1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This header is logically internal, but is made public because it is used
36 // from protocol-compiler-generated code, which may reside in other components.
37
38 #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
39 #define GOOGLE_PROTOBUF_EXTENSION_SET_H__
40
41 #include <algorithm>
42 #include <cassert>
43 #include <map>
44 #include <string>
45 #include <utility>
46 #include <vector>
47
48 #include <google/protobuf/stubs/common.h>
49 #include <google/protobuf/stubs/logging.h>
50 #include <google/protobuf/parse_context.h>
51 #include <google/protobuf/io/coded_stream.h>
52 #include <google/protobuf/port.h>
53 #include <google/protobuf/repeated_field.h>
54 #include <google/protobuf/wire_format_lite.h>
55
56 #include <google/protobuf/port_def.inc>
57
58 #ifdef SWIG
59 #error "You cannot SWIG proto headers"
60 #endif
61
62 namespace google {
63 namespace protobuf {
64 class Arena;
65 class Descriptor; // descriptor.h
66 class FieldDescriptor; // descriptor.h
67 class DescriptorPool; // descriptor.h
68 class MessageLite; // message_lite.h
69 class Message; // message.h
70 class MessageFactory; // message.h
71 class UnknownFieldSet; // unknown_field_set.h
72 namespace internal {
73 class FieldSkipper; // wire_format_lite.h
74 } // namespace internal
75 } // namespace protobuf
76 } // namespace google
77
78 namespace google {
79 namespace protobuf {
80 namespace internal {
81
82 class InternalMetadata;
83
84 // Used to store values of type WireFormatLite::FieldType without having to
85 // #include wire_format_lite.h. Also, ensures that we use only one byte to
86 // store these values, which is important to keep the layout of
87 // ExtensionSet::Extension small.
88 typedef uint8 FieldType;
89
90 // A function which, given an integer value, returns true if the number
91 // matches one of the defined values for the corresponding enum type. This
92 // is used with RegisterEnumExtension, below.
93 typedef bool EnumValidityFunc(int number);
94
95 // Version of the above which takes an argument. This is needed to deal with
96 // extensions that are not compiled in.
97 typedef bool EnumValidityFuncWithArg(const void* arg, int number);
98
99 // Information about a registered extension.
100 struct ExtensionInfo {
ExtensionInfoExtensionInfo101 inline ExtensionInfo() {}
ExtensionInfoExtensionInfo102 inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
103 : type(type_param),
104 is_repeated(isrepeated),
105 is_packed(ispacked),
106 descriptor(NULL) {}
107
108 FieldType type;
109 bool is_repeated;
110 bool is_packed;
111
112 struct EnumValidityCheck {
113 EnumValidityFuncWithArg* func;
114 const void* arg;
115 };
116
117 struct MessageInfo {
118 const MessageLite* prototype;
119 };
120
121 union {
122 EnumValidityCheck enum_validity_check;
123 MessageInfo message_info;
124 };
125
126 // The descriptor for this extension, if one exists and is known. May be
127 // NULL. Must not be NULL if the descriptor for the extension does not
128 // live in the same pool as the descriptor for the containing type.
129 const FieldDescriptor* descriptor;
130 };
131
132 // Abstract interface for an object which looks up extension definitions. Used
133 // when parsing.
134 class PROTOBUF_EXPORT ExtensionFinder {
135 public:
136 virtual ~ExtensionFinder();
137
138 // Find the extension with the given containing type and number.
139 virtual bool Find(int number, ExtensionInfo* output) = 0;
140 };
141
142 // Implementation of ExtensionFinder which finds extensions defined in .proto
143 // files which have been compiled into the binary.
144 class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
145 public:
GeneratedExtensionFinder(const MessageLite * containing_type)146 GeneratedExtensionFinder(const MessageLite* containing_type)
147 : containing_type_(containing_type) {}
~GeneratedExtensionFinder()148 ~GeneratedExtensionFinder() override {}
149
150 // Returns true and fills in *output if found, otherwise returns false.
151 bool Find(int number, ExtensionInfo* output) override;
152
153 private:
154 const MessageLite* containing_type_;
155 };
156
157 // A FieldSkipper used for parsing MessageSet.
158 class MessageSetFieldSkipper;
159
160 // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
161 // finding extensions from a DescriptorPool.
162
163 // This is an internal helper class intended for use within the protocol buffer
164 // library and generated classes. Clients should not use it directly. Instead,
165 // use the generated accessors such as GetExtension() of the class being
166 // extended.
167 //
168 // This class manages extensions for a protocol message object. The
169 // message's HasExtension(), GetExtension(), MutableExtension(), and
170 // ClearExtension() methods are just thin wrappers around the embedded
171 // ExtensionSet. When parsing, if a tag number is encountered which is
172 // inside one of the message type's extension ranges, the tag is passed
173 // off to the ExtensionSet for parsing. Etc.
174 class PROTOBUF_EXPORT ExtensionSet {
175 public:
176 constexpr ExtensionSet();
177 explicit ExtensionSet(Arena* arena);
178 ~ExtensionSet();
179
180 // These are called at startup by protocol-compiler-generated code to
181 // register known extensions. The registrations are used by ParseField()
182 // to look up extensions for parsed field numbers. Note that dynamic parsing
183 // does not use ParseField(); only protocol-compiler-generated parsing
184 // methods do.
185 static void RegisterExtension(const MessageLite* containing_type, int number,
186 FieldType type, bool is_repeated,
187 bool is_packed);
188 static void RegisterEnumExtension(const MessageLite* containing_type,
189 int number, FieldType type,
190 bool is_repeated, bool is_packed,
191 EnumValidityFunc* is_valid);
192 static void RegisterMessageExtension(const MessageLite* containing_type,
193 int number, FieldType type,
194 bool is_repeated, bool is_packed,
195 const MessageLite* prototype);
196
197 // =================================================================
198
199 // Add all fields which are currently present to the given vector. This
200 // is useful to implement Reflection::ListFields().
201 void AppendToList(const Descriptor* containing_type,
202 const DescriptorPool* pool,
203 std::vector<const FieldDescriptor*>* output) const;
204
205 // =================================================================
206 // Accessors
207 //
208 // Generated message classes include type-safe templated wrappers around
209 // these methods. Generally you should use those rather than call these
210 // directly, unless you are doing low-level memory management.
211 //
212 // When calling any of these accessors, the extension number requested
213 // MUST exist in the DescriptorPool provided to the constructor. Otherwise,
214 // the method will fail an assert. Normally, though, you would not call
215 // these directly; you would either call the generated accessors of your
216 // message class (e.g. GetExtension()) or you would call the accessors
217 // of the reflection interface. In both cases, it is impossible to
218 // trigger this assert failure: the generated accessors only accept
219 // linked-in extension types as parameters, while the Reflection interface
220 // requires you to provide the FieldDescriptor describing the extension.
221 //
222 // When calling any of these accessors, a protocol-compiler-generated
223 // implementation of the extension corresponding to the number MUST
224 // be linked in, and the FieldDescriptor used to refer to it MUST be
225 // the one generated by that linked-in code. Otherwise, the method will
226 // die on an assert failure. The message objects returned by the message
227 // accessors are guaranteed to be of the correct linked-in type.
228 //
229 // These methods pretty much match Reflection except that:
230 // - They're not virtual.
231 // - They identify fields by number rather than FieldDescriptors.
232 // - They identify enum values using integers rather than descriptors.
233 // - Strings provide Mutable() in addition to Set() accessors.
234
235 bool Has(int number) const;
236 int ExtensionSize(int number) const; // Size of a repeated extension.
