• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2    data. */
3 
4 /* By Rod Smith, initial coding January to February, 2009 */
5 
6 /* This program is copyright (c) 2009-2024 by Roderick W. Smith. It is distributed
7   under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8 
9 #define __STDC_LIMIT_MACROS
10 #ifndef __STDC_CONSTANT_MACROS
11 #define __STDC_CONSTANT_MACROS
12 #endif
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <fcntl.h>
18 #include <string.h>
19 #include <math.h>
20 #include <time.h>
21 #include <sys/stat.h>
22 #include <errno.h>
23 #include <iostream>
24 #include <algorithm>
25 #include "crc32.h"
26 #include "gpt.h"
27 #include "bsd.h"
28 #include "support.h"
29 #include "parttypes.h"
30 #include "attributes.h"
31 #include "diskio.h"
32 
33 using namespace std;
34 
35 #ifdef __FreeBSD__
36 #define log2(x) (log(x) / M_LN2)
37 #endif // __FreeBSD__
38 
39 #ifdef _MSC_VER
40 #define log2(x) (log((double) x) / log(2.0))
41 #endif // Microsoft Visual C++
42 
43 #ifdef EFI
44 // in UEFI mode MMX registers are not yet available so using the
45 // x86_64 ABI to move "double" values around is not an option.
46 #ifdef log2
47 #undef log2
48 #endif
49 #define log2(x) log2_32( x )
log2_32(uint32_t v)50 static inline uint32_t log2_32(uint32_t v) {
51    int r = -1;
52    while (v >= 1) {
53       r++;
54       v >>= 1;
55    }
56    return r;
57 }
58 #endif
59 
60 /****************************************
61  *                                      *
62  * GPTData class and related structures *
63  *                                      *
64  ****************************************/
65 
66 // Default constructor
GPTData(void)67 GPTData::GPTData(void) {
68    blockSize = SECTOR_SIZE; // set a default
69    physBlockSize = 0; // 0 = can't be determined
70    diskSize = 0;
71    partitions = NULL;
72    state = gpt_valid;
73    device = "";
74    justLooking = 0;
75    mainCrcOk = 0;
76    secondCrcOk = 0;
77    mainPartsCrcOk = 0;
78    secondPartsCrcOk = 0;
79    apmFound = 0;
80    bsdFound = 0;
81    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
82    beQuiet = 0;
83    whichWasUsed = use_new;
84    mainHeader.numParts = 0;
85    mainHeader.firstUsableLBA = 0;
86    mainHeader.lastUsableLBA = 0;
87    numParts = 0;
88    SetGPTSize(NUM_GPT_ENTRIES);
89    // Initialize CRC functions...
90    chksum_crc32gentab();
91 } // GPTData default constructor
92 
GPTData(const GPTData & orig)93 GPTData::GPTData(const GPTData & orig) {
94    uint32_t i;
95 
96    if (&orig != this) {
97       mainHeader = orig.mainHeader;
98       numParts = orig.numParts;
99       secondHeader = orig.secondHeader;
100       protectiveMBR = orig.protectiveMBR;
101       device = orig.device;
102       blockSize = orig.blockSize;
103       physBlockSize = orig.physBlockSize;
104       diskSize = orig.diskSize;
105       state = orig.state;
106       justLooking = orig.justLooking;
107       mainCrcOk = orig.mainCrcOk;
108       secondCrcOk = orig.secondCrcOk;
109       mainPartsCrcOk = orig.mainPartsCrcOk;
110       secondPartsCrcOk = orig.secondPartsCrcOk;
111       apmFound = orig.apmFound;
112       bsdFound = orig.bsdFound;
113       sectorAlignment = orig.sectorAlignment;
114       beQuiet = orig.beQuiet;
115       whichWasUsed = orig.whichWasUsed;
116 
117       myDisk.OpenForRead(orig.myDisk.GetName());
118 
119       delete[] partitions;
120       partitions = new GPTPart [numParts];
121       if (partitions == NULL) {
122          cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
123               << "Terminating!\n";
124          exit(1);
125       } // if
126       for (i = 0; i < numParts; i++) {
127          partitions[i] = orig.partitions[i];
128       } // for
129    } // if
130 } // GPTData copy constructor
131 
132 // The following constructor loads GPT data from a device file
GPTData(string filename)133 GPTData::GPTData(string filename) {
134    blockSize = SECTOR_SIZE; // set a default
135    diskSize = 0;
136    partitions = NULL;
137    state = gpt_invalid;
138    device = "";
139    justLooking = 0;
140    mainCrcOk = 0;
141    secondCrcOk = 0;
142    mainPartsCrcOk = 0;
143    secondPartsCrcOk = 0;
144    apmFound = 0;
145    bsdFound = 0;
146    sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
147    beQuiet = 0;
148    whichWasUsed = use_new;
149    mainHeader.numParts = 0;
150    mainHeader.lastUsableLBA = 0;
151    numParts = 0;
152    // Initialize CRC functions...
