1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 #if !defined(ASTCENC_DECOMPRESS_ONLY)
19
20 /**
21 * @brief Functions for finding best partition for a block.
22 *
23 * The partition search operates in two stages. The first pass uses kmeans clustering to group
24 * texels into an ideal partitioning for the requested partition count, and then compares that
25 * against the 1024 partitionings generated by the ASTC partition hash function. The generated
26 * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
27 * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
28 * partitionings that actually generate fewer than the requested partition count, but only the top
29 * N candidates are actually put through a more detailed search. N is determined by the compressor
30 * quality preset.
31 *
32 * For the detailed search, each candidate is checked against two possible encoding methods:
33 *
34 * - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
35 * - The best partitioning assuming same chroma colors (RGB + scale endpoints).
36 *
37 * This is implemented by computing the compute mean color and dominant direction for each
38 * partition. This defines two lines, both of which go through the mean color value.
39 *
40 * - One line has a direction defined by the dominant direction; this is used to assess the error
41 * from using an uncorrelated color representation.
42 * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
43 * (RGB + scale) color representation.
44 *
45 * The best candidate is selected by computing the squared-errors that result from using these
46 * lines for endpoint selection.
47 */
48
49 #include <limits>
50 #include "astcenc_internal.h"
51
52 /**
53 * @brief Pick some initial kmeans cluster centers.
54 *
55 * @param blk The image block color data to compress.
56 * @param texel_count The number of texels in the block.
57 * @param partition_count The number of partitions in the block.
58 * @param[out] cluster_centers The initial partition cluster center colors.
59 */
kmeans_init(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS])60 static void kmeans_init(
61 const image_block& blk,
62 unsigned int texel_count,
63 unsigned int partition_count,
64 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
65 ) {
66 promise(texel_count > 0);
67 promise(partition_count > 0);
68
69 unsigned int clusters_selected = 0;
70 float distances[BLOCK_MAX_TEXELS];
71
72 // Pick a random sample as first cluster center; 145897 from random.org
73 unsigned int sample = 145897 % texel_count;
74 vfloat4 center_color = blk.texel(sample);
75 cluster_centers[clusters_selected] = center_color;
76 clusters_selected++;
77
78 // Compute the distance to the first cluster center
79 float distance_sum = 0.0f;
80 for (unsigned int i = 0; i < texel_count; i++)
81 {
82 vfloat4 color = blk.texel(i);
83 vfloat4 diff = color - center_color;
84 float distance = dot_s(diff * diff, blk.channel_weight);
85 distance_sum += distance;
86 distances[i] = distance;
87 }
88
89 // More numbers from random.org for weighted-random center selection
90 const float cluster_cutoffs[9] {
91 0.626220f, 0.932770f, 0.275454f,
92 0.318558f, 0.240113f, 0.009190f,
93 0.347661f, 0.731960f, 0.156391f
94 };
95
96 unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
97
98 // Pick the remaining samples as needed
99 while (true)
100 {
101 // Pick the next center in a weighted-random fashion.
102 float summa = 0.0f;
103 float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
104 for (sample = 0; sample < texel_count; sample++)
105 {
106 summa += distances[sample];
107 if (summa >= distance_cutoff)
108 {
109 break;
110 }
111 }
112
113 // Clamp to a valid range and store the selected cluster center
114 sample = astc::min(sample, texel_count - 1);
115
116 center_color = blk.texel(sample);
117 cluster_centers[clusters_selected++] = center_color;
118 if (clusters_selected >= partition_count)
119 {
120 break;
121 }
122
123 // Compute the distance to the new cluster center, keep the min dist
124 distance_sum = 0.0f;
125 for (unsigned int i = 0; i < texel_count; i++)
126 {
127 vfloat4 color = blk.texel(i);
128 vfloat4 diff = color - center_color;
129 float distance = dot_s(diff * diff, blk.channel_weight);
130 distance = astc::min(distance, distances[i]);
131 distance_sum += distance;
132 distances[i] = distance;
133 }
134 }
135 }
136
137 /**
138 * @brief Assign texels to clusters, based on a set of chosen center points.
139 *
140 * @param blk The image block color data to compress.
141 * @param texel_count The number of texels in the block.
142 * @param partition_count The number of partitions in the block.
143 * @param cluster_centers The partition cluster center colors.
144 * @param[out] partition_of_texel The partition assigned for each texel.
