• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/core/SkMaskBlurFilter.h"
9 
10 #include "include/core/SkColorPriv.h"
11 #include "include/private/SkMalloc.h"
12 #include "include/private/SkNx.h"
13 #include "include/private/SkTPin.h"
14 #include "include/private/SkTemplates.h"
15 #include "include/private/SkTo.h"
16 #include "src/core/SkArenaAlloc.h"
17 #include "src/core/SkGaussFilter.h"
18 
19 #include <cmath>
20 #include <climits>
21 
22 namespace {
23 static const double kPi = 3.14159265358979323846264338327950288;
24 
25 class PlanGauss final {
26 public:
PlanGauss(double sigma)27     explicit PlanGauss(double sigma) {
28         auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5));
29         auto window = std::max(1, possibleWindow);
30 
31         fPass0Size = window - 1;
32         fPass1Size = window - 1;
33         fPass2Size = (window & 1) == 1 ? window - 1 : window;
34 
35         // Calculating the border is tricky. I will go through the odd case which is simpler, and
36         // then through the even case. Given a stack of filters seven wide for the odd case of
37         // three passes.
38         //
39         //        S
40         //     aaaAaaa
41         //     bbbBbbb
42         //     cccCccc
43         //        D
44         //
45         // The furthest changed pixel is when the filters are in the following configuration.
46         //
47         //                 S
48         //           aaaAaaa
49         //        bbbBbbb
50         //     cccCccc
51         //        D
52         //
53         //  The A pixel is calculated using the value S, the B uses A, and the C uses B, and
54         // finally D is C. So, with a window size of seven the border is nine. In general, the
55         // border is 3*((window - 1)/2).
56         //
57         // For even cases the filter stack is more complicated. The spec specifies two passes
58         // of even filters and a final pass of odd filters. A stack for a width of six looks like
59         // this.
60         //
61         //       S
62         //    aaaAaa
63         //     bbBbbb
64         //    cccCccc
65         //       D
66         //
67         // The furthest pixel looks like this.
68         //
69         //               S
70         //          aaaAaa
71         //        bbBbbb
72         //    cccCccc
73         //       D
74         //
75         // For a window of size, the border value is seven. In general the border is 3 *
76         // (window/2) -1.
77         fBorder = (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
78         fSlidingWindow = 2 * fBorder + 1;
79 
80         // If the window is odd then the divisor is just window ^ 3 otherwise,
81         // it is window * window * (window + 1) = window ^ 2 + window ^ 3;
82         auto window2 = window * window;
83         auto window3 = window2 * window;
84         auto divisor = (window & 1) == 1 ? window3 : window3 + window2;
85 
86         fWeight = static_cast<uint64_t>(round(1.0 / divisor * (1ull << 32)));
87     }
88 
bufferSize() const89     size_t bufferSize() const { return fPass0Size + fPass1Size + fPass2Size; }
90 
border() const91     int    border()     const { return fBorder; }
92 
93 public:
94     class Scan {
95     public:
Scan(uint64_t weight,int noChangeCount,uint32_t * buffer0,uint32_t * buffer0End,uint32_t * buffer1,uint32_t * buffer1End,uint32_t * buffer2,uint32_t * buffer2End)96         Scan(uint64_t weight, int noChangeCount,
97              uint32_t* buffer0, uint32_t* buffer0End,
98              uint32_t* buffer1, uint32_t* buffer1End,
99              uint32_t* buffer2, uint32_t* buffer2End)
100             : fWeight{weight}
101             , fNoChangeCount{noChangeCount}
102             , fBuffer0{buffer0}
103             , fBuffer0End{buffer0End}
104             , fBuffer1{buffer1}
105             , fBuffer1End{buffer1End}
106             , fBuffer2{buffer2}
107             , fBuffer2End{buffer2End}
108         { }
109 
blur(const AlphaIter srcBegin,const AlphaIter srcEnd,uint8_t * dst,int dstStride,uint8_t * dstEnd) const110         template <typename AlphaIter> void blur(const AlphaIter srcBegin, const AlphaIter srcEnd,
111                     uint8_t* dst, int dstStride, uint8_t* dstEnd) const {
112             auto buffer0Cursor = fBuffer0;
113             auto buffer1Cursor = fBuffer1;
114             auto buffer2Cursor = fBuffer2;
115 
116             std::memset(fBuffer0, 0x00, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));
117 
118             uint32_t sum0 = 0;
119             uint32_t sum1 = 0;
120             uint32_t sum2 = 0;
121 
122             // Consume the source generating pixels.
123             for (AlphaIter src = srcBegin; src < srcEnd; ++src, dst += dstStride) {
124                 uint32_t leadingEdge = *src;
125                 sum0 += leadingEdge;
126                 sum1 += sum0;
127                 sum2 += sum1;
128 
129                 *dst = this->finalScale(sum2);
130 
131                 sum2 -= *buffer2Cursor;
132                 *buffer2Cursor = sum1;
133                 buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;
134 
135                 sum1 -= *buffer1Cursor;
136                 *buffer1Cursor = sum0;
137                 buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;
138 
139                 sum0 -= *buffer0Cursor;
140                 *buffer0Cursor = leadingEdge;
141                 buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
142             }
143 
144             // The leading edge is off the right side of the mask.
145             for (int i = 0; i < fNoChangeCount; i++) {
146                 uint32_t leadingEdge = 0;
147                 sum0 += leadingEdge;
148                 sum1 += sum0;
149                 sum2 += sum1;
150 
151                 *dst = this->finalScale(sum2);
152 
153                 sum2 -= *buffer2Cursor;
154                 *buffer2Cursor = sum1;
155                 buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;
156 
157                 sum1 -= *buffer1Cursor;
158                 *buffer1Cursor = sum0;
159                 buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;
160 
161                 sum0 -= *buffer0Cursor;
162                 *buffer0Cursor = leadingEdge;
163                 buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
164 
165                 dst += dstStride;
166             }
167 
168             // Starting from the right, fill in the rest of the buffer.