237 int NumExtensions() const; // The number of extensions
238 FieldType ExtensionType(int number) const;
239 void ClearExtension(int number);
240
241 // singular fields -------------------------------------------------
242
243 int32 GetInt32(int number, int32 default_value) const;
244 int64 GetInt64(int number, int64 default_value) const;
245 uint32 GetUInt32(int number, uint32 default_value) const;
246 uint64 GetUInt64(int number, uint64 default_value) const;
247 float GetFloat(int number, float default_value) const;
248 double GetDouble(int number, double default_value) const;
249 bool GetBool(int number, bool default_value) const;
250 int GetEnum(int number, int default_value) const;
251 const std::string& GetString(int number,
252 const std::string& default_value) const;
253 const MessageLite& GetMessage(int number,
254 const MessageLite& default_value) const;
255 const MessageLite& GetMessage(int number, const Descriptor* message_type,
256 MessageFactory* factory) const;
257
258 // |descriptor| may be NULL so long as it is known that the descriptor for
259 // the extension lives in the same pool as the descriptor for the containing
260 // type.
261 #define desc const FieldDescriptor* descriptor // avoid line wrapping
262 void SetInt32(int number, FieldType type, int32 value, desc);
263 void SetInt64(int number, FieldType type, int64 value, desc);
264 void SetUInt32(int number, FieldType type, uint32 value, desc);
265 void SetUInt64(int number, FieldType type, uint64 value, desc);
266 void SetFloat(int number, FieldType type, float value, desc);
267 void SetDouble(int number, FieldType type, double value, desc);
268 void SetBool(int number, FieldType type, bool value, desc);
269 void SetEnum(int number, FieldType type, int value, desc);
270 void SetString(int number, FieldType type, std::string value, desc);
271 std::string* MutableString(int number, FieldType type, desc);
272 MessageLite* MutableMessage(int number, FieldType type,
273 const MessageLite& prototype, desc);
274 MessageLite* MutableMessage(const FieldDescriptor* descriptor,
275 MessageFactory* factory);
276 // Adds the given message to the ExtensionSet, taking ownership of the
277 // message object. Existing message with the same number will be deleted.
278 // If "message" is NULL, this is equivalent to "ClearExtension(number)".
279 void SetAllocatedMessage(int number, FieldType type,
280 const FieldDescriptor* descriptor,
281 MessageLite* message);
282 void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
283 const FieldDescriptor* descriptor,
284 MessageLite* message);
285 MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
286 MessageLite* UnsafeArenaReleaseMessage(int number,
287 const MessageLite& prototype);
288
289 MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
290 MessageFactory* factory);
291 MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
292 MessageFactory* factory);
293 #undef desc
GetArena()294 Arena* GetArena() const { return arena_; }
295
296 // repeated fields -------------------------------------------------
297
298 // Fetches a RepeatedField extension by number; returns |default_value|
299 // if no such extension exists. User should not touch this directly; it is
300 // used by the GetRepeatedExtension() method.
301 const void* GetRawRepeatedField(int number, const void* default_value) const;
302 // Fetches a mutable version of a RepeatedField extension by number,
303 // instantiating one if none exists. Similar to above, user should not use
304 // this directly; it underlies MutableRepeatedExtension().
305 void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
306 const FieldDescriptor* desc);
307
308 // This is an overload of MutableRawRepeatedField to maintain compatibility
309 // with old code using a previous API. This version of
310 // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
311 // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
312 void* MutableRawRepeatedField(int number);
313
314 int32 GetRepeatedInt32(int number, int index) const;
315 int64 GetRepeatedInt64(int number, int index) const;
316 uint32 GetRepeatedUInt32(int number, int index) const;
317 uint64 GetRepeatedUInt64(int number, int index) const;
318 float GetRepeatedFloat(int number, int index) const;
319 double GetRepeatedDouble(int number, int index) const;
320 bool GetRepeatedBool(int number, int index) const;
321 int GetRepeatedEnum(int number, int index) const;
322 const std::string& GetRepeatedString(int number, int index) const;
323 const MessageLite& GetRepeatedMessage(int number, int index) const;
324
325 void SetRepeatedInt32(int number, int index, int32 value);
326 void SetRepeatedInt64(int number, int index, int64 value);
327 void SetRepeatedUInt32(int number, int index, uint32 value);
328 void SetRepeatedUInt64(int number, int index, uint64 value);
329 void SetRepeatedFloat(int number, int index, float value);
330 void SetRepeatedDouble(int number, int index, double value);
331 void SetRepeatedBool(int number, int index, bool value);
332 void SetRepeatedEnum(int number, int index, int value);
333 void SetRepeatedString(int number, int index, std::string value);
334 std::string* MutableRepeatedString(int number, int index);
335 MessageLite* MutableRepeatedMessage(int number, int index);
336
337 #define desc const FieldDescriptor* descriptor // avoid line wrapping
338 void AddInt32(int number, FieldType type, bool packed, int32 value, desc);
339 void AddInt64(int number, FieldType type, bool packed, int64 value, desc);
340 void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
341 void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
342 void AddFloat(int number, FieldType type, bool packed, float value, desc);
343 void AddDouble(int number, FieldType type, bool packed, double value, desc);
344 void AddBool(int number, FieldType type, bool packed, bool value, desc);
345 void AddEnum(int number, FieldType type, bool packed, int value, desc);
346 void AddString(int number, FieldType type, std::string value, desc);
347 std::string* AddString(int number, FieldType type, desc);
348 MessageLite* AddMessage(int number, FieldType type,
349 const MessageLite& prototype, desc);
350 MessageLite* AddMessage(const FieldDescriptor* descriptor,
351 MessageFactory* factory);
352 void AddAllocatedMessage(const FieldDescriptor* descriptor,
353 MessageLite* new_entry);
354 #undef desc
355
356 void RemoveLast(int number);
357 MessageLite* ReleaseLast(int number);
358 void SwapElements(int number, int index1, int index2);
359
360 // -----------------------------------------------------------------
361 // TODO(kenton): Hardcore memory management accessors
362
363 // =================================================================
364 // convenience methods for implementing methods of Message
365 //
366 // These could all be implemented in terms of the other methods of this
367 // class, but providing them here helps keep the generated code size down.
368
369 void Clear();
370 void MergeFrom(const ExtensionSet& other);
371 void Swap(ExtensionSet* other);
372 void SwapExtension(ExtensionSet* other, int number);
373 bool IsInitialized() const;
374
375 // Parses a single extension from the input. The input should start out
376 // positioned immediately after the tag.
377 bool ParseField(uint32 tag, io::CodedInputStream* input,
378 ExtensionFinder* extension_finder,
379 FieldSkipper* field_skipper);
380
381 // Specific versions for lite or full messages (constructs the appropriate
382 // FieldSkipper automatically). |containing_type| is the default
383 // instance for the containing message; it is used only to look up the
384 // extension by number. See RegisterExtension(), above. Unlike the other
385 // methods of ExtensionSet, this only works for generated message types --
386 // it looks up extensions registered using RegisterExtension().
