a Descriptor for this message's type. This
351 // describes what fields the message contains, the types of those fields, etc.
352 // This object remains property of the Message.
GetDescriptor()353 const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
354
355 // Get a non-owning pointer to the Reflection interface for this Message,
356 // which can be used to read and modify the fields of the Message dynamically
357 // (in other words, without knowing the message type at compile time). This
358 // object remains property of the Message.
GetReflection()359 const Reflection* GetReflection() const { return GetMetadata().reflection; }
360
361 protected:
362 // Get a struct containing the metadata for the Message, which is used in turn
363 // to implement GetDescriptor() and GetReflection() above.
364 virtual Metadata GetMetadata() const = 0;
365
Message(Arena * arena)366 inline explicit Message(Arena* arena) : MessageLite(arena) {}
367
368
369 protected:
370 static uint64 GetInvariantPerBuild(uint64 salt);
371
372 private:
373 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
374 };
375
376 namespace internal {
377 // Forward-declare interfaces used to implement RepeatedFieldRef.
378 // These are protobuf internals that users shouldn't care about.
379 class RepeatedFieldAccessor;
380 } // namespace internal
381
382 // Forward-declare RepeatedFieldRef templates. The second type parameter is
383 // used for SFINAE tricks. Users should ignore it.
384 template <typename T, typename Enable = void>
385 class RepeatedFieldRef;
386
387 template <typename T, typename Enable = void>
388 class MutableRepeatedFieldRef;
389
390 // This interface contains methods that can be used to dynamically access
391 // and modify the fields of a protocol message. Their semantics are
392 // similar to the accessors the protocol compiler generates.
393 //
394 // To get the Reflection for a given Message, call Message::GetReflection().
395 //
396 // This interface is separate from Message only for efficiency reasons;
397 // the vast majority of implementations of Message will share the same
398 // implementation of Reflection (GeneratedMessageReflection,
399 // defined in generated_message.h), and all Messages of a particular class
400 // should share the same Reflection object (though you should not rely on
401 // the latter fact).
402 //
403 // There are several ways that these methods can be used incorrectly. For
404 // example, any of the following conditions will lead to undefined
405 // results (probably assertion failures):
406 // - The FieldDescriptor is not a field of this message type.
407 // - The method called is not appropriate for the field's type. For
408 // each field type in FieldDescriptor::TYPE_*, there is only one
409 // Get*() method, one Set*() method, and one Add*() method that is
410 // valid for that type. It should be obvious which (except maybe
411 // for TYPE_BYTES, which are represented using strings in C++).
412 // - A Get*() or Set*() method for singular fields is called on a repeated
413 // field.
414 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
415 // field.
416 // - The Message object passed to any method is not of the right type for
417 // this Reflection object (i.e. message.GetReflection() != reflection).
418 //
419 // You might wonder why there is not any abstract representation for a field
420 // of arbitrary type. E.g., why isn't there just a "GetField()" method that
421 // returns "const Field&", where "Field" is some class with accessors like
422 // "GetInt32Value()". The problem is that someone would have to deal with
423 // allocating these Field objects. For generated message classes, having to
424 // allocate space for an additional object to wrap every field would at least
425 // double the message's memory footprint, probably worse. Allocating the
426 // objects on-demand, on the other hand, would be expensive and prone to
427 // memory leaks. So, instead we ended up with this flat interface.
428 class PROTOBUF_EXPORT Reflection final {
429 public:
430 // Get the UnknownFieldSet for the message. This contains fields which
431 // were seen when the Message was parsed but were not recognized according
432 // to the Message's definition.
433 const UnknownFieldSet& GetUnknownFields(const Message& message) const;
434 // Get a mutable pointer to the UnknownFieldSet for the message. This
435 // contains fields which were seen when the Message was parsed but were not
436 // recognized according to the Message's definition.
437 UnknownFieldSet* MutableUnknownFields(Message* message) const;
438
439 // Estimate the amount of memory used by the message object.
440 size_t SpaceUsedLong(const Message& message) const;
441
442 PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed(const Message & message)443 int SpaceUsed(const Message& message) const {
444 return internal::ToIntSize(SpaceUsedLong(message));
445 }
446
447 // Check if the given non-repeated field is set.
448 bool HasField(const Message& message, const FieldDescriptor* field) const;
449
450 // Get the number of elements of a repeated field.
451 int FieldSize(const Message& message, const FieldDescriptor* field) const;
452
453 // Clear the value of a field, so that HasField() returns false or
454 // FieldSize() returns zero.
455 void ClearField(Message* message, const FieldDescriptor* field) const;
456
457 // Check if the oneof is set. Returns true if any field in oneof
458 // is set, false otherwise.
459 bool HasOneof(const Message& message,
460 const OneofDescriptor* oneof_descriptor) const;
461
462 void ClearOneof(Message* message,
463 const OneofDescriptor* oneof_descriptor) const;
464
465 // Returns the field descriptor if the oneof is set. nullptr otherwise.
466 const FieldDescriptor* GetOneofFieldDescriptor(
467 const Message& message, const OneofDescriptor* oneof_descriptor) const;
468
469 // Removes the last element of a repeated field.