145 */
kmeans_assign(const image_block & blk,unsigned int texel_count,unsigned int partition_count,const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],uint8_t partition_of_texel[BLOCK_MAX_TEXELS])146 static void kmeans_assign(
147 const image_block& blk,
148 unsigned int texel_count,
149 unsigned int partition_count,
150 const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
151 uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
152 ) {
153 promise(texel_count > 0);
154 promise(partition_count > 0);
155
156 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
157
158 // Find the best partition for every texel
159 for (unsigned int i = 0; i < texel_count; i++)
160 {
161 float best_distance = std::numeric_limits<float>::max();
162 unsigned int best_partition = 0;
163
164 vfloat4 color = blk.texel(i);
165 for (unsigned int j = 0; j < partition_count; j++)
166 {
167 vfloat4 diff = color - cluster_centers[j];
168 float distance = dot_s(diff * diff, blk.channel_weight);
169 if (distance < best_distance)
170 {
171 best_distance = distance;
172 best_partition = j;
173 }
174 }
175
176 partition_of_texel[i] = static_cast<uint8_t>(best_partition);
177 partition_texel_count[best_partition]++;
178 }
179
180 // It is possible to get a situation where a partition ends up without any texels. In this case,
181 // assign texel N to partition N. This is silly, but ensures that every partition retains at
182 // least one texel. Reassigning a texel in this manner may cause another partition to go empty,
183 // so if we actually did a reassignment, run the whole loop over again.
184 bool problem_case;
185 do
186 {
187 problem_case = false;
188 for (unsigned int i = 0; i < partition_count; i++)
189 {
190 if (partition_texel_count[i] == 0)
191 {
192 partition_texel_count[partition_of_texel[i]]--;
193 partition_texel_count[i]++;
194 partition_of_texel[i] = static_cast<uint8_t>(i);
195 problem_case = true;
196 }
197 }
198 } while (problem_case);
199 }
200
201 /**
202 * @brief Compute new cluster centers based on their center of gravity.
203 *
204 * @param blk The image block color data to compress.
205 * @param texel_count The number of texels in the block.
206 * @param partition_count The number of partitions in the block.
207 * @param[out] cluster_centers The new cluster center colors.
208 * @param partition_of_texel The partition assigned for each texel.
209 */
kmeans_update(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],const uint8_t partition_of_texel[BLOCK_MAX_TEXELS])210 static void kmeans_update(
211 const image_block& blk,
212 unsigned int texel_count,
213 unsigned int partition_count,
214 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
215 const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
216 ) {
217 promise(texel_count > 0);
218 promise(partition_count > 0);
219
220 vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
221 vfloat4::zero(),
222 vfloat4::zero(),
223 vfloat4::zero(),
224 vfloat4::zero()
225 };
226
227 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
228
229 // Find the center-of-gravity in each cluster
230 for (unsigned int i = 0; i < texel_count; i++)
231 {
232 uint8_t partition = partition_of_texel[i];
233 color_sum[partition] += blk.texel(i);
234 partition_texel_count[partition]++;
235 }
236
237 // Set the center of gravity to be the new cluster center
238 for (unsigned int i = 0; i < partition_count; i++)
239 {
240 float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
241 cluster_centers[i] = color_sum[i] * scale;
242 }
243 }
244
245 /**
246 * @brief Compute bit-mismatch for partitioning in 2-partition mode.
247 *
248 * @param a The texel assignment bitvector for the block.
249 * @param b The texel assignment bitvector for the partition table.
250 *
251 * @return The number of bit mismatches.
252 */
253 #if ASTCENC_NEON != 0
partition_mismatch2(const uint64_t a[2],const uint64_t b[2])254 static inline uint8_t partition_mismatch2(
255 const uint64_t a[2],
256 const uint64_t b[2]
257 ) {
258 uint64x2_t a01 = vld1q_u64(a);
259 uint64x2_t b01 = vld1q_u64(b);
260 uint64x2_t b10 = vextq_u64(b01, b01, 1);
261 uint8_t c1 = popcount(veorq_u64(a01, b01));
262 uint8_t c2 = popcount(veorq_u64(a01, b10));
263 return static_cast<uint8_t>(astc::min(c1, c2) / 2); // 2 is the number of partitions
264 }
265 #else
partition_mismatch2(const uint64_t a[2],const uint64_t b[2])266 static inline uint8_t partition_mismatch2(
267 const uint64_t a[2],
268 const uint64_t b[2]
269 ) {
270 int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
271 int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
272
273 // Divide by 2 because XOR always counts errors twice, once when missing
274 // in the expected position, and again when present in the wrong partition
275 return static_cast<uint8_t>(astc::min(v1, v2) / 2);
276 }
277 #endif
278
279 /**
280 * @brief Compute bit-mismatch for partitioning in 3-partition mode.