387 bool ParseField(uint32 tag, io::CodedInputStream* input,
388 const MessageLite* containing_type);
389 bool ParseField(uint32 tag, io::CodedInputStream* input,
390 const Message* containing_type,
391 UnknownFieldSet* unknown_fields);
392 bool ParseField(uint32 tag, io::CodedInputStream* input,
393 const MessageLite* containing_type,
394 io::CodedOutputStream* unknown_fields);
395
396 // Lite parser
397 const char* ParseField(uint64 tag, const char* ptr,
398 const MessageLite* containing_type,
399 internal::InternalMetadata* metadata,
400 internal::ParseContext* ctx);
401 // Full parser
402 const char* ParseField(uint64 tag, const char* ptr,
403 const Message* containing_type,
404 internal::InternalMetadata* metadata,
405 internal::ParseContext* ctx);
406 template <typename Msg>
ParseMessageSet(const char * ptr,const Msg * containing_type,InternalMetadata * metadata,internal::ParseContext * ctx)407 const char* ParseMessageSet(const char* ptr, const Msg* containing_type,
408 InternalMetadata* metadata,
409 internal::ParseContext* ctx) {
410 struct MessageSetItem {
411 const char* _InternalParse(const char* ptr, ParseContext* ctx) {
412 return me->ParseMessageSetItem(ptr, containing_type, metadata, ctx);
413 }
414 ExtensionSet* me;
415 const Msg* containing_type;
416 InternalMetadata* metadata;
417 } item{this, containing_type, metadata};
418 while (!ctx->Done(&ptr)) {
419 uint32 tag;
420 ptr = ReadTag(ptr, &tag);
421 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
422 if (tag == WireFormatLite::kMessageSetItemStartTag) {
423 ptr = ctx->ParseGroup(&item, ptr, tag);
424 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
425 } else {
426 if (tag == 0 || (tag & 7) == 4) {
427 ctx->SetLastTag(tag);
428 return ptr;
429 }
430 ptr = ParseField(tag, ptr, containing_type, metadata, ctx);
431 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
432 }
433 }
434 return ptr;
435 }
436
437 // Parse an entire message in MessageSet format. Such messages have no
438 // fields, only extensions.
439 bool ParseMessageSetLite(io::CodedInputStream* input,
440 ExtensionFinder* extension_finder,
441 FieldSkipper* field_skipper);
442 bool ParseMessageSet(io::CodedInputStream* input,
443 ExtensionFinder* extension_finder,
444 MessageSetFieldSkipper* field_skipper);
445
446 // Specific versions for lite or full messages (constructs the appropriate
447 // FieldSkipper automatically).
448 bool ParseMessageSet(io::CodedInputStream* input,
449 const MessageLite* containing_type,
450 std::string* unknown_fields);
451 bool ParseMessageSet(io::CodedInputStream* input,
452 const Message* containing_type,
453 UnknownFieldSet* unknown_fields);
454
455 // Write all extension fields with field numbers in the range
456 // [start_field_number, end_field_number)
457 // to the output stream, using the cached sizes computed when ByteSize() was
458 // last called. Note that the range bounds are inclusive-exclusive.
SerializeWithCachedSizes(int start_field_number,int end_field_number,io::CodedOutputStream * output)459 void SerializeWithCachedSizes(int start_field_number, int end_field_number,
460 io::CodedOutputStream* output) const {
461 output->SetCur(_InternalSerialize(start_field_number, end_field_number,
462 output->Cur(), output->EpsCopy()));
463 }
464
465 // Same as SerializeWithCachedSizes, but without any bounds checking.
466 // The caller must ensure that target has sufficient capacity for the
467 // serialized extensions.
468 //
469 // Returns a pointer past the last written byte.
470 uint8* _InternalSerialize(int start_field_number, int end_field_number,
471 uint8* target,
472 io::EpsCopyOutputStream* stream) const;
473
474 // Like above but serializes in MessageSet format.
SerializeMessageSetWithCachedSizes(io::CodedOutputStream * output)475 void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const {
476 output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray(
477 output->Cur(), output->EpsCopy()));
478 }
479 uint8* InternalSerializeMessageSetWithCachedSizesToArray(
480 uint8* target, io::EpsCopyOutputStream* stream) const;
481
482 // For backward-compatibility, versions of two of the above methods that
483 // serialize deterministically iff SetDefaultSerializationDeterministic()
484 // has been called.
485 uint8* SerializeWithCachedSizesToArray(int start_field_number,
486 int end_field_number,
487 uint8* target) const;
488 uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
489
490 // Returns the total serialized size of all the extensions.
491 size_t ByteSize() const;
492
493 // Like ByteSize() but uses MessageSet format.
494 size_t MessageSetByteSize() const;
495
496 // Returns (an estimate of) the total number of bytes used for storing the
497 // extensions in memory, excluding sizeof(*this). If the ExtensionSet is
498 // for a lite message (and thus possibly contains lite messages), the results
499 // are undefined (might work, might crash, might corrupt data, might not even
500 // be linked in). It's up to the protocol compiler to avoid calling this on
501 // such ExtensionSets (easy enough since lite messages don't implement
502 // SpaceUsed()).
503 size_t SpaceUsedExcludingSelfLong() const;
504
505 // This method just calls SpaceUsedExcludingSelfLong() but it can not be
506 // inlined because the definition of SpaceUsedExcludingSelfLong() is not
507 // included in lite runtime and when an inline method refers to it MSVC
508 // will complain about unresolved symbols when building the lite runtime
509 // as .dll.
510 int SpaceUsedExcludingSelf() const;
511
512 private:
513 // Interface of a lazily parsed singular message extension.
514 class PROTOBUF_EXPORT LazyMessageExtension {
515 public:
LazyMessageExtension()516 LazyMessageExtension() {}
~LazyMessageExtension()517 virtual ~LazyMessageExtension() {}
518
519 virtual LazyMessageExtension* New(Arena* arena) const = 0;
520 virtual const MessageLite& GetMessage(
521 const MessageLite& prototype) const = 0;
522 virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
523 virtual void SetAllocatedMessage(MessageLite* message) = 0;
524 virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message) = 0;
525 virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
526 virtual MessageLite* UnsafeArenaReleaseMessage(
527 const MessageLite& prototype) = 0;
528
529 virtual bool IsInitialized() const = 0;
530
531 PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead")
ByteSize()532 virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); }
533 virtual size_t ByteSizeLong() const = 0;
534 virtual size_t SpaceUsedLong() const = 0;
535
536 virtual void MergeFrom(const LazyMessageExtension& other) = 0;
537 virtual void Clear() = 0;
538
539 virtual bool ReadMessage(const MessageLite& prototype,
540 io::CodedInputStream* input) = 0;
541 virtual const char* _InternalParse(const char* ptr, ParseContext* ctx) = 0;
542 virtual uint8* WriteMessageToArray(
543 int number, uint8* target, io::EpsCopyOutputStream* stream) const = 0;
544
545 private:
546 virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
547
548 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
549 };
550 struct Extension {
551 // The order of these fields packs Extension into 24 bytes when using 8
552 // byte alignment. Consider this when adding or removing fields here.
553 union {
554 int32 int32_value;
555 int64 int64_value;
556 uint32 uint32_value;
557 uint64 uint64_value;
558 float float_value;
559 double double_value;
560 bool bool_value;
561 int enum_value;
562 std::string* string_value;
563 MessageLite* message_value;
564 LazyMessageExtension* lazymessage_value;
565
566 RepeatedField<int32>* repeated_int32_value;
567 RepeatedField<int64>* repeated_int64_value;
568 RepeatedField<uint32>* repeated_uint32_value;
569 RepeatedField<uint64>* repeated_uint64_value;
570 RepeatedField<float>* repeated_float_value;
571 RepeatedField<double>* repeated_double_value;
572 RepeatedField<bool>* repeated_bool_value;
573 RepeatedField<int>* repeated_enum_value;
574 RepeatedPtrField<std::string>* repeated_string_value;
575 RepeatedPtrField<MessageLite>* repeated_message_value;
576 };
577
578 FieldType type;
579 bool is_repeated;
580
581 // For singular types, indicates if the extension is "cleared". This
582 // happens when an extension is set and then later cleared by the caller.