470 // We don't provide a way to remove any element other than the last
471 // because it invites inefficient use, such as O(n^2) filtering loops
472 // that should have been O(n). If you want to remove an element other
473 // than the last, the best way to do it is to re-arrange the elements
474 // (using Swap()) so that the one you want removed is at the end, then
475 // call RemoveLast().
476 void RemoveLast(Message* message, const FieldDescriptor* field) const;
477 // Removes the last element of a repeated message field, and returns the
478 // pointer to the caller. Caller takes ownership of the returned pointer.
479 Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
480
481 // Swap the complete contents of two messages.
482 void Swap(Message* message1, Message* message2) const;
483
484 // Swap fields listed in fields vector of two messages.
485 void SwapFields(Message* message1, Message* message2,
486 const std::vector<const FieldDescriptor*>& fields) const;
487
488 // Swap two elements of a repeated field.
489 void SwapElements(Message* message, const FieldDescriptor* field, int index1,
490 int index2) const;
491
492 // List all fields of the message which are currently set, except for unknown
493 // fields, but including extension known to the parser (i.e. compiled in).
494 // Singular fields will only be listed if HasField(field) would return true
495 // and repeated fields will only be listed if FieldSize(field) would return
496 // non-zero. Fields (both normal fields and extension fields) will be listed
497 // ordered by field number.
498 // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
499 // access to fields/extensions unknown to the parser.
500 void ListFields(const Message& message,
501 std::vector<const FieldDescriptor*>* output) const;
502
503 // Singular field getters ------------------------------------------
504 // These get the value of a non-repeated field. They return the default
505 // value for fields that aren't set.
506
507 int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
508 int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
509 uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
510 uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
511 float GetFloat(const Message& message, const FieldDescriptor* field) const;
512 double GetDouble(const Message& message, const FieldDescriptor* field) const;
513 bool GetBool(const Message& message, const FieldDescriptor* field) const;
514 std::string GetString(const Message& message,
515 const FieldDescriptor* field) const;
516 const EnumValueDescriptor* GetEnum(const Message& message,
517 const FieldDescriptor* field) const;
518
519 // GetEnumValue() returns an enum field's value as an integer rather than
520 // an EnumValueDescriptor*. If the integer value does not correspond to a
521 // known value descriptor, a new value descriptor is created. (Such a value
522 // will only be present when the new unknown-enum-value semantics are enabled
523 // for a message.)
524 int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
525
526 // See MutableMessage() for the meaning of the "factory" parameter.
527 const Message& GetMessage(const Message& message,
528 const FieldDescriptor* field,
529 MessageFactory* factory = nullptr) const;
530
531 // Get a string value without copying, if possible.
532 //
533 // GetString() necessarily returns a copy of the string. This can be
534 // inefficient when the std::string is already stored in a std::string object
535 // in the underlying message. GetStringReference() will return a reference to
536 // the underlying std::string in this case. Otherwise, it will copy the
537 // string into *scratch and return that.
538 //
539 // Note: It is perfectly reasonable and useful to write code like:
540 // str = reflection->GetStringReference(message, field, &str);
541 // This line would ensure that only one copy of the string is made
542 // regardless of the field's underlying representation. When initializing
543 // a newly-constructed string, though, it's just as fast and more
544 // readable to use code like:
545 // std::string str = reflection->GetString(message, field);
546 const std::string& GetStringReference(const Message& message,
547 const FieldDescriptor* field,
548 std::string* scratch) const;
549
550
551 // Singular field mutators -----------------------------------------
552 // These mutate the value of a non-repeated field.
553
554 void SetInt32(Message* message, const FieldDescriptor* field,
555 int32 value) const;
556 void SetInt64(Message* message, const FieldDescriptor* field,
557 int64 value) const;
558 void SetUInt32(Message* message, const FieldDescriptor* field,
559 uint32 value) const;
560 void SetUInt64(Message* message, const FieldDescriptor* field,
561 uint64 value) const;
562 void SetFloat(Message* message, const FieldDescriptor* field,
563 float value) const;
564 void SetDouble(Message* message, const FieldDescriptor* field,
565 double value) const;
566 void SetBool(Message* message, const FieldDescriptor* field,
567 bool value) const;
568 void SetString(Message* message, const FieldDescriptor* field,
569 std::string value) const;
570 void SetEnum(Message* message, const FieldDescriptor* field,
571 const EnumValueDescriptor* value) const;
572 // Set an enum field's value with an integer rather than EnumValueDescriptor.
573 // For proto3 this is just setting the enum field to the value specified, for
574 // proto2 it's more complicated. If value is a known enum value the field is
575 // set as usual. If the value is unknown then it is added to the unknown field
576 // set. Note this matches the behavior of parsing unknown enum values.
577 // If multiple calls with unknown values happen than they are all added to the
578 // unknown field set in order of the calls.
579 void SetEnumValue(Message* message, const FieldDescriptor* field,
580 int value) const;
581
582 // Get a mutable pointer to a field with a message type. If a MessageFactory
583 // is provided, it will be used to construct instances of the sub-message;
584 // otherwise, the default factory is used. If the field is an extension that
585 // does not live in the same pool as the containing message's descriptor (e.g.