153    chksum_crc32gentab();
154    if (!LoadPartitions(filename))
155       exit(2);
156 } // GPTData(string filename) constructor
157 
158 // Destructor
~GPTData(void)159 GPTData::~GPTData(void) {
160    delete[] partitions;
161 } // GPTData destructor
162 
163 // Assignment operator
operator =(const GPTData & orig)164 GPTData & GPTData::operator=(const GPTData & orig) {
165    uint32_t i;
166 
167    if (&orig != this) {
168       mainHeader = orig.mainHeader;
169       numParts = orig.numParts;
170       secondHeader = orig.secondHeader;
171       protectiveMBR = orig.protectiveMBR;
172       device = orig.device;
173       blockSize = orig.blockSize;
174       physBlockSize = orig.physBlockSize;
175       diskSize = orig.diskSize;
176       state = orig.state;
177       justLooking = orig.justLooking;
178       mainCrcOk = orig.mainCrcOk;
179       secondCrcOk = orig.secondCrcOk;
180       mainPartsCrcOk = orig.mainPartsCrcOk;
181       secondPartsCrcOk = orig.secondPartsCrcOk;
182       apmFound = orig.apmFound;
183       bsdFound = orig.bsdFound;
184       sectorAlignment = orig.sectorAlignment;
185       beQuiet = orig.beQuiet;
186       whichWasUsed = orig.whichWasUsed;
187 
188       myDisk.OpenForRead(orig.myDisk.GetName());
189 
190       delete[] partitions;
191       partitions = new GPTPart [numParts];
192       if (partitions == NULL) {
193          cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
194               << "Terminating!\n";
195          exit(1);
196       } // if
197       for (i = 0; i < numParts; i++) {
198          partitions[i] = orig.partitions[i];
199       } // for
200    } // if
201 
202    return *this;
203 } // GPTData::operator=()
204 
205 /*********************************************************************
206  *                                                                   *
207  * Begin functions that verify data, or that adjust the verification *
208  * information (compute CRCs, rebuild headers)                       *
209  *                                                                   *
210  *********************************************************************/
211 
212 // Perform detailed verification, reporting on any problems found, but
213 // do *NOT* recover from these problems. Returns the total number of
214 // problems identified.
Verify(void)215 int GPTData::Verify(void) {
216    int problems = 0, alignProbs = 0;
217    uint32_t i, numSegments, testAlignment = sectorAlignment;
218    uint64_t totalFree, largestSegment;
219 
220    // First, check for CRC errors in the GPT data....
221    if (!mainCrcOk) {
222       problems++;
223       cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
224            << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
225            << "header ('b' on the recovery & transformation menu). This report may be a false\n"
226            << "alarm if you've already corrected other problems.\n";
227    } // if
228    if (!mainPartsCrcOk) {
229       problems++;
230       cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
231            << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
232            << "transformation menu). This report may be a false alarm if you've already\n"
233            << "corrected other problems.\n";
234    } // if
235    if (!secondCrcOk) {
236       problems++;
237       cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
238            << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
239            << "header ('d' on the recovery & transformation menu). This report may be a false\n"
240            << "alarm if you've already corrected other problems.\n";
241    } // if
242    if (!secondPartsCrcOk) {
243       problems++;
244       cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
245            << "be corrupt. This program will automatically create a new backup partition\n"
246            << "table when you save your partitions.\n";
247    } // if
248 
249    // Now check that the main and backup headers both point to themselves....
250    if (mainHeader.currentLBA != 1) {
251       problems++;
252       cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
253            << "is being automatically corrected, but it may be a symptom of more serious\n"
254            << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
255       mainHeader.currentLBA = 1;
256    } // if
257    if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
258       problems++;
259       cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
260            << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
261            << "option on the experts' menu to adjust the secondary header's and partition\n"
262            << "table's locations.\n";
263    } // if
264 
265    // Now check that critical main and backup GPT entries match each other
266    if (mainHeader.currentLBA != secondHeader.backupLBA) {
267       problems++;
268       cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
269            << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
270            << secondHeader.backupLBA << ").\n";
271    } // if
272    if (mainHeader.backupLBA != secondHeader.currentLBA) {
273       problems++;
274       cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
275            << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
276            << secondHeader.currentLBA << ").\n"
277            << "The 'e' option on the experts' menu may fix this problem.\n";
278    } // if
279    if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
280       problems++;
281       cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
282            << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
283            << secondHeader.firstUsableLBA << ")\n";
284    } // if
285    if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
286       problems++;
287       cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
288            << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
289            << secondHeader.lastUsableLBA << ")\n"
290            << "The 'e' option on the experts' menu can probably fix this problem.\n";
291    } // if
292    if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
293       problems++;
294       cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
295            << ") doesn't\nmatch the backup GPT header's disk GUID ("
296            << secondHeader.diskGUID << ")\n"
297            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
298            << "select one or the other header.\n";
299    } // if
300    if (mainHeader.numParts != secondHeader.numParts) {
301       problems++;
302       cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
303            << ") doesn't\nmatch the backup GPT header's number of partitions ("
304            << secondHeader.numParts << ")\n"
305            << "Resizing the partition table ('s' on the experts' menu) may help.\n";
306    } // if
307    if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
308       problems++;
309       cout << "\nProblem: main GPT header's size of partition entries ("
310            << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
311            << "match the backup GPT header's size of partition entries ("
312            << secondHeader.sizeOfPartitionEntries << ")\n"
313            << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
314            << "select one or the other header.\n";
315    } // if
316 
317    // Now check for a few other miscellaneous problems...
318    // Check that the disk size will hold the data...