583 // We want to keep the Extension object around for reuse, so instead of
584 // removing it from the map, we just set is_cleared = true. This has no
585 // meaning for repeated types; for those, the size of the RepeatedField
586 // simply becomes zero when cleared.
587 bool is_cleared : 4;
588
589 // For singular message types, indicates whether lazy parsing is enabled
590 // for this extension. This field is only valid when type == TYPE_MESSAGE
591 // and !is_repeated because we only support lazy parsing for singular
592 // message types currently. If is_lazy = true, the extension is stored in
593 // lazymessage_value. Otherwise, the extension will be message_value.
594 bool is_lazy : 4;
595
596 // For repeated types, this indicates if the [packed=true] option is set.
597 bool is_packed;
598
599 // For packed fields, the size of the packed data is recorded here when
600 // ByteSize() is called then used during serialization.
601 // TODO(kenton): Use atomic<int> when C++ supports it.
602 mutable int cached_size;
603
604 // The descriptor for this extension, if one exists and is known. May be
605 // NULL. Must not be NULL if the descriptor for the extension does not
606 // live in the same pool as the descriptor for the containing type.
607 const FieldDescriptor* descriptor;
608
609 // Some helper methods for operations on a single Extension.
610 uint8* InternalSerializeFieldWithCachedSizesToArray(
611 int number, uint8* target, io::EpsCopyOutputStream* stream) const;
612 uint8* InternalSerializeMessageSetItemWithCachedSizesToArray(
613 int number, uint8* target, io::EpsCopyOutputStream* stream) const;
614 size_t ByteSize(int number) const;
615 size_t MessageSetItemByteSize(int number) const;
616 void Clear();
617 int GetSize() const;
618 void Free();
619 size_t SpaceUsedExcludingSelfLong() const;
620 bool IsInitialized() const;
621 };
622
623 // The Extension struct is small enough to be passed by value, so we use it
624 // directly as the value type in mappings rather than use pointers. We use
625 // sorted maps rather than hash-maps because we expect most ExtensionSets will
626 // only contain a small number of extension. Also, we want AppendToList and
627 // deterministic serialization to order fields by field number.
628
629 struct KeyValue {
630 int first;
631 Extension second;
632
633 struct FirstComparator {
operatorKeyValue::FirstComparator634 bool operator()(const KeyValue& lhs, const KeyValue& rhs) const {
635 return lhs.first < rhs.first;
636 }
operatorKeyValue::FirstComparator637 bool operator()(const KeyValue& lhs, int key) const {
638 return lhs.first < key;
639 }
operatorKeyValue::FirstComparator640 bool operator()(int key, const KeyValue& rhs) const {
641 return key < rhs.first;
642 }
643 };
644 };
645
646 typedef std::map<int, Extension> LargeMap;
647
648 // Wrapper API that switches between flat-map and LargeMap.
649
650 // Finds a key (if present) in the ExtensionSet.
651 const Extension* FindOrNull(int key) const;
652 Extension* FindOrNull(int key);
653
654 // Helper-functions that only inspect the LargeMap.
655 const Extension* FindOrNullInLargeMap(int key) const;
656 Extension* FindOrNullInLargeMap(int key);
657
658 // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
659 // finds the already-existing Extension for that key (returns false).
660 // The Extension* will point to the new-or-found Extension.
661 std::pair<Extension*, bool> Insert(int key);
662
663 // Grows the flat_capacity_.
664 // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
665 void GrowCapacity(size_t minimum_new_capacity);
666 static constexpr uint16 kMaximumFlatCapacity = 256;
is_large()667 bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; }
668
669 // Removes a key from the ExtensionSet.
670 void Erase(int key);
671
Size()672 size_t Size() const {
673 return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
674 }
675
676 // Similar to std::for_each.
677 // Each Iterator is decomposed into ->first and ->second fields, so
678 // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
679 template <typename Iterator, typename KeyValueFunctor>
ForEach(Iterator begin,Iterator end,KeyValueFunctor func)680 static KeyValueFunctor ForEach(Iterator begin, Iterator end,
681 KeyValueFunctor func) {
682 for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
683 return std::move(func);
684 }
685
686 // Applies a functor to the <int, Extension&> pairs in sorted order.
687 template <typename KeyValueFunctor>
ForEach(KeyValueFunctor func)688 KeyValueFunctor ForEach(KeyValueFunctor func) {
689 if (PROTOBUF_PREDICT_FALSE(is_large())) {
690 return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
691 }
692 return ForEach(flat_begin(), flat_end(), std::move(func));
693 }
694
695 // Applies a functor to the <int, const Extension&> pairs in sorted order.
696 template <typename KeyValueFunctor>
ForEach(KeyValueFunctor func)697 KeyValueFunctor ForEach(KeyValueFunctor func) const {
698 if (PROTOBUF_PREDICT_FALSE(is_large())) {
699 return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
700 }
701 return ForEach(flat_begin(), flat_end(), std::move(func));
702 }
703
704 // Merges existing Extension from other_extension
705 void InternalExtensionMergeFrom(int number, const Extension& other_extension);
706
707 // Returns true and fills field_number and extension if extension is found.
708 // Note to support packed repeated field compatibility, it also fills whether
709 // the tag on wire is packed, which can be different from
710 // extension->is_packed (whether packed=true is specified).
711 bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
712 int* field_number, ExtensionInfo* extension,
713 bool* was_packed_on_wire);
714
715 // Returns true and fills extension if extension is found.
716 // Note to support packed repeated field compatibility, it also fills whether
717 // the tag on wire is packed, which can be different from
718 // extension->is_packed (whether packed=true is specified).
719 bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
720 ExtensionFinder* extension_finder,
721 ExtensionInfo* extension,
722 bool* was_packed_on_wire);
723
724 // Parses a single extension from the input. The input should start out
725 // positioned immediately after the wire tag. This method is called in
726 // ParseField() after field number and was_packed_on_wire is extracted from
727 // the wire tag and ExtensionInfo is found by the field number.
728 bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire,
729 const ExtensionInfo& extension,
730 io::CodedInputStream* input,
731 FieldSkipper* field_skipper);
732
733 // Like ParseField(), but this method may parse singular message extensions
734 // lazily depending on the value of FLAGS_eagerly_parse_message_sets.
735 bool ParseFieldMaybeLazily(int wire_type, int field_number,
736 io::CodedInputStream* input,
737 ExtensionFinder* extension_finder,
738 MessageSetFieldSkipper* field_skipper);
739
740 // Gets the extension with the given number, creating it if it does not
741 // already exist. Returns true if the extension did not already exist.
742 bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
743 Extension** result);
744
745 // Gets the repeated extension for the given descriptor, creating it if
746 // it does not exist.
747 Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
748
749 // Parse a single MessageSet item -- called just after the item group start
750 // tag has been read.
751 bool ParseMessageSetItemLite(io::CodedInputStream* input,
752 ExtensionFinder* extension_finder,
753 FieldSkipper* field_skipper);
754 // Parse a single MessageSet item -- called just after the item group start
755 // tag has been read.