586 // it lives in an overlay pool), then a MessageFactory must be provided.
587 // If you have no idea what that meant, then you probably don't need to worry
588 // about it (don't provide a MessageFactory). WARNING: If the
589 // FieldDescriptor is for a compiled-in extension, then
590 // factory->GetPrototype(field->message_type()) MUST return an instance of
591 // the compiled-in class for this type, NOT DynamicMessage.
592 Message* MutableMessage(Message* message, const FieldDescriptor* field,
593 MessageFactory* factory = nullptr) const;
594 // Replaces the message specified by 'field' with the already-allocated object
595 // sub_message, passing ownership to the message. If the field contained a
596 // message, that message is deleted. If sub_message is nullptr, the field is
597 // cleared.
598 void SetAllocatedMessage(Message* message, Message* sub_message,
599 const FieldDescriptor* field) const;
600 // Releases the message specified by 'field' and returns the pointer,
601 // ReleaseMessage() will return the message the message object if it exists.
602 // Otherwise, it may or may not return nullptr. In any case, if the return
603 // value is non-null, the caller takes ownership of the pointer.
604 // If the field existed (HasField() is true), then the returned pointer will
605 // be the same as the pointer returned by MutableMessage().
606 // This function has the same effect as ClearField().
607 Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
608 MessageFactory* factory = nullptr) const;
609
610
611 // Repeated field getters ------------------------------------------
612 // These get the value of one element of a repeated field.
613
614 int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
615 int index) const;
616 int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
617 int index) const;
618 uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
619 int index) const;
620 uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
621 int index) const;
622 float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
623 int index) const;
624 double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
625 int index) const;
626 bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
627 int index) const;
628 std::string GetRepeatedString(const Message& message,
629 const FieldDescriptor* field, int index) const;
630 const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
631 const FieldDescriptor* field,
632 int index) const;
633 // GetRepeatedEnumValue() returns an enum field's value as an integer rather
634 // than an EnumValueDescriptor*. If the integer value does not correspond to a
635 // known value descriptor, a new value descriptor is created. (Such a value
636 // will only be present when the new unknown-enum-value semantics are enabled
637 // for a message.)
638 int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
639 int index) const;
640 const Message& GetRepeatedMessage(const Message& message,
641 const FieldDescriptor* field,
642 int index) const;
643
644 // See GetStringReference(), above.
645 const std::string& GetRepeatedStringReference(const Message& message,
646 const FieldDescriptor* field,
647 int index,
648 std::string* scratch) const;
649
650
651 // Repeated field mutators -----------------------------------------
652 // These mutate the value of one element of a repeated field.
653
654 void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
655 int index, int32 value) const;
656 void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
657 int index, int64 value) const;
658 void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
659 int index, uint32 value) const;
660 void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
661 int index, uint64 value) const;
662 void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
663 int index, float value) const;
664 void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
665 int index, double value) const;
666 void SetRepeatedBool(Message* message, const FieldDescriptor* field,
667 int index, bool value) const;
668 void SetRepeatedString(Message* message, const FieldDescriptor* field,
669 int index, std::string value) const;
670 void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
671 int index, const EnumValueDescriptor* value) const;
672 // Set an enum field's value with an integer rather than EnumValueDescriptor.
673 // For proto3 this is just setting the enum field to the value specified, for
674 // proto2 it's more complicated. If value is a known enum value the field is
675 // set as usual. If the value is unknown then it is added to the unknown field
676 // set. Note this matches the behavior of parsing unknown enum values.
677 // If multiple calls with unknown values happen than they are all added to the
678 // unknown field set in order of the calls.
679 void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
680 int index, int value) const;
681 // Get a mutable pointer to an element of a repeated field with a message
682 // type.
683 Message* MutableRepeatedMessage(Message* message,
684 const FieldDescriptor* field,
685 int index) const;
686
687
688 // Repeated field adders -------------------------------------------
689 // These add an element to a repeated field.
690
691 void AddInt32(Message* message, const FieldDescriptor* field,
692 int32 value) const;
693 void AddInt64(Message* message, const FieldDescriptor* field,
694 int64 value) const;
695 void AddUInt32(Message* message, const FieldDescriptor* field,
696 uint32 value) const;
697 void AddUInt64(Message* message, const FieldDescriptor* field,
698 uint64 value) const;
699 void AddFloat(Message* message, const FieldDescriptor* field,
700 float value) const;
701 void AddDouble(Message* message, const FieldDescriptor* field,
702 double value) const;
703 void AddBool(Message* message, const FieldDescriptor* field,
704 bool value) const;
705 void AddString(Message* message, const FieldDescriptor* field,
706 std::string value) const;
707 void AddEnum(Message* message, const FieldDescriptor* field,
708 const EnumValueDescriptor* value) const;
709 // Add an integer value to a repeated enum field rather than
710 // EnumValueDescriptor. For proto3 this is just setting the enum field to the
711 // value specified, for proto2 it's more complicated. If value is a known enum
712 // value the field is set as usual. If the value is unknown then it is added
713 // to the unknown field set. Note this matches the behavior of parsing unknown
714 // enum values. If multiple calls with unknown values happen than they are all
715 // added to the unknown field set in order of the calls.