319    if (mainHeader.backupLBA >= diskSize) {
320       problems++;
321       cout << "\nProblem: Disk is too small to hold all the data!\n"
322            << "(Disk size is " << diskSize << " sectors, needs to be "
323            << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
324            << "The 'e' option on the experts' menu may fix this problem.\n";
325    } // if
326 
327    // Check the main and backup partition tables for overlap with things and unusual gaps
328    if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() > mainHeader.firstUsableLBA) {
329        problems++;
330        cout << "\nProblem: Main partition table extends past the first usable LBA.\n"
331             << "Using 'j' on the experts' menu may enable fixing this problem.\n";
332    } // if
333    if (mainHeader.partitionEntriesLBA < 2) {
334        problems++;
335        cout << "\nProblem: Main partition table appears impossibly early on the disk.\n"
336             << "Using 'j' on the experts' menu may enable fixing this problem.\n";
337    } // if
338    if (secondHeader.partitionEntriesLBA + GetTableSizeInSectors() > secondHeader.currentLBA) {
339        problems++;
340        cout << "\nProblem: The backup partition table overlaps the backup header.\n"
341             << "Using 'e' on the experts' menu may fix this problem.\n";
342    } // if
343    if (mainHeader.partitionEntriesLBA != 2) {
344        cout << "\nWarning: There is a gap between the main metadata (sector 1) and the main\n"
345             << "partition table (sector " << mainHeader.partitionEntriesLBA
346             << "). This is helpful in some exotic configurations,\n"
347             << "but is generally ill-advised. Using 'j' on the experts' menu can adjust this\n"
348             << "gap.\n";
349    } // if
350    if (secondHeader.partitionEntriesLBA != diskSize - GetTableSizeInSectors() - 1) {
351        cout << "\nWarning: There is a gap between the secondary partition table (ending at sector\n"
352             << secondHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1
353             << ") and the secondary metadata (sector " << mainHeader.backupLBA << ").\n"
354             << "This is helpful in some exotic configurations, but is generally ill-advised.\n"
355             << "Using 'k' on the experts' menu can adjust this gap.\n";
356    } // if
357    if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() != mainHeader.firstUsableLBA) {
358        cout << "\nWarning: There is a gap between the main partition table (ending sector "
359             << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << ")\n"
360             << "and the first usable sector (" << mainHeader.firstUsableLBA << "). This is helpful in some exotic configurations,\n"
361             << "but is unusual. The util-linux fdisk program often creates disks like this.\n"
362             << "Using 'j' on the experts' menu can adjust this gap.\n";
363    } // if
364 
365    if (mainHeader.sizeOfPartitionEntries * mainHeader.numParts < 16384) {
366       cout << "\nWarning: The size of the partition table (" << mainHeader.sizeOfPartitionEntries * mainHeader.numParts
367            << " bytes) is less than the minimum\n"
368            << "required by the GPT specification. Most OSes and tools seem to work fine on\n"
369            << "such disks, but this is a violation of the GPT specification and so may cause\n"
370            << "problems.\n";
371    } // if
372 
373    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
374       problems++;
375       cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
376            << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
377            << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
378            << "The 'e' option on the experts' menu will probably fix this problem\n";
379    }
380 
381    // Check for overlapping partitions....
382    problems += FindOverlaps();
383 
384    // Check for insane partitions (start after end, hugely big, etc.)
385    problems += FindInsanePartitions();
386 
387    // Check for mismatched MBR and GPT partitions...
388    problems += FindHybridMismatches();
389 
390    // Check for MBR-specific problems....
391    problems += VerifyMBR();
392 
393    // Check for a 0xEE protective partition that's marked as active....
394    if (protectiveMBR.IsEEActive()) {
395       cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
396            << "technically a violation of the GPT specification, and can cause some EFIs to\n"
397            << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
398            << "computers. You can clear this flag by creating a fresh protective MBR using\n"
399            << "the 'n' option on the experts' menu.\n";
400    }
401 
402    // Verify that partitions don't run into GPT data areas....
403    problems += CheckGPTSize();
404 
405    if (!protectiveMBR.DoTheyFit()) {
406       cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
407            << "fresh protective or hybrid MBR is recommended.\n";
408       problems++;
409    }
410 
411    // Check that partitions are aligned on proper boundaries (for WD Advanced
412    // Format and similar disks)....
413    if ((physBlockSize != 0) && (blockSize != 0))
414       testAlignment = physBlockSize / blockSize;
415    testAlignment = max(testAlignment, sectorAlignment);
416    if (testAlignment == 0) // Should not happen; just being paranoid.
417       testAlignment = sectorAlignment;
418    for (i = 0; i < numParts; i++) {
419       if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % testAlignment) != 0) {
420          cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
421               << testAlignment << "-sector boundary. This may\nresult "
422               << "in degraded performance on some modern (2009 and later) hard disks.\n";
423          alignProbs++;
424       } // if
425       if ((partitions[i].IsUsed()) && ((partitions[i].GetLastLBA() + 1) % testAlignment) != 0) {
426          cout << "\nCaution: Partition " << i + 1 << " doesn't end on a "
427               << testAlignment << "-sector boundary. This may\nresult "
428               << "in problems with some disk encryption tools.\n";
429       } // if
430    } // for
431    if (alignProbs > 0)
432       cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
433       << "for information on disk alignment.\n";
434 
435    // Now compute available space, but only if no problems found, since
436    // problems could affect the results
437    if (problems == 0) {
438       totalFree = FindFreeBlocks(&numSegments, &largestSegment);
439       cout << "\nNo problems found. " << totalFree << " free sectors ("
440            << BytesToIeee(totalFree, blockSize) << ") available in "
441            << numSegments << "\nsegments, the largest of which is "
442            << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
443            << ") in size.\n";
444    } else {
445       cout << "\nIdentified " << problems << " problems!\n";
446    } // if/else
447 
448    return (problems);
449 } // GPTData::Verify()
450 
451 // Checks to see if the GPT tables overrun existing partitions; if they
452 // do, issues a warning but takes no action. Returns number of problems
453 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)454 int GPTData::CheckGPTSize(void) {
455    uint64_t overlap, firstUsedBlock, lastUsedBlock;
456    uint32_t i;
457    int numProbs = 0;
458 
459    // first, locate the first & last used blocks
460    firstUsedBlock = UINT64_MAX;
461    lastUsedBlock = 0;
462    for (i = 0; i < numParts; i++) {
463       if (partitions[i].IsUsed()) {