169             std::memset(fBuffer0, 0, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));
170 
171             sum0 = sum1 = sum2 = 0;
172 
173             uint8_t* dstCursor = dstEnd;
174             AlphaIter src = srcEnd;
175             while (dstCursor > dst) {
176                 dstCursor -= dstStride;
177                 uint32_t leadingEdge = *(--src);
178                 sum0 += leadingEdge;
179                 sum1 += sum0;
180                 sum2 += sum1;
181 
182                 *dstCursor = this->finalScale(sum2);
183 
184                 sum2 -= *buffer2Cursor;
185                 *buffer2Cursor = sum1;
186                 buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;
187 
188                 sum1 -= *buffer1Cursor;
189                 *buffer1Cursor = sum0;
190                 buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;
191 
192                 sum0 -= *buffer0Cursor;
193                 *buffer0Cursor = leadingEdge;
194                 buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
195             }
196         }
197 
198     private:
199         inline static constexpr uint64_t kHalf = static_cast<uint64_t>(1) << 31;
200 
finalScale(uint32_t sum) const201         uint8_t finalScale(uint32_t sum) const {
202             return SkTo<uint8_t>((fWeight * sum + kHalf) >> 32);
203         }
204 
205         uint64_t  fWeight;
206         int       fNoChangeCount;
207         uint32_t* fBuffer0;
208         uint32_t* fBuffer0End;
209         uint32_t* fBuffer1;
210         uint32_t* fBuffer1End;
211         uint32_t* fBuffer2;
212         uint32_t* fBuffer2End;
213     };
214 
makeBlurScan(int width,uint32_t * buffer) const215     Scan makeBlurScan(int width, uint32_t* buffer) const {
216         uint32_t* buffer0, *buffer0End, *buffer1, *buffer1End, *buffer2, *buffer2End;
217         buffer0 = buffer;
218         buffer0End = buffer1 = buffer0 + fPass0Size;
219         buffer1End = buffer2 = buffer1 + fPass1Size;
220         buffer2End = buffer2 + fPass2Size;
221         int noChangeCount = fSlidingWindow > width ? fSlidingWindow - width : 0;
222 
223         return Scan(
224             fWeight, noChangeCount,
225             buffer0, buffer0End,
226             buffer1, buffer1End,
227             buffer2, buffer2End);
228     }
229 
230     uint64_t fWeight;
231     int      fBorder;
232     int      fSlidingWindow;
233     int      fPass0Size;
234     int      fPass1Size;
235     int      fPass2Size;
236 };
237 
238 } // namespace
239 
240 // NB 135 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
241 // using the Gauss filter. It also limits the size of buffers used hold intermediate values. The
242 // additional + 1 added to window represents adding one more leading element before subtracting the
243 // trailing element.
244 // Explanation of maximums:
245 //   sum0 = (window + 1) * 255
246 //   sum1 = (window + 1) * sum0 -> (window + 1) * (window + 1) * 255
247 //   sum2 = (window + 1) * sum1 -> (window + 1) * (window + 1) * (window + 1) * 255 -> window^3 * 255
248 //
249 //   The value (window + 1)^3 * 255 must fit in a uint32_t. So,
250 //      (window + 1)^3 * 255 < 2^32. window = 255.
251 //
252 //   window = floor(sigma * 3 * sqrt(2 * kPi) / 4)
253 //   For window <= 255, the largest value for sigma is 135.
SkMaskBlurFilter(double sigmaW,double sigmaH)254 SkMaskBlurFilter::SkMaskBlurFilter(double sigmaW, double sigmaH)
255     : fSigmaW{SkTPin(sigmaW, 0.0, 135.0)}
256     , fSigmaH{SkTPin(sigmaH, 0.0, 135.0)}
257 {
258     SkASSERT(sigmaW >= 0);
259     SkASSERT(sigmaH >= 0);
260 }
261 
hasNoBlur() const262 bool SkMaskBlurFilter::hasNoBlur() const {
263     return (3 * fSigmaW <= 1) && (3 * fSigmaH <= 1);
264 }
265 
266 // We favor A8 masks, and if we need to work with another format, we'll convert to A8 first.
267 // Each of these converts width (up to 8) mask values to A8.
bw_to_a8(uint8_t * a8,const uint8_t * from,int width)268 static void bw_to_a8(uint8_t* a8, const uint8_t* from, int width) {
269     SkASSERT(0 < width && width <= 8);
270 
271     uint8_t masks = *from;
272     for (int i = 0; i < width; ++i) {
273         a8[i] = (masks >> (7 - i)) & 1 ? 0xFF
274                                        : 0x00;
275     }
276 }
lcd_to_a8(uint8_t * a8,const uint8_t * from,int width)277 static void lcd_to_a8(uint8_t* a8, const uint8_t* from, int width) {
278     SkASSERT(0 < width && width <= 8);
279 
280     for (int i = 0; i < width; ++i) {
281         unsigned rgb = reinterpret_cast<const uint16_t*>(from)[i],
282                    r = SkPacked16ToR32(rgb),
283                    g = SkPacked16ToG32(rgb),
284                    b = SkPacked16ToB32(rgb);
285         a8[i] = (r + g + b) / 3;
286     }
287 }
argb32_to_a8(uint8_t * a8,const uint8_t * from,int width)288 static void argb32_to_a8(uint8_t* a8, const uint8_t* from, int width) {
289     SkASSERT(0 < width && width <= 8);
290     for (int i = 0; i < width; ++i) {
291         uint32_t rgba = reinterpret_cast<const uint32_t*>(from)[i];
292         a8[i] = SkGetPackedA32(rgba);
293     }
294 }
295 using ToA8 = decltype(bw_to_a8);
296 
load(const uint8_t * from,int width,ToA8 * toA8)297 static Sk8h load(const uint8_t* from, int width, ToA8* toA8) {
298     // Our fast path is a full 8-byte load of A8.
299     // So we'll conditionally handle the two slow paths using tmp:
300     //    - if we have a function to convert another mask to A8, use it;
301     //    - if not but we have less than 8 bytes to load, load them one at a time.
302     uint8_t tmp[8] = {0,0,0,0, 0,0,0,0};
303     if (toA8) {
304         toA8(tmp, from, width);
305         from = tmp;
306     } else if (width < 8) {
307         for (int i = 0; i < width; ++i) {
308             tmp[i] = from[i];
309         }
310         from = tmp;
311     }
312 
313     // Load A8 and convert to 8.8 fixed-point.