716 void AddEnumValue(Message* message, const FieldDescriptor* field,
717 int value) const;
718 // See MutableMessage() for comments on the "factory" parameter.
719 Message* AddMessage(Message* message, const FieldDescriptor* field,
720 MessageFactory* factory = nullptr) const;
721
722 // Appends an already-allocated object 'new_entry' to the repeated field
723 // specified by 'field' passing ownership to the message.
724 void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
725 Message* new_entry) const;
726
727
728 // Get a RepeatedFieldRef object that can be used to read the underlying
729 // repeated field. The type parameter T must be set according to the
730 // field's cpp type. The following table shows the mapping from cpp type
731 // to acceptable T.
732 //
733 // field->cpp_type() T
734 // CPPTYPE_INT32 int32
735 // CPPTYPE_UINT32 uint32
736 // CPPTYPE_INT64 int64
737 // CPPTYPE_UINT64 uint64
738 // CPPTYPE_DOUBLE double
739 // CPPTYPE_FLOAT float
740 // CPPTYPE_BOOL bool
741 // CPPTYPE_ENUM generated enum type or int32
742 // CPPTYPE_STRING std::string
743 // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
744 //
745 // A RepeatedFieldRef object can be copied and the resulted object will point
746 // to the same repeated field in the same message. The object can be used as
747 // long as the message is not destroyed.
748 //
749 // Note that to use this method users need to include the header file
750 // "reflection.h" (which defines the RepeatedFieldRef class templates).
751 template <typename T>
752 RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
753 const FieldDescriptor* field) const;
754
755 // Like GetRepeatedFieldRef() but return an object that can also be used
756 // manipulate the underlying repeated field.
757 template <typename T>
758 MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
759 Message* message, const FieldDescriptor* field) const;
760
761 // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
762 // access. The following repeated field accessors will be removed in the
763 // future.
764 //
765 // Repeated field accessors -------------------------------------------------
766 // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
767 // access to the data in a RepeatedField. The methods below provide aggregate
768 // access by exposing the RepeatedField object itself with the Message.
769 // Applying these templates to inappropriate types will lead to an undefined
770 // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
771 // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
772 //
773 // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
774
775 // DEPRECATED. Please use GetRepeatedFieldRef().
776 //
777 // for T = Cord and all protobuf scalar types except enums.
778 template <typename T>
779 PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedField(const Message & msg,const FieldDescriptor * d)780 const RepeatedField<T>& GetRepeatedField(const Message& msg,
781 const FieldDescriptor* d) const {
782 return GetRepeatedFieldInternal<T>(msg, d);
783 }
784
785 // DEPRECATED. Please use GetMutableRepeatedFieldRef().
786 //
787 // for T = Cord and all protobuf scalar types except enums.
788 template <typename T>
789 PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedField(Message * msg,const FieldDescriptor * d)790 RepeatedField<T>* MutableRepeatedField(Message* msg,
791 const FieldDescriptor* d) const {
792 return MutableRepeatedFieldInternal<T>(msg, d);
793 }
794
795 // DEPRECATED. Please use GetRepeatedFieldRef().
796 //
797 // for T = std::string, google::protobuf::internal::StringPieceField
798 // google::protobuf::Message & descendants.
799 template <typename T>
800 PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedPtrField(const Message & msg,const FieldDescriptor * d)801 const RepeatedPtrField<T>& GetRepeatedPtrField(
802 const Message& msg, const FieldDescriptor* d) const {
803 return GetRepeatedPtrFieldInternal<T>(msg, d);
804 }
805
806 // DEPRECATED. Please use GetMutableRepeatedFieldRef().
807 //
808 // for T = std::string, google::protobuf::internal::StringPieceField
809 // google::protobuf::Message & descendants.
810 template <typename T>
811 PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedPtrField(Message * msg,const FieldDescriptor * d)812 RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
813 const FieldDescriptor* d) const {
814 return MutableRepeatedPtrFieldInternal<T>(msg, d);
815 }
816
817 // Extensions ----------------------------------------------------------------
818
819 // Try to find an extension of this message type by fully-qualified field
820 // name. Returns nullptr if no extension is known for this name or number.
821 const FieldDescriptor* FindKnownExtensionByName(
822 const std::string& name) const;
823
824 // Try to find an extension of this message type by field number.
825 // Returns nullptr if no extension is known for this name or number.
826 const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
827
828 // Feature Flags -------------------------------------------------------------
829
830 // Does this message support storing arbitrary integer values in enum fields?