464          if (partitions[i].GetFirstLBA() < firstUsedBlock)
465             firstUsedBlock = partitions[i].GetFirstLBA();
466          if (partitions[i].GetLastLBA() > lastUsedBlock) {
467             lastUsedBlock = partitions[i].GetLastLBA();
468          } // if
469       } // if
470    } // for
471 
472    // If the disk size is 0 (the default), then it means that various
473    // variables aren't yet set, so the below tests will be useless;
474    // therefore we should skip everything
475    if (diskSize != 0) {
476       if (mainHeader.firstUsableLBA > firstUsedBlock) {
477          overlap = mainHeader.firstUsableLBA - firstUsedBlock;
478          cout << "Warning! Main partition table overlaps the first partition by "
479               << overlap << " blocks!\n";
480          if (firstUsedBlock > 2) {
481             cout << "Try reducing the partition table size by " << overlap * 4
482                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
483          } else {
484             cout << "You will need to delete this partition or resize it in another utility.\n";
485          } // if/else
486          numProbs++;
487       } // Problem at start of disk
488       if (mainHeader.lastUsableLBA < lastUsedBlock) {
489          overlap = lastUsedBlock - mainHeader.lastUsableLBA;
490          cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
491               << overlap << " blocks!\n";
492          if (lastUsedBlock > (diskSize - 2)) {
493             cout << "You will need to delete this partition or resize it in another utility.\n";
494          } else {
495             cout << "Try reducing the partition table size by " << overlap * 4
496                  << " entries.\n(Use the 's' item on the experts' menu.)\n";
497          } // if/else
498          numProbs++;
499       } // Problem at end of disk
500    } // if (diskSize != 0)
501    return numProbs;
502 } // GPTData::CheckGPTSize()
503 
504 // Check the validity of the GPT header. Returns 1 if the main header
505 // is valid, 2 if the backup header is valid, 3 if both are valid, and
506 // 0 if neither is valid. Note that this function checks the GPT signature,
507 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)508 int GPTData::CheckHeaderValidity(void) {
509    int valid = 3;
510 
511    cout.setf(ios::uppercase);
512    cout.fill('0');
513 
514    // Note: failed GPT signature checks produce no error message because
515    // a message is displayed in the ReversePartitionBytes() function
516    if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
517       valid -= 1;
518    } else if ((mainHeader.revision != 0x00010000) && valid) {
519       valid -= 1;
520       cout << "Unsupported GPT version in main header; read 0x";
521       cout.width(8);
522       cout << hex << mainHeader.revision << ", should be\n0x";
523       cout.width(8);
524       cout << UINT32_C(0x00010000) << dec << "\n";
525    } // if/else/if
526 
527    if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
528       valid -= 2;
529    } else if ((secondHeader.revision != 0x00010000) && valid) {
530       valid -= 2;
531       cout << "Unsupported GPT version in backup header; read 0x";
532       cout.width(8);
533       cout << hex << secondHeader.revision << ", should be\n0x";
534       cout.width(8);
535       cout << UINT32_C(0x00010000) << dec << "\n";
536    } // if/else/if
537 
538    // Check for an Apple disk signature
539    if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
540         (mainHeader.signature << 32) == APM_SIGNATURE2) {
541       apmFound = 1; // Will display warning message later
542    } // if
543    cout.fill(' ');
544 
545    return valid;
546 } // GPTData::CheckHeaderValidity()
547 
548 // Check the header CRC to see if it's OK...
549 // Note: Must be called with header in platform-ordered byte order.
550 // Returns 1 if header's computed CRC matches the stored value, 0 if the
551 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)552 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
553    uint32_t oldCRC, newCRC, hSize;
554    uint8_t *temp;
555 
556    // Back up old header CRC and then blank it, since it must be 0 for
557    // computation to be valid
558    oldCRC = header->headerCRC;
559    header->headerCRC = UINT32_C(0);
560 
561    hSize = header->headerSize;
562 
563    if (IsLittleEndian() == 0)
564       ReverseHeaderBytes(header);
565 
566    if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
567       if (warn) {
568          cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
569          cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
570       } // if
571       hSize = HEADER_SIZE;
572    } else if ((hSize > sizeof(GPTHeader)) && warn) {
573       cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
574       cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
575            << "which may result in a CRC false alarm.\n";
576    } // if/elseif
577    temp = new uint8_t[hSize];
578    if (temp != NULL) {
579       memset(temp, 0, hSize);
580       if (hSize < sizeof(GPTHeader))
581          memcpy(temp, header, hSize);
582       else
583          memcpy(temp, header, sizeof(GPTHeader));
584 
585       newCRC = chksum_crc32((unsigned char*) temp, hSize);
586       delete[] temp;
587    } else {
588       cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
589       exit(1);
590    }
591    if (IsLittleEndian() == 0)
592       ReverseHeaderBytes(header);
593    header->headerCRC = oldCRC;
594    return (oldCRC == newCRC);
595 } // GPTData::CheckHeaderCRC()
596 
597 // Recompute all the CRCs. Must be called before saving if any changes have
598 // been made. Must be called on platform-ordered data (this function reverses
599 // byte order and then undoes that reversal.)
RecomputeCRCs(void)600 void GPTData::RecomputeCRCs(void) {
601    uint32_t crc, hSize;
602    int littleEndian;
603 
604    // If the header size is bigger than the GPT header data structure, reset it;
605    // otherwise, set both header sizes to whatever the main one is....
606    if (mainHeader.headerSize > sizeof(GPTHeader))
607       hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
608    else
609       hSize = secondHeader.headerSize = mainHeader.headerSize;
610 
611    if ((littleEndian = IsLittleEndian()) == 0) {
612       ReversePartitionBytes();
613       ReverseHeaderBytes(&mainHeader);
614       ReverseHeaderBytes(&secondHeader);
615    } // if
616 
617    // Compute CRC of partition tables & store in main and secondary headers
618    crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
619    mainHeader.partitionEntriesCRC = crc;
620    secondHeader.partitionEntriesCRC = crc;
621    if (littleEndian == 0) {
622       ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
623       ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
624    } // if
625 
626    // Zero out GPT headers' own CRCs (required for correct computation)
627    mainHeader.headerCRC = 0;
628    secondHeader.headerCRC = 0;
629 
630    crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
631    if (littleEndian == 0)
632       ReverseBytes(&crc, 4);
633    mainHeader.headerCRC = crc;
634    crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
635    if (littleEndian == 0)
636       ReverseBytes(&crc, 4);
637    secondHeader.headerCRC = crc;
638 
639    if (littleEndian == 0) {
640       ReverseHeaderBytes(&mainHeader);
641       ReverseHeaderBytes(&secondHeader);
642       ReversePartitionBytes();
643    } // if
644 } // GPTData::RecomputeCRCs()
645 
646 // Rebuild the main GPT header, using the secondary header as a model.