281 *
282 * @param a The texel assignment bitvector for the block.
283 * @param b The texel assignment bitvector for the partition table.
284 *
285 * @return The number of bit mismatches.
286 */
partition_mismatch3(const uint64_t a[3],const uint64_t b[3])287 static inline uint8_t partition_mismatch3(
288 const uint64_t a[3],
289 const uint64_t b[3]
290 ) {
291 int p00 = popcount(a[0] ^ b[0]);
292 int p01 = popcount(a[0] ^ b[1]);
293 int p02 = popcount(a[0] ^ b[2]);
294
295 int p10 = popcount(a[1] ^ b[0]);
296 int p11 = popcount(a[1] ^ b[1]);
297 int p12 = popcount(a[1] ^ b[2]);
298
299 int p20 = popcount(a[2] ^ b[0]);
300 int p21 = popcount(a[2] ^ b[1]);
301 int p22 = popcount(a[2] ^ b[2]);
302
303 int s0 = p11 + p22;
304 int s1 = p12 + p21;
305 int v0 = astc::min(s0, s1) + p00;
306
307 int s2 = p10 + p22;
308 int s3 = p12 + p20;
309 int v1 = astc::min(s2, s3) + p01;
310
311 int s4 = p10 + p21;
312 int s5 = p11 + p20;
313 int v2 = astc::min(s4, s5) + p02;
314
315 // Divide by 2 because XOR always counts errors twice, once when missing
316 // in the expected position, and again when present in the wrong partition
317 return static_cast<uint8_t>(astc::min(v0, v1, v2) / 2);
318 }
319
320 /**
321 * @brief Compute bit-mismatch for partitioning in 4-partition mode.
322 *
323 * @param a The texel assignment bitvector for the block.
324 * @param b The texel assignment bitvector for the partition table.
325 *
326 * @return The number of bit mismatches.
327 */
partition_mismatch4(const uint64_t a[4],const uint64_t b[4])328 static inline uint8_t partition_mismatch4(
329 const uint64_t a[4],
330 const uint64_t b[4]
331 ) {
332 int p00 = popcount(a[0] ^ b[0]);
333 int p01 = popcount(a[0] ^ b[1]);
334 int p02 = popcount(a[0] ^ b[2]);
335 int p03 = popcount(a[0] ^ b[3]);
336
337 int p10 = popcount(a[1] ^ b[0]);
338 int p11 = popcount(a[1] ^ b[1]);
339 int p12 = popcount(a[1] ^ b[2]);
340 int p13 = popcount(a[1] ^ b[3]);
341
342 int p20 = popcount(a[2] ^ b[0]);
343 int p21 = popcount(a[2] ^ b[1]);
344 int p22 = popcount(a[2] ^ b[2]);
345 int p23 = popcount(a[2] ^ b[3]);
346
347 int p30 = popcount(a[3] ^ b[0]);
348 int p31 = popcount(a[3] ^ b[1]);
349 int p32 = popcount(a[3] ^ b[2]);
350 int p33 = popcount(a[3] ^ b[3]);
351
352 int mx23 = astc::min(p22 + p33, p23 + p32);
353 int mx13 = astc::min(p21 + p33, p23 + p31);
354 int mx12 = astc::min(p21 + p32, p22 + p31);
355 int mx03 = astc::min(p20 + p33, p23 + p30);
356 int mx02 = astc::min(p20 + p32, p22 + p30);
357 int mx01 = astc::min(p21 + p30, p20 + p31);
358
359 int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
360 int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
361 int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
362 int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
363
364 // Divide by 2 because XOR always counts errors twice, once when missing
365 // in the expected position, and again when present in the wrong partition
366 return static_cast<uint8_t>(astc::min(v0, v1, v2, v3) / 2);
367 }
368
369 using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
370
371 /**
372 * @brief Count the partition table mismatches vs the data clustering.
373 *
374 * @param bsd The block size information.
375 * @param partition_count The number of partitions in the block.
376 * @param bitmaps The block texel partition assignment patterns.
377 * @param[out] mismatch_counts The array storing per partitioning mismatch counts.