831 // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
832 // take arbitrary integer values, and the legacy GetEnum() getter will
833 // dynamically create an EnumValueDescriptor for any integer value without
834 // one. If |false|, setting an unknown enum value via the integer-based
835 // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
836 //
837 // Generic code that uses reflection to handle messages with enum fields
838 // should check this flag before using the integer-based setter, and either
839 // downgrade to a compatible value or use the UnknownFieldSet if not. For
840 // example:
841 //
842 // int new_value = GetValueFromApplicationLogic();
843 // if (reflection->SupportsUnknownEnumValues()) {
844 // reflection->SetEnumValue(message, field, new_value);
845 // } else {
846 // if (field_descriptor->enum_type()->
847 // FindValueByNumber(new_value) != nullptr) {
848 // reflection->SetEnumValue(message, field, new_value);
849 // } else if (emit_unknown_enum_values) {
850 // reflection->MutableUnknownFields(message)->AddVarint(
851 // field->number(), new_value);
852 // } else {
853 // // convert value to a compatible/default value.
854 // new_value = CompatibleDowngrade(new_value);
855 // reflection->SetEnumValue(message, field, new_value);
856 // }
857 // }
858 bool SupportsUnknownEnumValues() const;
859
860 // Returns the MessageFactory associated with this message. This can be
861 // useful for determining if a message is a generated message or not, for
862 // example:
863 // if (message->GetReflection()->GetMessageFactory() ==
864 // google::protobuf::MessageFactory::generated_factory()) {
865 // // This is a generated message.
866 // }
867 // It can also be used to create more messages of this type, though
868 // Message::New() is an easier way to accomplish this.
869 MessageFactory* GetMessageFactory() const;
870
871 private:
872 template <typename T>
873 const RepeatedField<T>& GetRepeatedFieldInternal(
874 const Message& message, const FieldDescriptor* field) const;
875 template <typename T>
876 RepeatedField<T>* MutableRepeatedFieldInternal(
877 Message* message, const FieldDescriptor* field) const;
878 template <typename T>
879 const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
880 const Message& message, const FieldDescriptor* field) const;
881 template <typename T>
882 RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
883 Message* message, const FieldDescriptor* field) const;
884 // Obtain a pointer to a Repeated Field Structure and do some type checking:
885 // on field->cpp_type(),
886 // on field->field_option().ctype() (if ctype >= 0)
887 // of field->message_type() (if message_type != nullptr).
888 // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
889 void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
890 FieldDescriptor::CppType, int ctype,
891 const Descriptor* message_type) const;
892
893 const void* GetRawRepeatedField(const Message& message,
894 const FieldDescriptor* field,
895 FieldDescriptor::CppType cpptype, int ctype,
896 const Descriptor* message_type) const;
897
898 // The following methods are used to implement (Mutable)RepeatedFieldRef.
899 // A Ref object will store a raw pointer to the repeated field data (obtained
900 // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
901 // RepeatedFieldAccessor) which will be used to access the raw data.
902
903 // Returns a raw pointer to the repeated field
904 //
905 // "cpp_type" and "message_type" are deduced from the type parameter T passed
906 // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
907 // "message_type" should be set to its descriptor. Otherwise "message_type"
908 // should be set to nullptr. Implementations of this method should check
909 // whether "cpp_type"/"message_type" is consistent with the actual type of the
910 // field. We use 1 routine rather than 2 (const vs mutable) because it is
911 // protected and it doesn't change the message.
912 void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
913 FieldDescriptor::CppType cpp_type,
914 const Descriptor* message_type) const;
915
916 // The returned pointer should point to a singleton instance which implements
917 // the RepeatedFieldAccessor interface.
918 const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
919 const FieldDescriptor* field) const;
920
921 // Lists all fields of the message which are currently set, except for unknown
922 // fields and stripped fields. See ListFields for details.
923 void ListFieldsOmitStripped(
924 const Message& message,
925 std::vector<const FieldDescriptor*>* output) const;
926
IsMessageStripped(const Descriptor * descriptor)927 bool IsMessageStripped(const Descriptor* descriptor) const {
928 return schema_.IsMessageStripped(descriptor);
929 }
930
931 friend class TextFormat;
932
933 void ListFieldsMayFailOnStripped(
934 const Message& message, bool should_fail,
935 std::vector<const FieldDescriptor*>* output) const;
936
937 const Descriptor* const descriptor_;
938 const internal::ReflectionSchema schema_;
939 const DescriptorPool* const descriptor_pool_;
940 MessageFactory* const message_factory_;
941
942 // Last non weak field index. This is an optimization when most weak fields
943 // are at the end of the containing message. If a message proto doesn't
944 // contain weak fields, then this field equals descriptor_->field_count().
945 int last_non_weak_field_index_;
946
947 template <typename T, typename Enable>
948 friend class RepeatedFieldRef;
949 template <typename T, typename Enable>
950 friend class MutableRepeatedFieldRef;
951 friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
952 friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
953 friend class DynamicMessageFactory;
954 friend class python::MapReflectionFriend;
955 friend class util::MessageDifferencer;
956 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
957 friend class expr::CelMapReflectionFriend;
958 friend class internal::MapFieldReflectionTest;
959 friend class internal::MapKeySorter;
960 friend class internal::WireFormat;
961 friend class internal::ReflectionOps;
962 // Needed for implementing text format for map.