756 bool ParseMessageSetItem(io::CodedInputStream* input,
757 ExtensionFinder* extension_finder,
758 MessageSetFieldSkipper* field_skipper);
759
FindExtension(int wire_type,uint32 field,const MessageLite * containing_type,const internal::ParseContext *,ExtensionInfo * extension,bool * was_packed_on_wire)760 bool FindExtension(int wire_type, uint32 field,
761 const MessageLite* containing_type,
762 const internal::ParseContext* /*ctx*/,
763 ExtensionInfo* extension, bool* was_packed_on_wire) {
764 GeneratedExtensionFinder finder(containing_type);
765 return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
766 extension, was_packed_on_wire);
767 }
768 inline bool FindExtension(int wire_type, uint32 field,
769 const Message* containing_type,
770 const internal::ParseContext* ctx,
771 ExtensionInfo* extension, bool* was_packed_on_wire);
772 // Used for MessageSet only
ParseFieldMaybeLazily(uint64 tag,const char * ptr,const MessageLite * containing_type,internal::InternalMetadata * metadata,internal::ParseContext * ctx)773 const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr,
774 const MessageLite* containing_type,
775 internal::InternalMetadata* metadata,
776 internal::ParseContext* ctx) {
777 // Lite MessageSet doesn't implement lazy.
778 return ParseField(tag, ptr, containing_type, metadata, ctx);
779 }
780 const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr,
781 const Message* containing_type,
782 internal::InternalMetadata* metadata,
783 internal::ParseContext* ctx);
784 const char* ParseMessageSetItem(const char* ptr,
785 const MessageLite* containing_type,
786 internal::InternalMetadata* metadata,
787 internal::ParseContext* ctx);
788 const char* ParseMessageSetItem(const char* ptr,
789 const Message* containing_type,
790 internal::InternalMetadata* metadata,
791 internal::ParseContext* ctx);
792
793 // Implemented in extension_set_inl.h to keep code out of the header file.
794 template <typename T>
795 const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
796 const ExtensionInfo& info,
797 internal::InternalMetadata* metadata,
798 const char* ptr,
799 internal::ParseContext* ctx);
800 template <typename Msg, typename T>
801 const char* ParseMessageSetItemTmpl(const char* ptr,
802 const Msg* containing_type,
803 internal::InternalMetadata* metadata,
804 internal::ParseContext* ctx);
805
806 // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
807 // friendship should automatically extend to ExtensionSet::Extension, but
808 // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
809 // correctly. So, we must provide helpers for calling methods of that
810 // class.
811
812 // Defined in extension_set_heavy.cc.
813 static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
814 RepeatedPtrFieldBase* field);
815
flat_begin()816 KeyValue* flat_begin() {
817 assert(!is_large());
818 return map_.flat;
819 }
flat_begin()820 const KeyValue* flat_begin() const {
821 assert(!is_large());
822 return map_.flat;
823 }
flat_end()824 KeyValue* flat_end() {
825 assert(!is_large());
826 return map_.flat + flat_size_;
827 }
flat_end()828 const KeyValue* flat_end() const {
829 assert(!is_large());
830 return map_.flat + flat_size_;
831 }
832
833 Arena* arena_;
834
835 // Manual memory-management:
836 // map_.flat is an allocated array of flat_capacity_ elements.
837 // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
838 uint16 flat_capacity_;
839 uint16 flat_size_;
840 union AllocatedData {
841 KeyValue* flat;
842
843 // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
844 // which guarantees O(n lg n) CPU but larger constant factors.
845 LargeMap* large;
846 } map_;
847
848 static void DeleteFlatMap(const KeyValue* flat, uint16 flat_capacity);
849
850 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
851 };
852
ExtensionSet()853 constexpr ExtensionSet::ExtensionSet()
854 : arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{nullptr} {}
855
856 // These are just for convenience...
SetString(int number,FieldType type,std::string value,const FieldDescriptor * descriptor)857 inline void ExtensionSet::SetString(int number, FieldType type,
858 std::string value,
859 const FieldDescriptor* descriptor) {
860 MutableString(number, type, descriptor)->assign(std::move(value));
861 }
SetRepeatedString(int number,int index,std::string value)862 inline void ExtensionSet::SetRepeatedString(int number, int index,
863 std::string value) {
864 MutableRepeatedString(number, index)->assign(std::move(value));
865 }
AddString(int number,FieldType type,std::string value,const FieldDescriptor * descriptor)866 inline void ExtensionSet::AddString(int number, FieldType type,
867 std::string value,
868 const FieldDescriptor* descriptor) {
869 AddString(number, type, descriptor)->assign(std::move(value));
870 }
871 // ===================================================================
872 // Glue for generated extension accessors
873
874 // -------------------------------------------------------------------
875 // Template magic
876
877 // First we have a set of classes representing "type traits" for different
878 // field types. A type traits class knows how to implement basic accessors
879 // for extensions of a particular type given an ExtensionSet. The signature
880 // for a type traits class looks like this:
881 //
882 // class TypeTraits {
883 // public:
884 // typedef ? ConstType;
885 // typedef ? MutableType;
886 // // TypeTraits for singular fields and repeated fields will define the
887 // // symbol "Singular" or "Repeated" respectively. These two symbols will
888 // // be used in extension accessors to distinguish between singular
889 // // extensions and repeated extensions. If the TypeTraits for the passed
890 // // in extension doesn't have the expected symbol defined, it means the
891 // // user is passing a repeated extension to a singular accessor, or the
892 // // opposite. In that case the C++ compiler will generate an error
893 // // message "no matching member function" to inform the user.
894 // typedef ? Singular
895 // typedef ? Repeated
896 //
897 // static inline ConstType Get(int number, const ExtensionSet& set);
898 // static inline void Set(int number, ConstType value, ExtensionSet* set);
899 // static inline MutableType Mutable(int number, ExtensionSet* set);
900 //
901 // // Variants for repeated fields.
902 // static inline ConstType Get(int number, const ExtensionSet& set,
903 // int index);
904 // static inline void Set(int number, int index,
905 // ConstType value, ExtensionSet* set);
906 // static inline MutableType Mutable(int number, int index,
907 // ExtensionSet* set);
908 // static inline void Add(int number, ConstType value, ExtensionSet* set);
909 // static inline MutableType Add(int number, ExtensionSet* set);
910 // This is used by the ExtensionIdentifier constructor to register
911 // the extension at dynamic initialization.
912 // template <typename ExtendeeT>
913 // static void Register(int number, FieldType type, bool is_packed);
914 // };
915 //
916 // Not all of these methods make sense for all field types. For example, the
917 // "Mutable" methods only make sense for strings and messages, and the
918 // repeated methods only make sense for repeated types. So, each type
919 // traits class implements only the set of methods from this signature that it
920 // actually supports. This will cause a compiler error if the user tries to
921 // access an extension using a method that doesn't make sense for its type.
922 // For example, if "foo" is an extension of type "optional int32", then if you
923 // try to write code like:
924 // my_message.MutableExtension(foo)
925 // you will get a compile error because PrimitiveTypeTraits<int32> does not
926 // have a "Mutable()" method.
927
928 // -------------------------------------------------------------------
929 // PrimitiveTypeTraits
930
931 // Since the ExtensionSet has different methods for each primitive type,
932 // we must explicitly define the methods of the type traits class for each
933 // known type.