647 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)648 void GPTData::RebuildMainHeader(void) {
649    mainHeader.signature = GPT_SIGNATURE;
650    mainHeader.revision = secondHeader.revision;
651    mainHeader.headerSize = secondHeader.headerSize;
652    mainHeader.headerCRC = UINT32_C(0);
653    mainHeader.reserved = secondHeader.reserved;
654    mainHeader.currentLBA = secondHeader.backupLBA;
655    mainHeader.backupLBA = secondHeader.currentLBA;
656    mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
657    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
658    mainHeader.diskGUID = secondHeader.diskGUID;
659    mainHeader.numParts = secondHeader.numParts;
660    mainHeader.partitionEntriesLBA = secondHeader.firstUsableLBA - GetTableSizeInSectors();
661    mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
662    mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
663    memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
664    mainCrcOk = secondCrcOk;
665    SetGPTSize(mainHeader.numParts, 0);
666 } // GPTData::RebuildMainHeader()
667 
668 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)669 void GPTData::RebuildSecondHeader(void) {
670    secondHeader.signature = GPT_SIGNATURE;
671    secondHeader.revision = mainHeader.revision;
672    secondHeader.headerSize = mainHeader.headerSize;
673    secondHeader.headerCRC = UINT32_C(0);
674    secondHeader.reserved = mainHeader.reserved;
675    secondHeader.currentLBA = mainHeader.backupLBA;
676    secondHeader.backupLBA = mainHeader.currentLBA;
677    secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
678    secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
679    secondHeader.diskGUID = mainHeader.diskGUID;
680    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
681    secondHeader.numParts = mainHeader.numParts;
682    secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
683    secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
684    memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
685    secondCrcOk = mainCrcOk;
686    SetGPTSize(secondHeader.numParts, 0);
687 } // GPTData::RebuildSecondHeader()
688 
689 // Search for hybrid MBR entries that have no corresponding GPT partition.
690 // Returns number of such mismatches found
FindHybridMismatches(void)691 int GPTData::FindHybridMismatches(void) {
692    int i, found, numFound = 0;
693    uint32_t j;
694    uint64_t mbrFirst, mbrLast;
695 
696    for (i = 0; i < 4; i++) {
697       if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
698          j = 0;
699          found = 0;
700          mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
701          mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
702          do {
703             if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
704                 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
705                found = 1;
706             j++;
707          } while ((!found) && (j < numParts));
708          if (!found) {
709             numFound++;
710             cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
711                  << i + 1 << ", of type 0x";
712             cout.fill('0');
713             cout.setf(ios::uppercase);
714             cout.width(2);
715             cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
716                  << "has no corresponding GPT partition! You may continue, but this condition\n"
717                  << "might cause data loss in the future!\a\n" << dec;
718             cout.fill(' ');
719          } // if
720       } // if
721    } // for
722    return numFound;
723 } // GPTData::FindHybridMismatches
724 
725 // Find overlapping partitions and warn user about them. Returns number of
726 // overlapping partitions.
727 // Returns number of overlapping segments found.
FindOverlaps(void)728 int GPTData::FindOverlaps(void) {
729    int problems = 0;
730    uint32_t i, j;
731 
732    for (i = 1; i < numParts; i++) {
733       for (j = 0; j < i; j++) {
734          if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
735              (partitions[i].DoTheyOverlap(partitions[j]))) {
736             problems++;
737             cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
738             cout << "  Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
739                  << " to " << partitions[i].GetLastLBA() << "\n";
740             cout << "  Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
741                  << " to " << partitions[j].GetLastLBA() << "\n";
742          } // if
743       } // for j...
744    } // for i...
745    return problems;
746 } // GPTData::FindOverlaps()
747 
748 // Find partitions that are insane -- they start after they end or are too
749 // big for the disk. (The latter should duplicate detection of overlaps
750 // with GPT backup data structures, but better to err on the side of
751 // redundant tests than to miss something....)
752 // Returns number of problems found.
FindInsanePartitions(void)753 int GPTData::FindInsanePartitions(void) {
754    uint32_t i;
755    int problems = 0;
756 
757    for (i = 0; i < numParts; i++) {
758       if (partitions[i].IsUsed()) {
759          if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
760             problems++;
761             cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
762          } // if
763          if (partitions[i].GetLastLBA() >= diskSize) {
764             problems++;
765             cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
766          } // if
767       } // if
768    } // for
769    return problems;
770 } // GPTData::FindInsanePartitions(void)
771 
772 
773 /******************************************************************
774  *                                                                *
775  * Begin functions that load data from disk or save data to disk. *
776  *                                                                *
777  ******************************************************************/
778 
779 // Change the filename associated with the GPT. Used for duplicating
780 // the partition table to a new disk and saving backups.
781 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)782 int GPTData::SetDisk(const string & deviceFilename) {
783    int err, allOK = 1;
784 
785    device = deviceFilename;
786    if (allOK && myDisk.OpenForRead(deviceFilename)) {
787       // store disk information....
788       diskSize = myDisk.DiskSize(&err);
789       blockSize = (uint32_t) myDisk.GetBlockSize();
790       physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
791    } // if
792    protectiveMBR.SetDisk(&myDisk);
793    protectiveMBR.SetDiskSize(diskSize);
794    protectiveMBR.SetBlockSize(blockSize);
795    return allOK;
796 } // GPTData::SetDisk()
797 
798 // Scan for partition data. This function loads the MBR data (regular MBR or
799 // protective MBR) and loads BSD disklabel data (which is probably invalid).
800 // It also looks for APM data, forces a load of GPT data, and summarizes
801 // the results.