963 friend class internal::MapFieldPrinterHelper;
964
965 Reflection(const Descriptor* descriptor,
966 const internal::ReflectionSchema& schema,
967 const DescriptorPool* pool, MessageFactory* factory);
968
969 // Special version for specialized implementations of string. We can't
970 // call MutableRawRepeatedField directly here because we don't have access to
971 // FieldOptions::* which are defined in descriptor.pb.h. Including that
972 // file here is not possible because it would cause a circular include cycle.
973 // We use 1 routine rather than 2 (const vs mutable) because it is private
974 // and mutable a repeated string field doesn't change the message.
975 void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
976 bool is_string) const;
977
978 friend class MapReflectionTester;
979 // Returns true if key is in map. Returns false if key is not in map field.
980 bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
981 const MapKey& key) const;
982
983 // If key is in map field: Saves the value pointer to val and returns
984 // false. If key in not in map field: Insert the key into map, saves
985 // value pointer to val and returns true. Users are able to modify the
986 // map value by MapValueRef.
987 bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
988 const MapKey& key, MapValueRef* val) const;
989
990 // If key is in map field: Saves the value pointer to val and returns true.
991 // Returns false if key is not in map field. Users are NOT able to modify
992 // the value by MapValueConstRef.
993 bool LookupMapValue(const Message& message, const FieldDescriptor* field,
994 const MapKey& key, MapValueConstRef* val) const;
995 bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
996 MapValueRef*) const = delete;
997
998 // Delete and returns true if key is in the map field. Returns false
999 // otherwise.
1000 bool DeleteMapValue(Message* message, const FieldDescriptor* field,
1001 const MapKey& key) const;
1002
1003 // Returns a MapIterator referring to the first element in the map field.
1004 // If the map field is empty, this function returns the same as
1005 // reflection::MapEnd. Mutation to the field may invalidate the iterator.
1006 MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
1007
1008 // Returns a MapIterator referring to the theoretical element that would
1009 // follow the last element in the map field. It does not point to any
1010 // real element. Mutation to the field may invalidate the iterator.
1011 MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
1012
1013 // Get the number of <key, value> pair of a map field. The result may be
1014 // different from FieldSize which can have duplicate keys.
1015 int MapSize(const Message& message, const FieldDescriptor* field) const;
1016
1017 // Help method for MapIterator.
1018 friend class MapIterator;
1019 friend class WireFormatForMapFieldTest;
1020 internal::MapFieldBase* MutableMapData(Message* message,
1021 const FieldDescriptor* field) const;
1022
1023 const internal::MapFieldBase* GetMapData(const Message& message,
1024 const FieldDescriptor* field) const;
1025
1026 template <class T>
1027 const T& GetRawNonOneof(const Message& message,
1028 const FieldDescriptor* field) const;
1029 template <class T>
1030 T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
1031
1032 template <typename Type>
1033 const Type& GetRaw(const Message& message,
1034 const FieldDescriptor* field) const;
1035 template <typename Type>
1036 inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
1037 template <typename Type>
1038 const Type& DefaultRaw(const FieldDescriptor* field) const;
1039
1040 const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
1041
1042 inline const uint32* GetHasBits(const Message& message) const;
1043 inline uint32* MutableHasBits(Message* message) const;
1044 inline uint32 GetOneofCase(const Message& message,
1045 const OneofDescriptor* oneof_descriptor) const;
1046 inline uint32* MutableOneofCase(
1047 Message* message, const OneofDescriptor* oneof_descriptor) const;
HasExtensionSet(const Message &)1048 inline bool HasExtensionSet(const Message& /* message */) const {
1049 return schema_.HasExtensionSet();
1050 }
1051 const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
1052 internal::ExtensionSet* MutableExtensionSet(Message* message) const;
1053 inline Arena* GetArena(Message* message) const;
1054
1055 inline const internal::InternalMetadata& GetInternalMetadata(
1056 const Message& message) const;
1057
1058 internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
1059
1060 inline bool HasBit(const Message& message,
1061 const FieldDescriptor* field) const;
1062 inline void SetBit(Message* message, const FieldDescriptor* field) const;
1063 inline void ClearBit(Message* message, const FieldDescriptor* field) const;
1064 inline void SwapBit(Message* message1, Message* message2,
1065 const FieldDescriptor* field) const;
1066
1067 // This function only swaps the field. Should swap corresponding has_bit
1068 // before or after using this function.