934 template <typename Type>
935 class PrimitiveTypeTraits {
936 public:
937 typedef Type ConstType;
938 typedef Type MutableType;
939 typedef PrimitiveTypeTraits<Type> Singular;
940
941 static inline ConstType Get(int number, const ExtensionSet& set,
942 ConstType default_value);
943 static inline void Set(int number, FieldType field_type, ConstType value,
944 ExtensionSet* set);
945 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)946 static void Register(int number, FieldType type, bool is_packed) {
947 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
948 type, false, is_packed);
949 }
950 };
951
952 template <typename Type>
953 class RepeatedPrimitiveTypeTraits {
954 public:
955 typedef Type ConstType;
956 typedef Type MutableType;
957 typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
958
959 typedef RepeatedField<Type> RepeatedFieldType;
960
961 static inline Type Get(int number, const ExtensionSet& set, int index);
962 static inline void Set(int number, int index, Type value, ExtensionSet* set);
963 static inline void Add(int number, FieldType field_type, bool is_packed,
964 Type value, ExtensionSet* set);
965
966 static inline const RepeatedField<ConstType>& GetRepeated(
967 int number, const ExtensionSet& set);
968 static inline RepeatedField<Type>* MutableRepeated(int number,
969 FieldType field_type,
970 bool is_packed,
971 ExtensionSet* set);
972
973 static const RepeatedFieldType* GetDefaultRepeatedField();
974 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)975 static void Register(int number, FieldType type, bool is_packed) {
976 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
977 type, true, is_packed);
978 }
979 };
980
981 class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
982 private:
983 template <typename Type>
984 friend class RepeatedPrimitiveTypeTraits;
985 static const RepeatedPrimitiveDefaults* default_instance();
986 RepeatedField<int32> default_repeated_field_int32_;
987 RepeatedField<int64> default_repeated_field_int64_;
988 RepeatedField<uint32> default_repeated_field_uint32_;
989 RepeatedField<uint64> default_repeated_field_uint64_;
990 RepeatedField<double> default_repeated_field_double_;
991 RepeatedField<float> default_repeated_field_float_;
992 RepeatedField<bool> default_repeated_field_bool_;
993 };
994
995 #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
996 template <> \
997 inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
998 int number, const ExtensionSet& set, TYPE default_value) { \
999 return set.Get##METHOD(number, default_value); \
1000 } \
1001 template <> \
1002 inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
1003 TYPE value, ExtensionSet* set) { \
1004 set->Set##METHOD(number, field_type, value, NULL); \
1005 } \
1006 \
1007 template <> \
1008 inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
1009 int number, const ExtensionSet& set, int index) { \
1010 return set.GetRepeated##METHOD(number, index); \
1011 } \
1012 template <> \
1013 inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
1014 int number, int index, TYPE value, ExtensionSet* set) { \
1015 set->SetRepeated##METHOD(number, index, value); \
1016 } \
1017 template <> \
1018 inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
1019 int number, FieldType field_type, bool is_packed, TYPE value, \
1020 ExtensionSet* set) { \
1021 set->Add##METHOD(number, field_type, is_packed, value, NULL); \
1022 } \
1023 template <> \
1024 inline const RepeatedField<TYPE>* \
1025 RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
1026 return &RepeatedPrimitiveDefaults::default_instance() \
1027 ->default_repeated_field_##TYPE##_; \
1028 } \
1029 template <> \
1030 inline const RepeatedField<TYPE>& \
1031 RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
1032 const ExtensionSet& set) { \
1033 return *reinterpret_cast<const RepeatedField<TYPE>*>( \
1034 set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \
1035 } \
1036 template <> \
1037 inline RepeatedField<TYPE>* \
1038 RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \
1039 int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \
1040 return reinterpret_cast<RepeatedField<TYPE>*>( \
1041 set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \
1042 }
1043
PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32,Int32)1044 PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32, Int32)
1045 PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64, Int64)
1046 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
1047 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
1048 PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
1049 PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
1050 PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
1051
1052 #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
1053
1054 // -------------------------------------------------------------------
1055 // StringTypeTraits
1056
1057 // Strings support both Set() and Mutable().
1058 class PROTOBUF_EXPORT StringTypeTraits {
1059 public:
1060 typedef const std::string& ConstType;
1061 typedef std::string* MutableType;
1062 typedef StringTypeTraits Singular;
1063
1064 static inline const std::string& Get(int number, const ExtensionSet& set,
1065 ConstType default_value) {
1066 return set.GetString(number, default_value);
1067 }
1068 static inline void Set(int number, FieldType field_type,
1069 const std::string& value, ExtensionSet* set) {
1070 set->SetString(number, field_type, value, NULL);
1071 }
1072 static inline std::string* Mutable(int number, FieldType field_type,
1073 ExtensionSet* set) {
1074 return set->MutableString(number, field_type, NULL);
1075 }
1076 template <typename ExtendeeT>
1077 static void Register(int number, FieldType type, bool is_packed) {
1078 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
1079 type, false, is_packed);
1080 }
1081 };
1082
1083 class PROTOBUF_EXPORT RepeatedStringTypeTraits {
1084 public:
1085 typedef const std::string& ConstType;
1086 typedef std::string* MutableType;
1087 typedef RepeatedStringTypeTraits Repeated;
1088
1089 typedef RepeatedPtrField<std::string> RepeatedFieldType;
1090
Get(int number,const ExtensionSet & set,int index)1091 static inline const std::string& Get(int number, const ExtensionSet& set,
1092 int index) {
1093 return set.GetRepeatedString(number, index);
1094 }
Set(int number,int index,const std::string & value,ExtensionSet * set)1095 static inline void Set(int number, int index, const std::string& value,
1096 ExtensionSet* set) {
1097 set->SetRepeatedString(number, index, value);
1098 }
Mutable(int number,int index,ExtensionSet * set)1099 static inline std::string* Mutable(int number, int index, ExtensionSet* set) {
1100 return set->MutableRepeatedString(number, index);
1101 }
Add(int number,FieldType field_type,bool,const std::string & value,ExtensionSet * set)1102 static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
1103 const std::string& value, ExtensionSet* set) {
1104 set->AddString(number, field_type, value, NULL);
1105 }
Add(int number,FieldType field_type,ExtensionSet * set)1106 static inline std::string* Add(int number, FieldType field_type,
1107 ExtensionSet* set) {
1108 return set->AddString(number, field_type, NULL);
1109 }
GetRepeated(int number,const ExtensionSet & set)1110 static inline const RepeatedPtrField<std::string>& GetRepeated(
1111 int number, const ExtensionSet& set) {
1112 return *reinterpret_cast<const RepeatedPtrField<std::string>*>(
1113 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1114 }
1115
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1116 static inline RepeatedPtrField<std::string>* MutableRepeated(
1117 int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
1118 return reinterpret_cast<RepeatedPtrField<std::string>*>(
1119 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1120 }
1121
1122 static const RepeatedFieldType* GetDefaultRepeatedField();
1123
1124 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1125 static void Register(int number, FieldType type, bool is_packed) {
1126 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
1127 type, true, is_packed);
1128 }
1129
1130 private:
1131 static void InitializeDefaultRepeatedFields();
1132 static void DestroyDefaultRepeatedFields();
1133 };
1134
1135 // -------------------------------------------------------------------
1136 // EnumTypeTraits
1137
1138 // ExtensionSet represents enums using integers internally, so we have to
1139 // static_cast around.