PartitionScan(void)802 void GPTData::PartitionScan(void) {
803    BSDData bsdDisklabel;
804 
805    // Read the MBR & check for BSD disklabel
806    protectiveMBR.ReadMBRData(&myDisk);
807    bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
808 
809    // Load the GPT data, whether or not it's valid
810    ForceLoadGPTData();
811 
812    // Some tools create a 0xEE partition that's too big. If this is detected,
813    // normalize it....
814    if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
815       if (!beQuiet) {
816          cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
817       } // if
818       protectiveMBR.MakeProtectiveMBR();
819    } // if
820 
821    if (!beQuiet) {
822       cout << "Partition table scan:\n";
823       protectiveMBR.ShowState();
824       bsdDisklabel.ShowState();
825       ShowAPMState(); // Show whether there's an Apple Partition Map present
826       ShowGPTState(); // Show GPT status
827       cout << "\n";
828    } // if
829 
830    if (apmFound) {
831       cout << "\n*******************************************************************\n"
832            << "This disk appears to contain an Apple-format (APM) partition table!\n";
833       if (!justLooking) {
834          cout << "It will be destroyed if you continue!\n";
835       } // if
836       cout << "*******************************************************************\n\n\a";
837    } // if
838 } // GPTData::PartitionScan()
839 
840 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)841 int GPTData::LoadPartitions(const string & deviceFilename) {
842    BSDData bsdDisklabel;
843    int err, allOK = 1;
844    MBRValidity mbrState;
845 
846     if (!justLooking) {
847         if (myDisk.OpenForRead(deviceFilename)) {
848             err = myDisk.OpenForWrite(deviceFilename);
849             if (err == 0) {
850                 cout << "\aNOTE: Write test failed with error number " << errno
851                      << ". It will be impossible to save\nchanges to this disk's partition table!\n";
852 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
853                 cout << "You may be able to enable writes by exiting this program, typing\n"
854                  << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
855                  << "program.\n";
856 #endif
857 #if defined (__APPLE__)
858                 cout << "You may need to deactivate System Integrity Protection to use this program. See\n"
859                  << "https://www.quora.com/How-do-I-turn-off-the-rootless-in-OS-X-El-Capitan-10-11\n"
860                  << "for more information.\n";
861 #endif
862                 cout << "\n";
863             } // if
864             myDisk.Close(); // Close and re-open read-only in case of bugs
865         } else allOK = 0; // if
866     }
867 
868    if (allOK && myDisk.OpenForRead(deviceFilename)) {
869       // store disk information....
870       diskSize = myDisk.DiskSize(&err);
871       blockSize = (uint32_t) myDisk.GetBlockSize();
872       physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
873       device = deviceFilename;
874       PartitionScan(); // Check for partition types, load GPT, & print summary
875 
876       whichWasUsed = UseWhichPartitions();
877       switch (whichWasUsed) {
878          case use_mbr:
879             XFormPartitions();
880             break;
881          case use_bsd:
882             bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
883 //            bsdDisklabel.DisplayBSDData();
884             ClearGPTData();
885             protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
886             XFormDisklabel(&bsdDisklabel);
887             break;
888          case use_gpt:
889             mbrState = protectiveMBR.GetValidity();
890             if ((mbrState == invalid) || (mbrState == mbr))
891                protectiveMBR.MakeProtectiveMBR();
892             break;
893          case use_new:
894             ClearGPTData();
895             protectiveMBR.MakeProtectiveMBR();
896             break;
897          case use_abort:
898             allOK = 0;
899             cerr << "Invalid partition data!\n";
900             break;
901       } // switch
902 
903       if (allOK) {
904          CheckGPTSize();
905          // Below is unlikely to happen on real disks, but could happen if
906          // the user is manipulating a truncated image file....
907          if (diskSize <= GetTableSizeInSectors() * 2 + 3) {
908              allOK = 0;
909              cout << "Disk is too small to hold GPT data (" << diskSize
910                   << " sectors)! Aborting!\n";
911          }
912       }
913       myDisk.Close();
914       ComputeAlignment();
915    } else {
916       allOK = 0;
917    } // if/else
918    return (allOK);
919 } // GPTData::LoadPartitions()
920 
921 // Loads the GPT, as much as possible. Returns 1 if this seems to have
922 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)923 int GPTData::ForceLoadGPTData(void) {
924    int allOK, validHeaders, loadedTable = 1;
925 
926    allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
927 
928    if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
929       allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
930    } else {
931       allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
932       if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
933          cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
934               << "secondary header from the last sector of the disk! You should use 'v' to\n"
935               << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
936               << "the disk.\n";
937    } // if/else
938    if (!allOK)
939       state = gpt_invalid;
940 
941    // Return valid headers code: 0 = both headers bad; 1 = main header
942    // good, backup bad; 2 = backup header good, main header bad;
943    // 3 = both headers good. Note these codes refer to valid GPT
944    // signatures, version numbers, and CRCs.
945    validHeaders = CheckHeaderValidity();
946 
947    // Read partitions (from primary array)
948    if (validHeaders > 0) { // if at least one header is OK....
949       // GPT appears to be valid....
950       state = gpt_valid;
951 
952       // We're calling the GPT valid, but there's a possibility that one
953       // of the two headers is corrupt. If so, use the one that seems to
954       // be in better shape to regenerate the bad one
955       if (validHeaders == 1) { // valid main header, invalid backup header
956          cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
957               << "backup header from main header.\n\n";
958          RebuildSecondHeader();
959          state = gpt_corrupt;
960          secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
961       } else if (validHeaders == 2) { // valid backup header, invalid main header
962          cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
963               << "from backup!\n\n";
964          RebuildMainHeader();
965          state = gpt_corrupt;
966          mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
967       } // if/else/if
968 
969       // Figure out which partition table to load....