378 */
count_partition_mismatch_bits(const block_size_descriptor & bsd,unsigned int partition_count,const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS])379 static void count_partition_mismatch_bits(
380 const block_size_descriptor& bsd,
381 unsigned int partition_count,
382 const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
383 uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS]
384 ) {
385 unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
386 promise(active_count > 0);
387
388 if (partition_count == 2)
389 {
390 for (unsigned int i = 0; i < active_count; i++)
391 {
392 mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
393 assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
394 assert(mismatch_counts[i] < bsd.texel_count);
395 }
396 }
397 else if (partition_count == 3)
398 {
399 for (unsigned int i = 0; i < active_count; i++)
400 {
401 mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
402 assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
403 assert(mismatch_counts[i] < bsd.texel_count);
404 }
405 }
406 else
407 {
408 for (unsigned int i = 0; i < active_count; i++)
409 {
410 mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
411 assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
412 assert(mismatch_counts[i] < bsd.texel_count);
413 }
414 }
415 }
416
417 /**
418 * @brief Use counting sort on the mismatch array to sort partition candidates.
419 *
420 * @param partitioning_count The number of packed partitionings.
421 * @param mismatch_count Partitioning mismatch counts, in index order.
422 * @param[out] partition_ordering Partition index values, in mismatch order.
423 *
424 * @return The number of active partitions in this selection.
425 */
get_partition_ordering_by_mismatch_bits(unsigned int texel_count,unsigned int partitioning_count,const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS])426 static unsigned int get_partition_ordering_by_mismatch_bits(
427 unsigned int texel_count,
428 unsigned int partitioning_count,
429 const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],
430 uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
431 ) {
432 promise(partitioning_count > 0);
433 uint16_t mscount[BLOCK_MAX_KMEANS_TEXELS] { 0 };
434
435 // Create the histogram of mismatch counts
436 for (unsigned int i = 0; i < partitioning_count; i++)
437 {
438 mscount[mismatch_count[i]]++;
439 }
440
441 // Create a running sum from the histogram array
442 // Cells store previous values only; i.e. exclude self after sum
443 unsigned int sum = 0;
444 for (unsigned int i = 0; i < texel_count; i++)
445 {
446 uint16_t cnt = mscount[i];
447 mscount[i] = sum;
448 sum += cnt;
449 }
450
451 // Use the running sum as the index, incrementing after read to allow
452 // sequential entries with the same count
453 for (unsigned int i = 0; i < partitioning_count; i++)
454 {
455 unsigned int idx = mscount[mismatch_count[i]]++;
456 partition_ordering[idx] = static_cast<uint16_t>(i);
457 }
458
459 return partitioning_count;
460 }
461
462 /**
463 * @brief Use k-means clustering to compute a partition ordering for a block..
464 *
465 * @param bsd The block size information.
466 * @param blk The image block color data to compress.
467 * @param partition_count The desired number of partitions in the block.
468 * @param[out] partition_ordering The list of recommended partition indices, in priority order.
469 *
470 * @return The number of active partitionings in this selection.
471 */
compute_kmeans_partition_ordering(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS])472 static unsigned int compute_kmeans_partition_ordering(
473 const block_size_descriptor& bsd,
474 const image_block& blk,
475 unsigned int partition_count,
476 uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
477 ) {
478 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
479 uint8_t texel_partitions[BLOCK_MAX_TEXELS];
480
481 // Use three passes of k-means clustering to partition the block data
482 for (unsigned int i = 0; i < 3; i++)
483 {
484 if (i == 0)
485 {
486 kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
487 }
488 else
489 {
490 kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
491 }
492
493 kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
494 }
495
496 // Construct the block bitmaps of texel assignments to each partition
497 uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
498 unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
499 promise(texels_to_process > 0);
500 for (unsigned int i = 0; i < texels_to_process; i++)
501 {
502 unsigned int idx = bsd.kmeans_texels[i];
503 bitmaps[texel_partitions[idx]] |= 1ULL << i;
504 }
505
506 // Count the mismatch between the block and the format's partition tables
507 uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS];
508 count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
509
510 // Sort the partitions based on the number of mismatched bits
511 return get_partition_ordering_by_mismatch_bits(
512 texels_to_process,
513 bsd.partitioning_count_selected[partition_count - 1],
514 mismatch_counts, partition_ordering);
515 }
516
517 /**
518 * @brief Insert a partitioning into an order list of results, sorted by error.
519 *
520 * @param max_values The max number of entries in the best result arrays.
521 * @param this_error The error of the new entry.
522 * @param this_partition The partition ID of the new entry.