314     return SkNx_cast<uint16_t>(Sk8b::Load(from)) << 8;
315 }
316 
store(uint8_t * to,const Sk8h & v,int width)317 static void store(uint8_t* to, const Sk8h& v, int width) {
318     Sk8b b = SkNx_cast<uint8_t>(v >> 8);
319     if (width == 8) {
320         b.store(to);
321     } else {
322         uint8_t buffer[8];
323         b.store(buffer);
324         for (int i = 0; i < width; i++) {
325             to[i] = buffer[i];
326         }
327     }
328 };
329 
330 static constexpr uint16_t _____ = 0u;
331 static constexpr uint16_t kHalf = 0x80u;
332 
333 // In all the blur_x_radius_N and blur_y_radius_N functions the gaussian values are encoded
334 // in 0.16 format, none of the values is greater than one. The incoming mask values are in 8.8
335 // format. The resulting multiply has a 8.24 format, by the mulhi truncates the lower 16 bits
336 // resulting in a 8.8 format.
337 //
338 // The blur_x_radius_N function below blur along a row of pixels using a kernel with radius N. This
339 // system is setup to minimize the number of multiplies needed.
340 //
341 // Explanation:
342 //    Blurring a specific mask value is given by the following equation where D_n is the resulting
343 // mask value and S_n is the source value. The example below is for a filter with a radius of 1
344 // and a width of 3 (radius == (width-1)/2). The indexes for the source and destination are
345 // aligned. The filter is given by G_n where n is the symmetric filter value.
346 //
347 //   D[n] = S[n-1]*G[1] + S[n]*G[0] + S[n+1]*G[1].
348 //
349 // We can start the source index at an offset relative to the destination separated by the
350 // radius. This results in a non-traditional restating of the above filter.
351 //
352 //  D[n] = S[n]*G[1] + S[n+1]*G[0] + S[n+2]*G[1]
353 //
354 // If we look at three specific consecutive destinations the following equations result:
355 //
356 //   D[5] = S[5]*G[1] + S[6]*G[0] + S[7]*G[1]
357 //   D[7] = S[6]*G[1] + S[7]*G[0] + S[8]*G[1]
358 //   D[8] = S[7]*G[1] + S[8]*G[0] + S[9]*G[1].
359 //
360 // In the above equations, notice that S[7] is used in all three. In particular, two values are
361 // used: S[7]*G[0] and S[7]*G[1]. So, S[7] is only multiplied twice, but used in D[5], D[6] and
362 // D[7].
363 //
364 // From the point of view of a source value we end up with the following three equations.
365 //
366 // Given S[7]:
367 //   D[5] += S[7]*G[1]
368 //   D[6] += S[7]*G[0]
369 //   D[7] += S[7]*G[1]
370 //
371 // In General:
372 //   D[n]   += S[n]*G[1]
373 //   D[n+1] += S[n]*G[0]
374 //   D[n+2] += S[n]*G[1]
375 //
376 // Now these equations can be ganged using SIMD to form:
377 //   D[n..n+7]   += S[n..n+7]*G[1]
378 //   D[n+1..n+8] += S[n..n+7]*G[0]
379 //   D[n+2..n+9] += S[n..n+7]*G[1]
380 // The next set of values becomes.
381 //   D[n+8..n+15]  += S[n+8..n+15]*G[1]
382 //   D[n+9..n+16]  += S[n+8..n+15]*G[0]
383 //   D[n+10..n+17] += S[n+8..n+15]*G[1]
384 // You can see that the D[n+8] and D[n+9] values overlap the two sets, using parts of both
385 // S[n..7] and S[n+8..n+15].
386 //
387 // Just one more transformation allows the code to maintain all working values in
388 // registers. I introduce the notation {0, S[n..n+7] * G[k]} to mean that the value where 0 is
389 // prepended to the array of values to form {0, S[n] * G[k], ..., S[n+7]*G[k]}.
390 //
391 //   D[n..n+7]  += S[n..n+7] * G[1]
392 //   D[n..n+8]  += {0, S[n..n+7] * G[0]}
393 //   D[n..n+9]  += {0, 0, S[n..n+7] * G[1]}
394 //
395 // Now we can encode D[n..n+7] in a single Sk8h register called d0, and D[n+8..n+15] in a
396 // register d8. In addition, S[0..n+7] becomes s0.
397 //
398 // The translation of the {0, S[n..n+7] * G[k]} is translated in the following way below.
399 //
400 // Sk8h v0 = s0*G[0]
401 // Sk8h v1 = s0*G[1]
402 // /* D[n..n+7]  += S[n..n+7] * G[1] */
403 // d0 += v1;
404 // /* D[n..n+8]  += {0, S[n..n+7] * G[0]} */
405 // d0 += {_____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5], v0[6]}
406 // d1 += {v0[7], _____, _____, _____, _____, _____, _____, _____}
407 // /* D[n..n+9]  += {0, 0, S[n..n+7] * G[1]} */
408 // d0 += {_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]}
409 // d1 += {v1[6], v1[7], _____, _____, _____, _____, _____, _____}
410 // Where we rely on the compiler to generate efficient code for the {____, n, ....} notation.