970       // Load the main partition table, if its header's CRC is OK
971       if (validHeaders != 2) {
972          if (LoadMainTable() == 0)
973             allOK = 0;
974       } else { // bad main header CRC and backup header CRC is OK
975          state = gpt_corrupt;
976          if (LoadSecondTableAsMain()) {
977             loadedTable = 2;
978             cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
979          } else { // backup table bad, bad main header CRC, but try main table in desperation....
980             if (LoadMainTable() == 0) {
981                allOK = 0;
982                loadedTable = 0;
983                cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
984             } // if
985          } // if/else (LoadSecondTableAsMain())
986       } // if/else (load partition table)
987 
988       if (loadedTable == 1)
989          secondPartsCrcOk = CheckTable(&secondHeader);
990       else if (loadedTable == 2)
991          mainPartsCrcOk = CheckTable(&mainHeader);
992       else
993          mainPartsCrcOk = secondPartsCrcOk = 0;
994 
995       // Problem with main partition table; if backup is OK, use it instead....
996       if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
997          state = gpt_corrupt;
998          allOK = allOK && LoadSecondTableAsMain();
999          mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
1000          cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
1001               << "partition table\ninstead of main partition table!\n\n";
1002       } // if */
1003 
1004       // Check for valid CRCs and warn if there are problems
1005       if ((validHeaders != 3) || (mainPartsCrcOk == 0) ||
1006            (secondPartsCrcOk == 0)) {
1007          cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n";
1008          // Show detail status of header and table
1009          if (validHeaders & 0x1)
1010             cerr << "Main header: OK\n";
1011          else
1012             cerr << "Main header: ERROR\n";
1013          if (validHeaders & 0x2)
1014             cerr << "Backup header: OK\n";
1015          else
1016             cerr << "Backup header: ERROR\n";
1017          if (mainPartsCrcOk)
1018             cerr << "Main partition table: OK\n";
1019          else
1020             cerr << "Main partition table: ERROR\n";
1021          if (secondPartsCrcOk)
1022             cerr << "Backup partition table: OK\n";
1023          else
1024             cerr << "Backup partition table: ERROR\n";
1025          cerr << "\n";
1026          state = gpt_corrupt;
1027       } // if
1028    } else {
1029       state = gpt_invalid;
1030    } // if/else
1031    return allOK;
1032 } // GPTData::ForceLoadGPTData()
1033 
1034 // Loads the partition table pointed to by the main GPT header. The
1035 // main GPT header in memory MUST be valid for this call to do anything
1036 // sensible!
1037 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)1038 int GPTData::LoadMainTable(void) {
1039    return LoadPartitionTable(mainHeader, myDisk);
1040 } // GPTData::LoadMainTable()
1041 
1042 // Load the second (backup) partition table as the primary partition
1043 // table. Used in repair functions, and when starting up if the main
1044 // partition table is damaged.
1045 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)1046 int GPTData::LoadSecondTableAsMain(void) {
1047    return LoadPartitionTable(secondHeader, myDisk);
1048 } // GPTData::LoadSecondTableAsMain()
1049 
1050 // Load a single GPT header (main or backup) from the specified disk device and
1051 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
1052 // value appropriately.
1053 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
1054 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)1055 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
1056    int allOK = 1;
1057    GPTHeader tempHeader;
1058 
1059    disk.Seek(sector);
1060    if (disk.Read(&tempHeader, 512) != 512) {
1061       cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
1062       allOK = 0;
1063    } // if
1064 
1065    // Reverse byte order, if necessary
1066    if (IsLittleEndian() == 0) {
1067       ReverseHeaderBytes(&tempHeader);
1068    } // if
1069    *crcOk = CheckHeaderCRC(&tempHeader);
1070 
1071    if (tempHeader.sizeOfPartitionEntries != sizeof(GPTPart)) {
1072       // Print the below warning only if the CRC is OK -- but correct the
1073       // problem either way. The warning is printed only on a valid CRC
1074       // because otherwise this warning will display inappropriately when
1075       // reading MBR disks. If the CRC is invalid, then a warning about
1076       // that will be shown later, so the user will still know that
1077       // something is wrong.
1078       if (*crcOk) {
1079          cerr << "Warning: Partition table header claims that the size of partition table\n";
1080          cerr << "entries is " << tempHeader.sizeOfPartitionEntries << " bytes, but this program ";
1081          cerr << " supports only " << sizeof(GPTPart) << "-byte entries.\n";
1082          cerr << "Adjusting accordingly, but partition table may be garbage.\n";
1083       }
1084       tempHeader.sizeOfPartitionEntries = sizeof(GPTPart);
1085    }
1086 
1087    if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
1088       allOK = SetGPTSize(tempHeader.numParts, 0);
1089    }
1090 
1091    *header = tempHeader;
1092    return allOK;
1093 } // GPTData::LoadHeader
1094 
1095 // Load a partition table (either main or secondary) from the specified disk,
1096 // using header as a reference for what to load. If sector != 0 (the default
1097 // is 0), loads from the specified sector; otherwise loads from the sector
1098 // indicated in header.
1099 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)1100 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
1101    uint32_t sizeOfParts, newCRC;
1102    int retval;
1103 
1104    if (header.sizeOfPartitionEntries != sizeof(GPTPart)) {
1105       cerr << "Error! GPT header contains invalid partition entry size!\n";
1106       retval = 0;
1107    } else if (disk.OpenForRead()) {
1108       if (sector == 0) {
1109          retval = disk.Seek(header.partitionEntriesLBA);
1110       } else {
1111          retval = disk.Seek(sector);
1112       } // if/else
1113       if (retval == 1)
1114          retval = SetGPTSize(header.numParts, 0);
1115       if (retval == 1) {
1116          sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
1117          if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
1118             cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
1119             retval = 0;
1120          } // if
1121          newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
1122          mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
1123          if (IsLittleEndian() == 0)
1124             ReversePartitionBytes();
1125          if (!mainPartsCrcOk) {
1126             cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
1127          } // if
1128       } else {
1129          cerr << "Error! Couldn't seek to partition table!\n";
1130       } // if/else
1131    } else {
1132       cerr << "Error! Couldn't open device " << device
1133            << " when reading partition table!\n";
1134       retval = 0;
1135    } // if/else
1136    return retval;
1137 } // GPTData::LoadPartitionsTable()
1138 
1139 // Check the partition table pointed to by header, but don't keep it
1140 // around.