523 * @param[out] best_errors The array of best error values.
524 * @param[out] best_partitions The array of best partition values.
525 */
insert_result(unsigned int max_values,float this_error,unsigned int this_partition,float * best_errors,unsigned int * best_partitions)526 static void insert_result(
527 unsigned int max_values,
528 float this_error,
529 unsigned int this_partition,
530 float* best_errors,
531 unsigned int* best_partitions)
532 {
533 promise(max_values > 0);
534
535 // Don't bother searching if the current worst error beats the new error
536 if (this_error >= best_errors[max_values - 1])
537 {
538 return;
539 }
540
541 // Else insert into the list in error-order
542 for (unsigned int i = 0; i < max_values; i++)
543 {
544 // Existing result is better - move on ...
545 if (this_error > best_errors[i])
546 {
547 continue;
548 }
549
550 // Move existing results down one
551 for (unsigned int j = max_values - 1; j > i; j--)
552 {
553 best_errors[j] = best_errors[j - 1];
554 best_partitions[j] = best_partitions[j - 1];
555 }
556
557 // Insert new result
558 best_errors[i] = this_error;
559 best_partitions[i] = this_partition;
560 break;
561 }
562 }
563
564 /* See header for documentation. */
find_best_partition_candidates(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_search_limit,unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],unsigned int requested_candidates)565 unsigned int find_best_partition_candidates(
566 const block_size_descriptor& bsd,
567 const image_block& blk,
568 unsigned int partition_count,
569 unsigned int partition_search_limit,
570 unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
571 unsigned int requested_candidates
572 ) {
573 // Constant used to estimate quantization error for a given partitioning; the optimal value for
574 // this depends on bitrate. These values have been determined empirically.
575 unsigned int texels_per_block = bsd.texel_count;
576 float weight_imprecision_estim = 0.055f;
577 if (texels_per_block <= 20)
578 {
579 weight_imprecision_estim = 0.03f;
580 }
581 else if (texels_per_block <= 31)
582 {
583 weight_imprecision_estim = 0.04f;
584 }
585 else if (texels_per_block <= 41)
586 {
587 weight_imprecision_estim = 0.05f;
588 }
589
590 promise(partition_count > 0);
591 promise(partition_search_limit > 0);
592
593 weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
594
595 uint16_t partition_sequence[BLOCK_MAX_PARTITIONINGS];
596 unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
597 partition_search_limit = astc::min(partition_search_limit, sequence_len);
598 requested_candidates = astc::min(partition_search_limit, requested_candidates);
599
600 bool uses_alpha = !blk.is_constant_channel(3);
601
602 // Partitioning errors assuming uncorrelated-chrominance endpoints
603 float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
604 unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
605
606 // Partitioning errors assuming same-chrominance endpoints
607 float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
608 unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
609
610 for (unsigned int i = 0; i < requested_candidates; i++)
611 {
612 uncor_best_errors[i] = ERROR_CALC_DEFAULT;
613 samec_best_errors[i] = ERROR_CALC_DEFAULT;
614 }
615
616 if (uses_alpha)
617 {
618 for (unsigned int i = 0; i < partition_search_limit; i++)
619 {
620 unsigned int partition = partition_sequence[i];
621 const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
622
623 // Compute weighting to give to each component in each partition
624 partition_metrics pms[BLOCK_MAX_PARTITIONS];
625
626 compute_avgs_and_dirs_4_comp(pi, blk, pms);
627
628 line4 uncor_lines[BLOCK_MAX_PARTITIONS];
629 line4 samec_lines[BLOCK_MAX_PARTITIONS];
630
631 processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
632 processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
633
634 float line_lengths[BLOCK_MAX_PARTITIONS];
635
636 for (unsigned int j = 0; j < partition_count; j++)
637 {
638 partition_metrics& pm = pms[j];
639
640 uncor_lines[j].a = pm.avg;
641 uncor_lines[j].b = normalize_safe(pm.dir, unit4());
642
643 uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
644 uncor_plines[j].bs = uncor_lines[j].b;
645
646 samec_lines[j].a = vfloat4::zero();
647 samec_lines[j].b = normalize_safe(pm.avg, unit4());
648
649 samec_plines[j].amod = vfloat4::zero();
650 samec_plines[j].bs = samec_lines[j].b;
651 }
652
653 float uncor_error = 0.0f;
654 float samec_error = 0.0f;
655
656 compute_error_squared_rgba(pi,
657 blk,
658 uncor_plines,
659 samec_plines,
660 line_lengths,
661 uncor_error,
662 samec_error);
663
664 // Compute an estimate of error introduced by weight quantization imprecision.