411 
blur_x_radius_1(const Sk8h & s0,const Sk8h & g0,const Sk8h & g1,const Sk8h &,const Sk8h &,const Sk8h &,Sk8h * d0,Sk8h * d8)412 static void blur_x_radius_1(
413         const Sk8h& s0,
414         const Sk8h& g0, const Sk8h& g1, const Sk8h&, const Sk8h&, const Sk8h&,
415         Sk8h* d0, Sk8h* d8) {
416 
417     auto v1 = s0.mulHi(g1);
418     auto v0 = s0.mulHi(g0);
419 
420     // D[n..n+7]  += S[n..n+7] * G[1]
421     *d0 += v1;
422 
423     //D[n..n+8]  += {0, S[n..n+7] * G[0]}
424     *d0 += Sk8h{_____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5], v0[6]};
425     *d8 += Sk8h{v0[7], _____, _____, _____, _____, _____, _____, _____};
426 
427     // D[n..n+9]  += {0, 0, S[n..n+7] * G[1]}
428     *d0 += Sk8h{_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]};
429     *d8 += Sk8h{v1[6], v1[7], _____, _____, _____, _____, _____, _____};
430 
431 }
432 
blur_x_radius_2(const Sk8h & s0,const Sk8h & g0,const Sk8h & g1,const Sk8h & g2,const Sk8h &,const Sk8h &,Sk8h * d0,Sk8h * d8)433 static void blur_x_radius_2(
434         const Sk8h& s0,
435         const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h&, const Sk8h&,
436         Sk8h* d0, Sk8h* d8) {
437     auto v0 = s0.mulHi(g0);
438     auto v1 = s0.mulHi(g1);
439     auto v2 = s0.mulHi(g2);
440 
441     // D[n..n+7]  += S[n..n+7] * G[2]
442     *d0 += v2;
443 
444     // D[n..n+8]  += {0, S[n..n+7] * G[1]}
445     *d0 += Sk8h{_____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5], v1[6]};
446     *d8 += Sk8h{v1[7], _____, _____, _____, _____, _____, _____, _____};
447 
448     // D[n..n+9]  += {0, 0, S[n..n+7] * G[0]}
449     *d0 += Sk8h{_____, _____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5]};
450     *d8 += Sk8h{v0[6], v0[7], _____, _____, _____, _____, _____, _____};
451 
452     // D[n..n+10]  += {0, 0, 0, S[n..n+7] * G[1]}
453     *d0 += Sk8h{_____, _____, _____, v1[0], v1[1], v1[2], v1[3], v1[4]};
454     *d8 += Sk8h{v1[5], v1[6], v1[7], _____, _____, _____, _____, _____};
455 
456     // D[n..n+11]  += {0, 0, 0, 0, S[n..n+7] * G[2]}
457     *d0 += Sk8h{_____, _____, _____, _____, v2[0], v2[1], v2[2], v2[3]};
458     *d8 += Sk8h{v2[4], v2[5], v2[6], v2[7], _____, _____, _____, _____};
459 }
460 
blur_x_radius_3(const Sk8h & s0,const Sk8h & gauss0,const Sk8h & gauss1,const Sk8h & gauss2,const Sk8h & gauss3,const Sk8h &,Sk8h * d0,Sk8h * d8)461 static void blur_x_radius_3(
462         const Sk8h& s0,
463         const Sk8h& gauss0, const Sk8h& gauss1, const Sk8h& gauss2, const Sk8h& gauss3, const Sk8h&,
464         Sk8h* d0, Sk8h* d8) {
465     auto v0 = s0.mulHi(gauss0);
466     auto v1 = s0.mulHi(gauss1);
467     auto v2 = s0.mulHi(gauss2);
468     auto v3 = s0.mulHi(gauss3);
469 
470     // D[n..n+7]  += S[n..n+7] * G[3]
471     *d0 += v3;
472 
473     // D[n..n+8]  += {0, S[n..n+7] * G[2]}
474     *d0 += Sk8h{_____, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5], v2[6]};
475     *d8 += Sk8h{v2[7], _____, _____, _____, _____, _____, _____, _____};
476 
477     // D[n..n+9]  += {0, 0, S[n..n+7] * G[1]}
478     *d0 += Sk8h{_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]};
479     *d8 += Sk8h{v1[6], v1[7], _____, _____, _____, _____, _____, _____};
480 
481     // D[n..n+10]  += {0, 0, 0, S[n..n+7] * G[0]}
482     *d0 += Sk8h{_____, _____, _____, v0[0], v0[1], v0[2], v0[3], v0[4]};
483     *d8 += Sk8h{v0[5], v0[6], v0[7], _____, _____, _____, _____, _____};
484 
485     // D[n..n+11]  += {0, 0, 0, 0, S[n..n+7] * G[1]}
486     *d0 += Sk8h{_____, _____, _____, _____, v1[0], v1[1], v1[2], v1[3]};
487     *d8 += Sk8h{v1[4], v1[5], v1[6], v1[7], _____, _____, _____, _____};
488 
489     // D[n..n+12]  += {0, 0, 0, 0, 0, S[n..n+7] * G[2]}
490     *d0 += Sk8h{_____, _____, _____, _____, _____, v2[0], v2[1], v2[2]};
491     *d8 += Sk8h{v2[3], v2[4], v2[5], v2[6], v2[7], _____, _____, _____};
492 
493     // D[n..n+13]  += {0, 0, 0, 0, 0, 0, S[n..n+7] * G[3]}
494     *d0 += Sk8h{_____, _____, _____, _____, _____, _____, v3[0], v3[1]};
495     *d8 += Sk8h{v3[2], v3[3], v3[4], v3[5], v3[6], v3[7], _____, _____};
496 }
497 
blur_x_radius_4(const Sk8h & s0,const Sk8h & gauss0,const Sk8h & gauss1,const Sk8h & gauss2,const Sk8h & gauss3,const Sk8h & gauss4,Sk8h * d0,Sk8h * d8)498 static void blur_x_radius_4(
499         const Sk8h& s0,
500         const Sk8h& gauss0,
501         const Sk8h& gauss1,
502         const Sk8h& gauss2,
503         const Sk8h& gauss3,
504         const Sk8h& gauss4,
505         Sk8h* d0, Sk8h* d8) {
506     auto v0 = s0.mulHi(gauss0);
507     auto v1 = s0.mulHi(gauss1);
508     auto v2 = s0.mulHi(gauss2);
509     auto v3 = s0.mulHi(gauss3);
510     auto v4 = s0.mulHi(gauss4);
511 
512     // D[n..n+7]  += S[n..n+7] * G[4]
513     *d0 += v4;
514 
515     // D[n..n+8]  += {0, S[n..n+7] * G[3]}
516     *d0 += Sk8h{_____, v3[0], v3[1], v3[2], v3[3], v3[4], v3[5], v3[6]};
517     *d8 += Sk8h{v3[7], _____, _____, _____, _____, _____, _____, _____};
518 
519     // D[n..n+9]  += {0, 0, S[n..n+7] * G[2]}
520     *d0 += Sk8h{_____, _____, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5]};
521     *d8 += Sk8h{v2[6], v2[7], _____, _____, _____, _____, _____, _____};
522 
523     // D[n..n+10]  += {0, 0, 0, S[n..n+7] * G[1]}
524     *d0 += Sk8h{_____, _____, _____, v1[0], v1[1], v1[2], v1[3], v1[4]};
525     *d8 += Sk8h{v1[5], v1[6], v1[7], _____, _____, _____, _____, _____};
526 
527     // D[n..n+11]  += {0, 0, 0, 0, S[n..n+7] * G[0]}
528     *d0 += Sk8h{_____, _____, _____, _____, v0[0], v0[1], v0[2], v0[3]};
529     *d8 += Sk8h{v0[4], v0[5], v0[6], v0[7], _____, _____, _____, _____};
530 
531     // D[n..n+12]  += {0, 0, 0, 0, 0, S[n..n+7] * G[1]}
532     *d0 += Sk8h{_____, _____, _____, _____, _____, v1[0], v1[1], v1[2]};
533     *d8 += Sk8h{v1[3], v1[4], v1[5], v1[6], v1[7], _____, _____, _____};
534 
535     // D[n..n+13]  += {0, 0, 0, 0, 0, 0, S[n..n+7] * G[2]}
536     *d0 += Sk8h{_____, _____, _____, _____, _____, _____, v2[0], v2[1]};
537     *d8 += Sk8h{v2[2], v2[3], v2[4], v2[5], v2[6], v2[7], _____, _____};
538 
539     // D[n..n+14]  += {0, 0, 0, 0, 0, 0, 0, S[n..n+7] * G[3]}
540     *d0 += Sk8h{_____, _____, _____, _____, _____, _____, _____, v3[0]};
541     *d8 += Sk8h{v3[1], v3[2], v3[3], v3[4], v3[5], v3[6], v3[7], _____};
542 
543     // D[n..n+15]  += {0, 0, 0, 0, 0, 0, 0, 0, S[n..n+7] * G[4]}
544     *d8 += v4;
545 }
546 
547 using BlurX = decltype(blur_x_radius_1);
548 
549 // BlurX will only be one of the functions blur_x_radius_(1|2|3|4).