1069 void SwapField(Message* message1, Message* message2,
1070 const FieldDescriptor* field) const;
1071
1072 void SwapOneofField(Message* message1, Message* message2,
1073 const OneofDescriptor* oneof_descriptor) const;
1074
1075 inline bool HasOneofField(const Message& message,
1076 const FieldDescriptor* field) const;
1077 inline void SetOneofCase(Message* message,
1078 const FieldDescriptor* field) const;
1079 inline void ClearOneofField(Message* message,
1080 const FieldDescriptor* field) const;
1081
1082 template <typename Type>
1083 inline const Type& GetField(const Message& message,
1084 const FieldDescriptor* field) const;
1085 template <typename Type>
1086 inline void SetField(Message* message, const FieldDescriptor* field,
1087 const Type& value) const;
1088 template <typename Type>
1089 inline Type* MutableField(Message* message,
1090 const FieldDescriptor* field) const;
1091 template <typename Type>
1092 inline const Type& GetRepeatedField(const Message& message,
1093 const FieldDescriptor* field,
1094 int index) const;
1095 template <typename Type>
1096 inline const Type& GetRepeatedPtrField(const Message& message,
1097 const FieldDescriptor* field,
1098 int index) const;
1099 template <typename Type>
1100 inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1101 int index, Type value) const;
1102 template <typename Type>
1103 inline Type* MutableRepeatedField(Message* message,
1104 const FieldDescriptor* field,
1105 int index) const;
1106 template <typename Type>
1107 inline void AddField(Message* message, const FieldDescriptor* field,
1108 const Type& value) const;
1109 template <typename Type>
1110 inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1111
1112 int GetExtensionNumberOrDie(const Descriptor* type) const;
1113
1114 // Internal versions of EnumValue API perform no checking. Called after checks
1115 // by public methods.
1116 void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1117 int value) const;
1118 void SetRepeatedEnumValueInternal(Message* message,
1119 const FieldDescriptor* field, int index,
1120 int value) const;
1121 void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1122 int value) const;
1123
1124 Message* UnsafeArenaReleaseMessage(Message* message,
1125 const FieldDescriptor* field,
1126 MessageFactory* factory = nullptr) const;
1127
1128 void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
1129 const FieldDescriptor* field) const;
1130
1131 friend inline // inline so nobody can call this function.
1132 void
1133 RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1134 friend inline const char* ParseLenDelim(int field_number,
1135 const FieldDescriptor* field,
1136 Message* msg,
1137 const Reflection* reflection,
1138 const char* ptr,
1139 internal::ParseContext* ctx);
1140 friend inline const char* ParsePackedField(const FieldDescriptor* field,
1141 Message* msg,
1142 const Reflection* reflection,
1143 const char* ptr,
1144 internal::ParseContext* ctx);
1145
1146 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1147 };
1148
1149 // Abstract interface for a factory for message objects.
1150 class PROTOBUF_EXPORT MessageFactory {
1151 public:
MessageFactory()1152 inline MessageFactory() {}
1153 virtual ~MessageFactory();
1154
1155 // Given a Descriptor, gets or constructs the default (prototype) Message
1156 // of that type. You can then call that message's New() method to construct
1157 // a mutable message of that type.
1158 //
1159 // Calling this method twice with the same Descriptor returns the same
1160 // object. The returned object remains property of the factory. Also, any
1161 // objects created by calling the prototype's New() method share some data
1162 // with the prototype, so these must be destroyed before the MessageFactory
1163 // is destroyed.
1164 //
1165 // The given descriptor must outlive the returned message, and hence must
1166 // outlive the MessageFactory.
1167 //
1168 // Some implementations do not support all types. GetPrototype() will
1169 // return nullptr if the descriptor passed in is not supported.
1170 //
1171 // This method may or may not be thread-safe depending on the implementation.
1172 // Each implementation should document its own degree thread-safety.
1173 virtual const Message* GetPrototype(const Descriptor* type) = 0;
1174
1175 // Gets a MessageFactory which supports all generated, compiled-in messages.
1176 // In other words, for any compiled-in type FooMessage, the following is true:
1177 // MessageFactory::generated_factory()->GetPrototype(
1178 // FooMessage::descriptor()) == FooMessage::default_instance()
1179 // This factory supports all types which are found in
1180 // DescriptorPool::generated_pool(). If given a descriptor from any other
1181 // pool, GetPrototype() will return nullptr. (You can also check if a
1182 // descriptor is for a generated message by checking if
1183 // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1184 //
1185 // This factory is 100% thread-safe; calling GetPrototype() does not modify
1186 // any shared data.
1187 //
1188 // This factory is a singleton. The caller must not delete the object.
1189 static MessageFactory* generated_factory();
1190
1191 // For internal use only: Registers a .proto file at static initialization
1192 // time, to be placed in generated_factory. The first time GetPrototype()
1193 // is called with a descriptor from this file, |register_messages| will be
1194 // called, with the file name as the parameter. It must call
1195 // InternalRegisterGeneratedMessage() (below) to register each message type
1196 // in the file. This strange mechanism is necessary because descriptors are
1197 // built lazily, so we can't register types by their descriptor until we
1198 // know that the descriptor exists. |filename| must be a permanent string.
1199 static void InternalRegisterGeneratedFile(
1200 const google::protobuf::internal::DescriptorTable* table);
1201
1202 // For internal use only: Registers a message type. Called only by the
1203 // functions which are registered with InternalRegisterGeneratedFile(),
1204 // above.