665 // This error is computed as follows, for each partition
666 // 1: compute the principal-axis vector (full length) in error-space
667 // 2: convert the principal-axis vector to regular RGB-space
668 // 3: scale the vector by a constant that estimates average quantization error
669 // 4: for each texel, square the vector, then do a dot-product with the texel's
670 // error weight; sum up the results across all texels.
671 // 4(optimized): square the vector once, then do a dot-product with the average
672 // texel error, then multiply by the number of texels.
673
674 for (unsigned int j = 0; j < partition_count; j++)
675 {
676 float tpp = static_cast<float>(pi.partition_texel_count[j]);
677 vfloat4 error_weights(tpp * weight_imprecision_estim);
678
679 vfloat4 uncor_vector = uncor_lines[j].b * line_lengths[j];
680 vfloat4 samec_vector = samec_lines[j].b * line_lengths[j];
681
682 uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
683 samec_error += dot_s(samec_vector * samec_vector, error_weights);
684 }
685
686 insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
687 insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
688 }
689 }
690 else
691 {
692 for (unsigned int i = 0; i < partition_search_limit; i++)
693 {
694 unsigned int partition = partition_sequence[i];
695 const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
696
697 // Compute weighting to give to each component in each partition
698 partition_metrics pms[BLOCK_MAX_PARTITIONS];
699 compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
700
701 partition_lines3 plines[BLOCK_MAX_PARTITIONS];
702
703 for (unsigned int j = 0; j < partition_count; j++)
704 {
705 partition_metrics& pm = pms[j];
706 partition_lines3& pl = plines[j];
707
708 pl.uncor_line.a = pm.avg;
709 pl.uncor_line.b = normalize_safe(pm.dir, unit3());
710
711 pl.samec_line.a = vfloat4::zero();
712 pl.samec_line.b = normalize_safe(pm.avg, unit3());
713
714 pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
715 pl.uncor_pline.bs = pl.uncor_line.b;
716
717 pl.samec_pline.amod = vfloat4::zero();
718 pl.samec_pline.bs = pl.samec_line.b;
719 }
720
721 float uncor_error = 0.0f;
722 float samec_error = 0.0f;
723
724 compute_error_squared_rgb(pi,
725 blk,
726 plines,
727 uncor_error,
728 samec_error);
729
730 // Compute an estimate of error introduced by weight quantization imprecision.
731 // This error is computed as follows, for each partition
732 // 1: compute the principal-axis vector (full length) in error-space
733 // 2: convert the principal-axis vector to regular RGB-space
734 // 3: scale the vector by a constant that estimates average quantization error
735 // 4: for each texel, square the vector, then do a dot-product with the texel's
736 // error weight; sum up the results across all texels.
737 // 4(optimized): square the vector once, then do a dot-product with the average
738 // texel error, then multiply by the number of texels.
739
740 for (unsigned int j = 0; j < partition_count; j++)
741 {
742 partition_lines3& pl = plines[j];
743
744 float tpp = static_cast<float>(pi.partition_texel_count[j]);
745 vfloat4 error_weights(tpp * weight_imprecision_estim);
746
747 vfloat4 uncor_vector = pl.uncor_line.b * pl.line_length;
748 vfloat4 samec_vector = pl.samec_line.b * pl.line_length;
749
750 uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
751 samec_error += dot3_s(samec_vector * samec_vector, error_weights);
752 }
753
754 insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
755 insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
756 }
757 }
758
759 unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES];
760 for (unsigned int i = 0; i < requested_candidates; i++)
761 {
762 interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
763 interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
764 }
765
766 uint64_t bitmasks[1024/64] { 0 };
767 unsigned int emitted = 0;
768
769 // Deduplicate the first "requested" entries
770 for (unsigned int i = 0; i < requested_candidates * 2; i++)
771 {
772 unsigned int partition = interleave[i];
773
774 unsigned int word = partition / 64;
775 unsigned int bit = partition % 64;
776
777 bool written = bitmasks[word] & (1ull << bit);
778
779 if (!written)
780 {
781 best_partitions[emitted] = partition;
782 bitmasks[word] |= 1ull << bit;
783 emitted++;
784
785 if (emitted == requested_candidates)
786 {
787 break;
788 }
789 }
790 }
791
792 return emitted;
793 }
794
795 #endif
796