blur_row(BlurX blur,const Sk8h & g0,const Sk8h & g1,const Sk8h & g2,const Sk8h & g3,const Sk8h & g4,const uint8_t * src,int srcW,uint8_t * dst,int dstW)550 static void blur_row(
551         BlurX blur,
552         const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h& g4,
553         const uint8_t* src, int srcW,
554               uint8_t* dst, int dstW) {
555     // Clear the buffer to handle summing wider than source.
556     Sk8h d0{kHalf}, d8{kHalf};
557 
558     // Go by multiples of 8 in src.
559     int x = 0;
560     for (; x <= srcW - 8; x += 8) {
561         blur(load(src, 8, nullptr), g0, g1, g2, g3, g4, &d0, &d8);
562 
563         store(dst, d0, 8);
564 
565         d0 = d8;
566         d8 = Sk8h{kHalf};
567 
568         src += 8;
569         dst += 8;
570     }
571 
572     // There are src values left, but the remainder of src values is not a multiple of 8.
573     int srcTail = srcW - x;
574     if (srcTail > 0) {
575 
576         blur(load(src, srcTail, nullptr), g0, g1, g2, g3, g4, &d0, &d8);
577 
578         int dstTail = std::min(8, dstW - x);
579         store(dst, d0, dstTail);
580 
581         d0 = d8;
582         dst += dstTail;
583         x += dstTail;
584     }
585 
586     // There are dst mask values to complete.
587     int dstTail = dstW - x;
588     if (dstTail > 0) {
589         store(dst, d0, dstTail);
590     }
591 }
592 
593 // BlurX will only be one of the functions blur_x_radius_(1|2|3|4).
blur_x_rect(BlurX blur,uint16_t * gauss,const uint8_t * src,size_t srcStride,int srcW,uint8_t * dst,size_t dstStride,int dstW,int dstH)594 static void blur_x_rect(BlurX blur,
595                         uint16_t* gauss,
596                         const uint8_t* src, size_t srcStride, int srcW,
597                         uint8_t* dst, size_t dstStride, int dstW, int dstH) {
598 
599     Sk8h g0{gauss[0]},
600          g1{gauss[1]},
601          g2{gauss[2]},
602          g3{gauss[3]},
603          g4{gauss[4]};
604 
605     // Blur *ALL* the rows.
606     for (int y = 0; y < dstH; y++) {
607         blur_row(blur, g0, g1, g2, g3, g4, src, srcW, dst, dstW);
608         src += srcStride;
609         dst += dstStride;
610     }
611 }
612 
direct_blur_x(int radius,uint16_t * gauss,const uint8_t * src,size_t srcStride,int srcW,uint8_t * dst,size_t dstStride,int dstW,int dstH)613 static void direct_blur_x(int radius, uint16_t* gauss,
614                           const uint8_t* src, size_t srcStride, int srcW,
615                           uint8_t* dst, size_t dstStride, int dstW, int dstH) {
616 
617     switch (radius) {
618         case 1:
619             blur_x_rect(blur_x_radius_1, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
620             break;
621 
622         case 2:
623             blur_x_rect(blur_x_radius_2, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
624             break;
625 
626         case 3:
627             blur_x_rect(blur_x_radius_3, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
628             break;
629 
630         case 4:
631             blur_x_rect(blur_x_radius_4, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
632             break;
633 
634         default:
635             SkASSERTF(false, "The radius %d is not handled\n", radius);
636     }
637 }
638 
639 // The operations of the blur_y_radius_N functions work on a theme similar to the blur_x_radius_N
640 // functions, but end up being simpler because there is no complicated shift of registers. We
641 // start with the non-traditional form of the gaussian filter. In the following r is the value
642 // when added generates the next value in the column.
643 //
644 //   D[n+0r] = S[n+0r]*G[1]
645 //           + S[n+1r]*G[0]
646 //           + S[n+2r]*G[1]
647 //
648 // Expanding out in a way similar to blur_x_radius_N for specific values of n.
649 //
650 //   D[n+0r] = S[n-2r]*G[1] + S[n-1r]*G[0] + S[n+0r]*G[1]
651 //   D[n+1r] = S[n-1r]*G[1] + S[n+0r]*G[0] + S[n+1r]*G[1]
652 //   D[n+2r] = S[n+0r]*G[1] + S[n+1r]*G[0] + S[n+2r]*G[1]
653 //
654 // We can see that S[n+0r] is in all three D[] equations, but is only multiplied twice. Now we
655 // can look at the calculation form the point of view of a source value.