1140 template <typename Type, bool IsValid(int)>
1141 class EnumTypeTraits {
1142 public:
1143 typedef Type ConstType;
1144 typedef Type MutableType;
1145 typedef EnumTypeTraits<Type, IsValid> Singular;
1146
Get(int number,const ExtensionSet & set,ConstType default_value)1147 static inline ConstType Get(int number, const ExtensionSet& set,
1148 ConstType default_value) {
1149 return static_cast<Type>(set.GetEnum(number, default_value));
1150 }
Set(int number,FieldType field_type,ConstType value,ExtensionSet * set)1151 static inline void Set(int number, FieldType field_type, ConstType value,
1152 ExtensionSet* set) {
1153 GOOGLE_DCHECK(IsValid(value));
1154 set->SetEnum(number, field_type, value, NULL);
1155 }
1156 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1157 static void Register(int number, FieldType type, bool is_packed) {
1158 ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
1159 type, false, is_packed, IsValid);
1160 }
1161 };
1162
1163 template <typename Type, bool IsValid(int)>
1164 class RepeatedEnumTypeTraits {
1165 public:
1166 typedef Type ConstType;
1167 typedef Type MutableType;
1168 typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
1169
1170 typedef RepeatedField<Type> RepeatedFieldType;
1171
Get(int number,const ExtensionSet & set,int index)1172 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1173 return static_cast<Type>(set.GetRepeatedEnum(number, index));
1174 }
Set(int number,int index,ConstType value,ExtensionSet * set)1175 static inline void Set(int number, int index, ConstType value,
1176 ExtensionSet* set) {
1177 GOOGLE_DCHECK(IsValid(value));
1178 set->SetRepeatedEnum(number, index, value);
1179 }
Add(int number,FieldType field_type,bool is_packed,ConstType value,ExtensionSet * set)1180 static inline void Add(int number, FieldType field_type, bool is_packed,
1181 ConstType value, ExtensionSet* set) {
1182 GOOGLE_DCHECK(IsValid(value));
1183 set->AddEnum(number, field_type, is_packed, value, NULL);
1184 }
GetRepeated(int number,const ExtensionSet & set)1185 static inline const RepeatedField<Type>& GetRepeated(
1186 int number, const ExtensionSet& set) {
1187 // Hack: the `Extension` struct stores a RepeatedField<int> for enums.
1188 // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
1189 // so we need to do some casting magic. See message.h for similar
1190 // contortions for non-extension fields.
1191 return *reinterpret_cast<const RepeatedField<Type>*>(
1192 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1193 }
1194
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1195 static inline RepeatedField<Type>* MutableRepeated(int number,
1196 FieldType field_type,
1197 bool is_packed,
1198 ExtensionSet* set) {
1199 return reinterpret_cast<RepeatedField<Type>*>(
1200 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1201 }
1202
GetDefaultRepeatedField()1203 static const RepeatedFieldType* GetDefaultRepeatedField() {
1204 // Hack: as noted above, repeated enum fields are internally stored as a
1205 // RepeatedField<int>. We need to be able to instantiate global static
1206 // objects to return as default (empty) repeated fields on non-existent
1207 // extensions. We would not be able to know a-priori all of the enum types
1208 // (values of |Type|) to instantiate all of these, so we just re-use int32's
1209 // default repeated field object.
1210 return reinterpret_cast<const RepeatedField<Type>*>(
1211 RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField());
1212 }
1213 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1214 static void Register(int number, FieldType type, bool is_packed) {
1215 ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
1216 type, true, is_packed, IsValid);
1217 }
1218 };
1219
1220 // -------------------------------------------------------------------
1221 // MessageTypeTraits
1222
1223 // ExtensionSet guarantees that when manipulating extensions with message
1224 // types, the implementation used will be the compiled-in class representing
1225 // that type. So, we can static_cast down to the exact type we expect.
1226 template <typename Type>
1227 class MessageTypeTraits {
1228 public:
1229 typedef const Type& ConstType;
1230 typedef Type* MutableType;
1231 typedef MessageTypeTraits<Type> Singular;
1232
Get(int number,const ExtensionSet & set,ConstType default_value)1233 static inline ConstType Get(int number, const ExtensionSet& set,
1234 ConstType default_value) {
1235 return static_cast<const Type&>(set.GetMessage(number, default_value));
1236 }
Mutable(int number,FieldType field_type,ExtensionSet * set)1237 static inline MutableType Mutable(int number, FieldType field_type,
1238 ExtensionSet* set) {
1239 return static_cast<Type*>(set->MutableMessage(
1240 number, field_type, Type::default_instance(), NULL));
1241 }
SetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)1242 static inline void SetAllocated(int number, FieldType field_type,
1243 MutableType message, ExtensionSet* set) {
1244 set->SetAllocatedMessage(number, field_type, NULL, message);
1245 }
UnsafeArenaSetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)1246 static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
1247 MutableType message,
1248 ExtensionSet* set) {
1249 set->UnsafeArenaSetAllocatedMessage(number, field_type, NULL, message);
1250 }
Release(int number,FieldType,ExtensionSet * set)1251 static inline MutableType Release(int number, FieldType /* field_type */,
1252 ExtensionSet* set) {
1253 return static_cast<Type*>(
1254 set->ReleaseMessage(number, Type::default_instance()));
1255 }
UnsafeArenaRelease(int number,FieldType,ExtensionSet * set)1256 static inline MutableType UnsafeArenaRelease(int number,
1257 FieldType /* field_type */,
1258 ExtensionSet* set) {
1259 return static_cast<Type*>(
1260 set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
1261 }
1262 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1263 static void Register(int number, FieldType type, bool is_packed) {
1264 ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
1265 number, type, false, is_packed,
1266 &Type::default_instance());
1267 }
1268 };
1269
1270 // forward declaration
1271 class RepeatedMessageGenericTypeTraits;
1272
1273 template <typename Type>
1274 class RepeatedMessageTypeTraits {
1275 public:
1276 typedef const Type& ConstType;
1277 typedef Type* MutableType;
1278 typedef RepeatedMessageTypeTraits<Type> Repeated;
1279
1280 typedef RepeatedPtrField<Type> RepeatedFieldType;
1281
Get(int number,const ExtensionSet & set,int index)1282 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1283 return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
1284 }
Mutable(int number,int index,ExtensionSet * set)1285 static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
1286 return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
1287 }
Add(int number,FieldType field_type,ExtensionSet * set)1288 static inline MutableType Add(int number, FieldType field_type,
1289 ExtensionSet* set) {
1290 return static_cast<Type*>(
1291 set->AddMessage(number, field_type, Type::default_instance(), NULL));
1292 }
GetRepeated(int number,const ExtensionSet & set)1293 static inline const RepeatedPtrField<Type>& GetRepeated(
1294 int number, const ExtensionSet& set) {
1295 // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
1296 // casting hack applies here, because a RepeatedPtrField<MessageLite>
1297 // cannot naturally become a RepeatedPtrType<Type> even though Type is
1298 // presumably a message. google::protobuf::Message goes through similar contortions
1299 // with a reinterpret_cast<>.
1300 return *reinterpret_cast<const RepeatedPtrField<Type>*>(
1301 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1302 }
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1303 static inline RepeatedPtrField<Type>* MutableRepeated(int number,
1304 FieldType field_type,
1305 bool is_packed,
1306 ExtensionSet* set) {
1307 return reinterpret_cast<RepeatedPtrField<Type>*>(
1308 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1309 }
1310
1311 static const RepeatedFieldType* GetDefaultRepeatedField();
1312 template <typename ExtendeeT>
Register(int number,FieldType type,bool is_packed)1313 static void Register(int number, FieldType type, bool is_packed) {
1314 ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
1315 number, type, true, is_packed,
1316 &Type::default_instance());
1317 }
1318 };
1319
1320 template <typename Type>
1321 inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
GetDefaultRepeatedField()1322 RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
1323 static auto instance = OnShutdownDelete(new RepeatedFieldType);
1324 return instance;
1325 }
1326
1327 // -------------------------------------------------------------------
1328 // ExtensionIdentifier
1329
1330 // This is the type of actual extension objects. E.g. if you have:
1331 // extends Foo with optional int32 bar = 1234;
1332 // then "bar" will be defined in C++ as:
1333 // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 5, false> bar(1234);
1334 //
1335 // Note that we could, in theory, supply the field number as a template
1336 // parameter, and thus make an instance of ExtensionIdentifier have no
1337 // actual contents. However, if we did that, then using an extension
1338 // identifier would not necessarily cause the compiler to output any sort
1339 // of reference to any symbol defined in the extension's .pb.o file. Some
1340 // linkers will actually drop object files that are not explicitly referenced,
1341 // but that would be bad because it would cause this extension to not be
1342 // registered at static initialization, and therefore using it would crash.