1205 static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1206 const Message* prototype);
1207
1208
1209 private:
1210 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1211 };
1212
1213 #define DECLARE_GET_REPEATED_FIELD(TYPE) \
1214 template <> \
1215 PROTOBUF_EXPORT const RepeatedField<TYPE>& \
1216 Reflection::GetRepeatedFieldInternal<TYPE>( \
1217 const Message& message, const FieldDescriptor* field) const; \
1218 \
1219 template <> \
1220 PROTOBUF_EXPORT RepeatedField<TYPE>* \
1221 Reflection::MutableRepeatedFieldInternal<TYPE>( \
1222 Message * message, const FieldDescriptor* field) const;
1223
1224 DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)1225 DECLARE_GET_REPEATED_FIELD(int64)
1226 DECLARE_GET_REPEATED_FIELD(uint32)
1227 DECLARE_GET_REPEATED_FIELD(uint64)
1228 DECLARE_GET_REPEATED_FIELD(float)
1229 DECLARE_GET_REPEATED_FIELD(double)
1230 DECLARE_GET_REPEATED_FIELD(bool)
1231
1232 #undef DECLARE_GET_REPEATED_FIELD
1233
1234 // Tries to downcast this message to a generated message type. Returns nullptr
1235 // if this class is not an instance of T. This works even if RTTI is disabled.
1236 //
1237 // This also has the effect of creating a strong reference to T that will
1238 // prevent the linker from stripping it out at link time. This can be important
1239 // if you are using a DynamicMessageFactory that delegates to the generated
1240 // factory.
1241 template <typename T>
1242 const T* DynamicCastToGenerated(const Message* from) {
1243 // Compile-time assert that T is a generated type that has a
1244 // default_instance() accessor, but avoid actually calling it.
1245 const T& (*get_default_instance)() = &T::default_instance;
1246 (void)get_default_instance;
1247
1248 // Compile-time assert that T is a subclass of google::protobuf::Message.
1249 const Message* unused = static_cast<T*>(nullptr);
1250 (void)unused;
1251
1252 #if PROTOBUF_RTTI
1253 return dynamic_cast<const T*>(from);
1254 #else
1255 bool ok = T::default_instance().GetReflection() == from->GetReflection();
1256 return ok ? down_cast<const T*>(from) : nullptr;
1257 #endif
1258 }
1259
1260 template <typename T>
DynamicCastToGenerated(Message * from)1261 T* DynamicCastToGenerated(Message* from) {
1262 const Message* message_const = from;
1263 return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1264 }
1265
1266 // Call this function to ensure that this message's reflection is linked into
1267 // the binary:
1268 //
1269 // google::protobuf::LinkMessageReflection<FooMessage>();
1270 //
1271 // This will ensure that the following lookup will succeed:
1272 //
1273 // DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
1274 //
1275 // As a side-effect, it will also guarantee that anything else from the same
1276 // .proto file will also be available for lookup in the generated pool.
1277 //
1278 // This function does not actually register the message, so it does not need
1279 // to be called before the lookup. However it does need to occur in a function
1280 // that cannot be stripped from the binary (ie. it must be reachable from main).
1281 //
1282 // Best practice is to call this function as close as possible to where the
1283 // reflection is actually needed. This function is very cheap to call, so you
1284 // should not need to worry about its runtime overhead except in the tightest
1285 // of loops (on x86-64 it compiles into two "mov" instructions).
1286 template <typename T>
LinkMessageReflection()1287 void LinkMessageReflection() {
1288 internal::StrongReference(T::default_instance);
1289 }
1290
1291 // =============================================================================
1292 // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
1293 // specializations for <std::string>, <StringPieceField> and <Message> and
1294 // handle everything else with the default template which will match any type
1295 // having a method with signature "static const google::protobuf::Descriptor*
1296 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1297
1298 template <>
1299 inline const RepeatedPtrField<std::string>&
1300 Reflection::GetRepeatedPtrFieldInternal<std::string>(
1301 const Message& message, const FieldDescriptor* field) const {
1302 return *static_cast<RepeatedPtrField<std::string>*>(
1303 MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1304 }
1305
1306 template <>
1307 inline RepeatedPtrField<std::string>*
1308 Reflection::MutableRepeatedPtrFieldInternal<std::string>(
1309 Message* message, const FieldDescriptor* field) const {
1310 return static_cast<RepeatedPtrField<std::string>*>(
1311 MutableRawRepeatedString(message, field, true));
1312 }
1313
1314
1315 // -----
1316
1317 template <>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1318 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
1319 const Message& message, const FieldDescriptor* field) const {
1320 return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1321 message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1322 }
1323
1324 template <>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1325 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
1326 Message* message, const FieldDescriptor* field) const {
1327 return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1328 message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1329 }
1330
1331 template <typename PB>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1332 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
1333 const Message& message, const FieldDescriptor* field) const {
1334 return *static_cast<const RepeatedPtrField<PB>*>(
1335 GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1336 PB::default_instance().GetDescriptor()));
1337 }
1338
1339 template <typename PB>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1340 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
1341 Message* message, const FieldDescriptor* field) const {
1342 return static_cast<RepeatedPtrField<PB>*>(
1343 MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1344 -1, PB::default_instance().GetDescriptor()));
1345 }
1346
1347 template <typename Type>
DefaultRaw(const FieldDescriptor * field)1348 const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
1349 return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
1350 }
1351 } // namespace protobuf
1352 } // namespace google
1353
1354 #include <google/protobuf/port_undef.inc>
1355
1356 #endif // GOOGLE_PROTOBUF_MESSAGE_H__
1357