656 //
657 //   Given S[n+0r]:
658 //   D[n+0r] += S[n+0r]*G[1];
659 //   /* D[n+0r] is done and can be stored now. */
660 //   D[n+1r] += S[n+0r]*G[0];
661 //   D[n+2r]  = S[n+0r]*G[1];
662 //
663 // Remember, by induction, that D[n+0r] == S[n-2r]*G[1] + S[n-1r]*G[0] before adding in
664 // S[n+0r]*G[1]. So, after the addition D[n+0r] has finished calculation and can be stored. Also,
665 // notice that D[n+2r] is receiving its first value from S[n+0r]*G[1] and is not added in. Notice
666 // how values flow in the following two iterations in source.
667 //
668 //   D[n+0r] += S[n+0r]*G[1]
669 //   D[n+1r] += S[n+0r]*G[0]
670 //   D[n+2r]  = S[n+0r]*G[1]
671 //   /* ------- */
672 //   D[n+1r] += S[n+1r]*G[1]
673 //   D[n+2r] += S[n+1r]*G[0]
674 //   D[n+3r]  = S[n+1r]*G[1]
675 //
676 // Instead of using memory we can introduce temporaries d01 and d12. The update step changes
677 // to the following.
678 //
679 //   answer = d01 + S[n+0r]*G[1]
680 //   d01    = d12 + S[n+0r]*G[0]
681 //   d12    =       S[n+0r]*G[1]
682 //   return answer
683 //
684 // Finally, this can be ganged into SIMD style.
685 //   answer[0..7] = d01[0..7] + S[n+0r..n+0r+7]*G[1]
686 //   d01[0..7]    = d12[0..7] + S[n+0r..n+0r+7]*G[0]
687 //   d12[0..7]    =             S[n+0r..n+0r+7]*G[1]
688 //   return answer[0..7]
blur_y_radius_1(const Sk8h & s0,const Sk8h & g0,const Sk8h & g1,const Sk8h &,const Sk8h &,const Sk8h &,Sk8h * d01,Sk8h * d12,Sk8h *,Sk8h *,Sk8h *,Sk8h *,Sk8h *,Sk8h *)689 static Sk8h blur_y_radius_1(
690         const Sk8h& s0,
691         const Sk8h& g0, const Sk8h& g1, const Sk8h&, const Sk8h&, const Sk8h&,
692         Sk8h* d01, Sk8h* d12, Sk8h*, Sk8h*, Sk8h*, Sk8h*, Sk8h*, Sk8h*) {
693     auto v0 = s0.mulHi(g0);
694     auto v1 = s0.mulHi(g1);
695 
696     Sk8h answer = *d01 + v1;
697            *d01 = *d12 + v0;
698            *d12 =        v1 + kHalf;
699 
700     return answer;
701 }
702 
blur_y_radius_2(const Sk8h & s0,const Sk8h & g0,const Sk8h & g1,const Sk8h & g2,const Sk8h &,const Sk8h &,Sk8h * d01,Sk8h * d12,Sk8h * d23,Sk8h * d34,Sk8h *,Sk8h *,Sk8h *,Sk8h *)703 static Sk8h blur_y_radius_2(
704         const Sk8h& s0,
705         const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h&, const Sk8h&,
706         Sk8h* d01, Sk8h* d12, Sk8h* d23, Sk8h* d34, Sk8h*, Sk8h*, Sk8h*, Sk8h*) {
707     auto v0 = s0.mulHi(g0);
708     auto v1 = s0.mulHi(g1);
709     auto v2 = s0.mulHi(g2);
710 
711     Sk8h answer = *d01 + v2;
712            *d01 = *d12 + v1;
713            *d12 = *d23 + v0;
714            *d23 = *d34 + v1;
715            *d34 =        v2 + kHalf;
716 
717     return answer;
718 }
719 
blur_y_radius_3(const Sk8h & s0,const Sk8h & g0,const Sk8h & g1,const Sk8h & g2,const Sk8h & g3,const Sk8h &,Sk8h * d01,Sk8h * d12,Sk8h * d23,Sk8h * d34,Sk8h * d45,Sk8h * d56,Sk8h *,Sk8h *)720 static Sk8h blur_y_radius_3(
721         const Sk8h& s0,
722         const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h&,
723         Sk8h* d01, Sk8h* d12, Sk8h* d23, Sk8h* d34, Sk8h* d45, Sk8h* d56, Sk8h*, Sk8h*) {
724     auto v0 = s0.mulHi(g0);
725     auto v1 = s0.mulHi(g1);
726     auto v2 = s0.mulHi(g2);
727     auto v3 = s0.mulHi(g3);
728 
729     Sk8h answer = *d01 + v3;
730            *d01 = *d12 + v2;
731            *d12 = *d23 + v1;
732            *d23 = *d34 + v0;
733            *d34 = *d45 + v1;
734            *d45 = *d56 + v2;
735            *d56 =        v3 + kHalf;
736 
737     return answer;
738 }
739 
blur_y_radius_4(const Sk8h & s0,const Sk8h & g0,const Sk8h & g1,const Sk8h & g2,const Sk8h & g3,const Sk8h & g4,Sk8h * d01,Sk8h * d12,Sk8h * d23,Sk8h * d34,Sk8h * d45,Sk8h * d56,Sk8h * d67,Sk8h * d78)740 static Sk8h blur_y_radius_4(
741     const Sk8h& s0,
742     const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h& g4,
743     Sk8h* d01, Sk8h* d12, Sk8h* d23, Sk8h* d34, Sk8h* d45, Sk8h* d56, Sk8h* d67, Sk8h* d78) {
744     auto v0 = s0.mulHi(g0);
745     auto v1 = s0.mulHi(g1);
746     auto v2 = s0.mulHi(g2);
747     auto v3 = s0.mulHi(g3);
748     auto v4 = s0.mulHi(g4);
749 
750     Sk8h answer = *d01 + v4;
751            *d01 = *d12 + v3;
752            *d12 = *d23 + v2;
753            *d23 = *d34 + v1;
754            *d34 = *d45 + v0;
755            *d45 = *d56 + v1;
756            *d56 = *d67 + v2;
757            *d67 = *d78 + v3;
758            *d78 =        v4 + kHalf;
759 
760     return answer;
761 }
762 
763 using BlurY = decltype(blur_y_radius_1);
764 
765 // BlurY will be one of blur_y_radius_(1|2|3|4).