1343
1344 template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
1345 bool is_packed>
1346 class ExtensionIdentifier {
1347 public:
1348 typedef TypeTraitsType TypeTraits;
1349 typedef ExtendeeType Extendee;
1350
ExtensionIdentifier(int number,typename TypeTraits::ConstType default_value)1351 ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
1352 : number_(number), default_value_(default_value) {
1353 Register(number);
1354 }
number()1355 inline int number() const { return number_; }
default_value()1356 typename TypeTraits::ConstType default_value() const {
1357 return default_value_;
1358 }
1359
Register(int number)1360 static void Register(int number) {
1361 TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed);
1362 }
1363
1364 private:
1365 const int number_;
1366 typename TypeTraits::ConstType default_value_;
1367 };
1368
1369 // -------------------------------------------------------------------
1370 // Generated accessors
1371
1372 // This macro should be expanded in the context of a generated type which
1373 // has extensions.
1374 //
1375 // We use "_proto_TypeTraits" as a type name below because "TypeTraits"
1376 // causes problems if the class has a nested message or enum type with that
1377 // name and "_TypeTraits" is technically reserved for the C++ library since
1378 // it starts with an underscore followed by a capital letter.
1379 //
1380 // For similar reason, we use "_field_type" and "_is_packed" as parameter names
1381 // below, so that "field_type" and "is_packed" can be used as field names.
1382 #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \
1383 /* Has, Size, Clear */ \
1384 template <typename _proto_TypeTraits, \
1385 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1386 bool _is_packed> \
1387 inline bool HasExtension( \
1388 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1389 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1390 return _extensions_.Has(id.number()); \
1391 } \
1392 \
1393 template <typename _proto_TypeTraits, \
1394 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1395 bool _is_packed> \
1396 inline void ClearExtension( \
1397 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1398 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1399 _extensions_.ClearExtension(id.number()); \
1400 } \
1401 \
1402 template <typename _proto_TypeTraits, \
1403 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1404 bool _is_packed> \
1405 inline int ExtensionSize( \
1406 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1407 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1408 return _extensions_.ExtensionSize(id.number()); \
1409 } \
1410 \
1411 /* Singular accessors */ \
1412 template <typename _proto_TypeTraits, \
1413 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1414 bool _is_packed> \
1415 inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \
1416 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1417 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1418 return _proto_TypeTraits::Get(id.number(), _extensions_, \
1419 id.default_value()); \
1420 } \
1421 \
1422 template <typename _proto_TypeTraits, \
1423 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1424 bool _is_packed> \
1425 inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \
1426 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1427 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1428 return _proto_TypeTraits::Mutable(id.number(), _field_type, \
1429 &_extensions_); \
1430 } \
1431 \
1432 template <typename _proto_TypeTraits, \
1433 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1434 bool _is_packed> \
1435 inline void SetExtension( \
1436 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1437 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1438 typename _proto_TypeTraits::Singular::ConstType value) { \
1439 _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \
1440 } \
1441 \
1442 template <typename _proto_TypeTraits, \
1443 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1444 bool _is_packed> \
1445 inline void SetAllocatedExtension( \
1446 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1447 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1448 typename _proto_TypeTraits::Singular::MutableType value) { \
1449 _proto_TypeTraits::SetAllocated(id.number(), _field_type, value, \
1450 &_extensions_); \
1451 } \
1452 template <typename _proto_TypeTraits, \
1453 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1454 bool _is_packed> \
1455 inline void UnsafeArenaSetAllocatedExtension( \
1456 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1457 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1458 typename _proto_TypeTraits::Singular::MutableType value) { \
1459 _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type, \
1460 value, &_extensions_); \
1461 } \
1462 template <typename _proto_TypeTraits, \
1463 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1464 bool _is_packed> \
1465 inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \
1466 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1467 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1468 return _proto_TypeTraits::Release(id.number(), _field_type, \
1469 &_extensions_); \
1470 } \
1471 template <typename _proto_TypeTraits, \
1472 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1473 bool _is_packed> \
1474 inline typename _proto_TypeTraits::Singular::MutableType \
1475 UnsafeArenaReleaseExtension( \
1476 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1477 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1478 return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type, \
1479 &_extensions_); \
1480 } \
1481 \
1482 /* Repeated accessors */ \
1483 template <typename _proto_TypeTraits, \
1484 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1485 bool _is_packed> \
1486 inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \
1487 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1488 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1489 int index) const { \
1490 return _proto_TypeTraits::Get(id.number(), _extensions_, index); \
1491 } \
1492 \
1493 template <typename _proto_TypeTraits, \
1494 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1495 bool _is_packed> \
1496 inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \
1497 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1498 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1499 int index) { \
1500 return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \
1501 } \
1502 \
1503 template <typename _proto_TypeTraits, \
1504 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1505 bool _is_packed> \
1506 inline void SetExtension( \
1507 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1508 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1509 int index, typename _proto_TypeTraits::Repeated::ConstType value) { \
1510 _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \
1511 } \
1512 \
1513 template <typename _proto_TypeTraits, \
1514 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1515 bool _is_packed> \
1516 inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \
1517 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1518 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1519 return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \
1520 } \
1521 \
1522 template <typename _proto_TypeTraits, \
1523 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1524 bool _is_packed> \
1525 inline void AddExtension( \
1526 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1527 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1528 typename _proto_TypeTraits::Repeated::ConstType value) { \
1529 _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, value, \
1530 &_extensions_); \
1531 } \
1532 \
1533 template <typename _proto_TypeTraits, \
1534 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1535 bool _is_packed> \
1536 inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \
1537 GetRepeatedExtension( \
1538 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1539 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1540 return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \
1541 } \
1542 \
1543 template <typename _proto_TypeTraits, \
1544 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1545 bool _is_packed> \
1546 inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \
1547 MutableRepeatedExtension( \
1548 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1549 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1550 return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \
1551 _is_packed, &_extensions_); \
1552 }
1553
1554 } // namespace internal
1555
1556 // Call this function to ensure that this extensions's reflection is linked into
1557 // the binary:
1558 //
1559 // google::protobuf::LinkExtensionReflection(Foo::my_extension);
1560 //
1561 // This will ensure that the following lookup will succeed:
1562 //
1563 // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
1564 //
1565 // This is often relevant for parsing extensions in text mode.
1566 //
1567 // As a side-effect, it will also guarantee that anything else from the same
1568 // .proto file will also be available for lookup in the generated pool.
1569 //
1570 // This function does not actually register the extension, so it does not need
1571 // to be called before the lookup. However it does need to occur in a function
1572 // that cannot be stripped from the binary (ie. it must be reachable from main).
1573 //
1574 // Best practice is to call this function as close as possible to where the
1575 // reflection is actually needed. This function is very cheap to call, so you
1576 // should not need to worry about its runtime overhead except in tight loops (on
1577 // x86-64 it compiles into two "mov" instructions).
1578 template <typename ExtendeeType, typename TypeTraitsType,
1579 internal::FieldType field_type, bool is_packed>
LinkExtensionReflection(const google::protobuf::internal::ExtensionIdentifier<ExtendeeType,TypeTraitsType,field_type,is_packed> & extension)1580 void LinkExtensionReflection(
1581 const google::protobuf::internal::ExtensionIdentifier<
1582 ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
1583 internal::StrongReference(extension);
1584 }
1585
1586 } // namespace protobuf
1587 } // namespace google
1588
1589 #include <google/protobuf/port_undef.inc>
1590
1591 #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
1592