blur_column(ToA8 toA8,BlurY blur,int radius,int width,const Sk8h & g0,const Sk8h & g1,const Sk8h & g2,const Sk8h & g3,const Sk8h & g4,const uint8_t * src,size_t srcRB,int srcH,uint8_t * dst,size_t dstRB)766 static void blur_column(
767         ToA8 toA8,
768         BlurY blur, int radius, int width,
769         const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h& g4,
770         const uint8_t* src, size_t srcRB, int srcH,
771         uint8_t* dst, size_t dstRB) {
772     Sk8h d01{kHalf}, d12{kHalf}, d23{kHalf}, d34{kHalf},
773          d45{kHalf}, d56{kHalf}, d67{kHalf}, d78{kHalf};
774 
775     auto flush = [&](uint8_t* to, const Sk8h& v0, const Sk8h& v1) {
776         store(to, v0, width);
777         to += dstRB;
778         store(to, v1, width);
779         return to + dstRB;
780     };
781 
782     for (int y = 0; y < srcH; y += 1) {
783         auto s = load(src, width, toA8);
784         auto b = blur(s,
785                       g0, g1, g2, g3, g4,
786                       &d01, &d12, &d23, &d34, &d45, &d56, &d67, &d78);
787         store(dst, b, width);
788         src += srcRB;
789         dst += dstRB;
790     }
791 
792     if (radius >= 1) {
793         dst = flush(dst, d01, d12);
794     }
795     if (radius >= 2) {
796         dst = flush(dst, d23, d34);
797     }
798     if (radius >= 3) {
799         dst = flush(dst, d45, d56);
800     }
801     if (radius >= 4) {
802               flush(dst, d67, d78);
803     }
804 }
805 
806 // BlurY will be one of blur_y_radius_(1|2|3|4).
blur_y_rect(ToA8 toA8,const int strideOf8,BlurY blur,int radius,uint16_t * gauss,const uint8_t * src,size_t srcRB,int srcW,int srcH,uint8_t * dst,size_t dstRB)807 static void blur_y_rect(ToA8 toA8, const int strideOf8,
808                         BlurY blur, int radius, uint16_t *gauss,
809                         const uint8_t *src, size_t srcRB, int srcW, int srcH,
810                         uint8_t *dst, size_t dstRB) {
811 
812     Sk8h g0{gauss[0]},
813          g1{gauss[1]},
814          g2{gauss[2]},
815          g3{gauss[3]},
816          g4{gauss[4]};
817 
818     int x = 0;
819     for (; x <= srcW - 8; x += 8) {
820         blur_column(toA8, blur, radius, 8,
821                     g0, g1, g2, g3, g4,
822                     src, srcRB, srcH,
823                     dst, dstRB);
824         src += strideOf8;
825         dst += 8;
826     }
827 
828     int xTail = srcW - x;
829     if (xTail > 0) {
830         blur_column(toA8, blur, radius, xTail,
831                     g0, g1, g2, g3, g4,
832                     src, srcRB, srcH,
833                     dst, dstRB);
834     }
835 }
836 
direct_blur_y(ToA8 toA8,const int strideOf8,int radius,uint16_t * gauss,const uint8_t * src,size_t srcRB,int srcW,int srcH,uint8_t * dst,size_t dstRB)837 static void direct_blur_y(ToA8 toA8, const int strideOf8,
838                           int radius, uint16_t* gauss,
839                           const uint8_t* src, size_t srcRB, int srcW, int srcH,
840                           uint8_t* dst, size_t dstRB) {
841 
842     switch (radius) {
843         case 1:
844             blur_y_rect(toA8, strideOf8, blur_y_radius_1, 1, gauss,
845                         src, srcRB, srcW, srcH,
846                         dst, dstRB);
847             break;
848 
849         case 2:
850             blur_y_rect(toA8, strideOf8, blur_y_radius_2, 2, gauss,
851                         src, srcRB, srcW, srcH,
852                         dst, dstRB);
853             break;
854 
855         case 3:
856             blur_y_rect(toA8, strideOf8, blur_y_radius_3, 3, gauss,
857                         src, srcRB, srcW, srcH,
858                         dst, dstRB);
859             break;
860 
861         case 4:
862             blur_y_rect(toA8, strideOf8, blur_y_radius_4, 4, gauss,
863                         src, srcRB, srcW, srcH,
864                         dst, dstRB);
865             break;
866 
867         default:
868             SkASSERTF(false, "The radius %d is not handled\n", radius);
869     }
870 }
871 
small_blur(double sigmaX,double sigmaY,const SkMask & src,SkMask * dst)872 static SkIPoint small_blur(double sigmaX, double sigmaY, const SkMask& src, SkMask* dst) {
873     SkASSERT(sigmaX == sigmaY); // TODO
874     SkASSERT(0.01 <= sigmaX && sigmaX < 2);
875     SkASSERT(0.01 <= sigmaY && sigmaY < 2);
876 
877     SkGaussFilter filterX{sigmaX},
878                   filterY{sigmaY};
879 
880     int radiusX = filterX.radius(),
881         radiusY = filterY.radius();
882 
883     SkASSERT(radiusX <= 4 && radiusY <= 4);
884 
885     auto prepareGauss = [](const SkGaussFilter& filter, uint16_t* factors) {
886         int i = 0;
887         for (double d : filter) {
888             factors[i++] = static_cast<uint16_t>(round(d * (1 << 16)));
889         }
890     };
891 
892     uint16_t gaussFactorsX[SkGaussFilter::kGaussArrayMax],
893              gaussFactorsY[SkGaussFilter::kGaussArrayMax];
894 
895     prepareGauss(filterX, gaussFactorsX);
896     prepareGauss(filterY, gaussFactorsY);
897 
898     *dst = SkMask::PrepareDestination(radiusX, radiusY, src);
899     if (src.fImage == nullptr) {
900         return {SkTo<int32_t>(radiusX), SkTo<int32_t>(radiusY)};
901     }
902     if (dst->fImage == nullptr) {
903         dst->fBounds.setEmpty();
904         return {0, 0};
905     }
906 
907     int srcW = src.fBounds.width(),
908         srcH = src.fBounds.height();
909 
910     int dstW = dst->fBounds.width(),
911         dstH = dst->fBounds.height();
912 
913     size_t srcRB = src.fRowBytes,
914            dstRB = dst->fRowBytes;
915 
916     //TODO: handle bluring in only one direction.
917 
918     // Blur vertically and copy to destination.
919     switch (src.fFormat) {
920         case SkMask::kBW_Format:
921             direct_blur_y(bw_to_a8, 1,
922                           radiusY, gaussFactorsY,
923                           src.fImage, srcRB, srcW, srcH,
924                           dst->fImage + radiusX, dstRB);
925             break;
926         case SkMask::kA8_Format:
927             direct_blur_y(nullptr, 8,
928                           radiusY, gaussFactorsY,
929                           src.fImage, srcRB, srcW, srcH,
930                           dst->fImage + radiusX, dstRB);
931             break;
932         case SkMask::kARGB32_Format:
933             direct_blur_y(argb32_to_a8, 32,
934                           radiusY, gaussFactorsY,
935                           src.fImage, srcRB, srcW, srcH,
936                           dst->fImage + radiusX, dstRB);
937             break;
938         case SkMask::kLCD16_Format:
939             direct_blur_y(lcd_to_a8, 16, radiusY, gaussFactorsY,
940                           src.fImage, srcRB, srcW, srcH,
941                           dst->fImage + radiusX, dstRB);
942             break;
943         default:
944             SK_ABORT("Unhandled format.");
945     }
946 
947     // Blur horizontally in place.
948     direct_blur_x(radiusX, gaussFactorsX,
949                   dst->fImage + radiusX,  dstRB, srcW,
950                   dst->fImage,            dstRB, dstW, dstH);
951 
952     return {radiusX, radiusY};
953 }
954 
955 // TODO: assuming sigmaW = sigmaH. Allow different sigmas. Right now the
956 // API forces the sigmas to be the same.
blur(const SkMask & src,SkMask * dst) const957 SkIPoint SkMaskBlurFilter::blur(const SkMask& src, SkMask* dst) const {
958 
959     if (fSigmaW < 2.0 && fSigmaH < 2.0) {
960         return small_blur(fSigmaW, fSigmaH, src, dst);
961     }
962 
963     // 1024 is a place holder guess until more analysis can be done.
964     SkSTArenaAlloc<1024> alloc;
965 
966     PlanGauss planW(fSigmaW);
967     PlanGauss planH(fSigmaH);
968 
969     int borderW = planW.border(),
970         borderH = planH.border();
971     SkASSERT(borderH >= 0 && borderW >= 0);
972 
973     *dst = SkMask::PrepareDestination(borderW, borderH, src);
974     if (src.fImage == nullptr) {
975         return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
976     }
977     if (dst->fImage == nullptr) {
978         dst->fBounds.setEmpty();
979         return {0, 0};
980     }
981 
982     int srcW = src.fBounds.width(),
983         srcH = src.fBounds.height(),
984         dstW = dst->fBounds.width(),
985         dstH = dst->fBounds.height();
986     SkASSERT(srcW >= 0 && srcH >= 0 && dstW >= 0 && dstH >= 0);
987 
988     auto bufferSize = std::max(planW.bufferSize(), planH.bufferSize());
989     auto buffer = alloc.makeArrayDefault<uint32_t>(bufferSize);
990 
991     // Blur both directions.
992     int tmpW = srcH,
993         tmpH = dstW;
994 
995     // Make sure not to overflow the multiply for the tmp buffer size.
996     if (tmpH > std::numeric_limits<int>::max() / tmpW) {
997         return {0, 0};
998     }
999     auto tmp = alloc.makeArrayDefault<uint8_t>(tmpW * tmpH);
1000 
1001     // Blur horizontally, and transpose.
1002     const PlanGauss::Scan& scanW = planW.makeBlurScan(srcW, buffer);
1003     switch (src.fFormat) {
1004         case SkMask::kBW_Format: {
1005             const uint8_t* bwStart = src.fImage;
1006             auto start = SkMask::AlphaIter<SkMask::kBW_Format>(bwStart, 0);
1007             auto end = SkMask::AlphaIter<SkMask::kBW_Format>(bwStart + (srcW / 8), srcW % 8);
1008             for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
1009                 auto tmpStart = &tmp[y];
1010                 scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
1011             }
1012         } break;
1013         case SkMask::kA8_Format: {
1014             const uint8_t* a8Start = src.fImage;
1015             auto start = SkMask::AlphaIter<SkMask::kA8_Format>(a8Start);
1016             auto end = SkMask::AlphaIter<SkMask::kA8_Format>(a8Start + srcW);
1017             for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
1018                 auto tmpStart = &tmp[y];
1019                 scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
1020             }
1021         } break;
1022         case SkMask::kARGB32_Format: {
1023             const uint32_t* argbStart = reinterpret_cast<const uint32_t*>(src.fImage);
1024             auto start = SkMask::AlphaIter<SkMask::kARGB32_Format>(argbStart);
1025             auto end = SkMask::AlphaIter<SkMask::kARGB32_Format>(argbStart + srcW);
1026             for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
1027                 auto tmpStart = &tmp[y];
1028                 scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
1029             }
1030         } break;
1031         case SkMask::kLCD16_Format: {
1032             const uint16_t* lcdStart = reinterpret_cast<const uint16_t*>(src.fImage);
1033             auto start = SkMask::AlphaIter<SkMask::kLCD16_Format>(lcdStart);
1034             auto end = SkMask::AlphaIter<SkMask::kLCD16_Format>(lcdStart + srcW);
1035             for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
1036                 auto tmpStart = &tmp[y];
1037                 scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
1038             }
1039         } break;
1040         default:
1041             SK_ABORT("Unhandled format.");
1042     }
1043 
1044     // Blur vertically (scan in memory order because of the transposition),
1045     // and transpose back to the original orientation.
1046     const PlanGauss::Scan& scanH = planH.makeBlurScan(tmpW, buffer);
1047     for (int y = 0; y < tmpH; y++) {
1048         auto tmpStart = &tmp[y * tmpW];
1049         auto dstStart = &dst->fImage[y];
1050 
1051         scanH.blur(tmpStart, tmpStart + tmpW,
1052                    dstStart, dst->fRowBytes, dstStart + dst->fRowBytes * dstH);
1053     }
1054 
1055     return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
1056 }
1057