1141 // Returns 1 if the CRC is OK & this table matches the one already in memory,
1142 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)1143 int GPTData::CheckTable(struct GPTHeader *header) {
1144    uint32_t sizeOfParts, newCRC;
1145    GPTPart *partsToCheck;
1146    GPTHeader *otherHeader;
1147    int allOK = 0;
1148 
1149    // Load partition table into temporary storage to check
1150    // its CRC and store the results, then discard this temporary
1151    // storage, since we don't use it in any but recovery operations
1152    if (myDisk.Seek(header->partitionEntriesLBA)) {
1153       partsToCheck = new GPTPart[header->numParts];
1154       sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
1155       if (partsToCheck == NULL) {
1156          cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1157          exit(1);
1158       } // if
1159       if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1160          cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1161       } else {
1162          newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1163          allOK = (newCRC == header->partitionEntriesCRC);
1164          if (header == &mainHeader)
1165             otherHeader = &secondHeader;
1166          else
1167             otherHeader = &mainHeader;
1168          if (newCRC != otherHeader->partitionEntriesCRC) {
1169             cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1170                  << "on the recovery & transformation menu to examine the two tables.\n\n";
1171             allOK = 0;
1172          } // if
1173       } // if/else
1174       delete[] partsToCheck;
1175    } // if
1176    return allOK;
1177 } // GPTData::CheckTable()
1178 
1179 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1180 // header later on the disk without asking for permission, if necessary, and
1181 // doesn't confirm the operation before writing. If quiet==0, asks permission
1182 // before moving the second header and asks for final confirmation of any
1183 // write.
1184 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1185 int GPTData::SaveGPTData(int quiet) {
1186    int allOK = 1, syncIt = 1;
1187    char answer;
1188 
1189    // First do some final sanity checks....
1190 
1191    // This test should only fail on read-only disks....
1192    if (justLooking) {
1193       cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1194       allOK = 0;
1195    } // if
1196 
1197    // Check that disk is really big enough to handle the second header...
1198    if (mainHeader.backupLBA >= diskSize) {
1199       cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1200            << "header, but other problems may occur!\n";
1201       MoveSecondHeaderToEnd();
1202    } // if
1203 
1204    // Is there enough space to hold the GPT headers and partition tables,
1205    // given the partition sizes?
1206    if (CheckGPTSize() > 0) {
1207       allOK = 0;
1208    } // if
1209 
1210    // Check that second header is properly placed. Warn and ask if this should
1211    // be corrected if the test fails....
1212    if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1213       if (quiet == 0) {
1214          cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1215               << "correct this problem? ";
1216          if (GetYN() == 'Y') {
1217             MoveSecondHeaderToEnd();
1218             cout << "Have moved second header and partition table to correct location.\n";
1219          } else {
1220             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1221          } // if correction requested
1222       } else { // Go ahead and do correction automatically
1223          MoveSecondHeaderToEnd();
1224       } // if/else quiet
1225    } // if
1226 
1227    if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1228       if (quiet == 0) {
1229          cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1230               << "this problem? ";
1231          if (GetYN() == 'Y') {
1232             MoveSecondHeaderToEnd();
1233             cout << "Have adjusted the second header and last usable sector value.\n";
1234          } else {
1235             cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1236          } // if correction requested
1237       } else { // go ahead and do correction automatically
1238          MoveSecondHeaderToEnd();
1239       } // if/else quiet
1240    } // if
1241 
1242    // Check for overlapping or insane partitions....
1243    if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1244       allOK = 0;
1245       cerr << "Aborting write operation!\n";
1246    } // if
1247 
1248    // Check that protective MBR fits, and warn if it doesn't....
1249    if (!protectiveMBR.DoTheyFit()) {
1250       cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1251            << "fresh protective or hybrid MBR is recommended.\n";
1252    }
1253 
1254    // Check for mismatched MBR and GPT data, but let it pass if found
1255    // (function displays warning message)
1256    FindHybridMismatches();
1257 
1258    RecomputeCRCs();
1259 
1260    if ((allOK) && (!quiet)) {
1261       cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1262            << "PARTITIONS!!\n\nDo you want to proceed? ";
1263       answer = GetYN();
1264       if (answer == 'Y') {
1265          cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1266       } else {
1267          allOK = 0;
1268       } // if/else
1269    } // if
1270 
1271    // Do it!
1272    if (allOK) {
1273       if (myDisk.OpenForWrite()) {
1274          // As per UEFI specs, write the secondary table and GPT first....
1275          allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1276          if (!allOK) {
1277             cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1278                  << "menu will resolve this problem.\n";
1279             syncIt = 0;
1280          } // if
1281 
1282          // Now write the secondary GPT header...
1283          allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1284 
1285          // Now write the main partition tables...
1286          allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1287 
1288          // Now write the main GPT header...
1289          allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1290 
1291          // To top it off, write the protective MBR...
1292          allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1293 
1294          // re-read the partition table
1295          // Note: Done even if some write operations failed, but not if all of them failed.
1296          // Done this way because I've received one problem report from a user one whose
1297          // system the MBR write failed but everything else was OK (on a GPT disk under
1298          // Windows), and the failure to sync therefore caused Windows to restore the
1299          // original partition table from its cache. OTOH, such restoration might be
1300          // desirable if the error occurs later; but that seems unlikely unless the initial
1301          // write fails....
1302          if (syncIt)
1303             myDisk.DiskSync();
1304 
1305          if (allOK) { // writes completed OK
1306             cout << "The operation has completed successfully.\n";
1307          } else {
1308             cerr << "Warning! An error was reported when writing the partition table! This error\n"
1309                  << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1310          } // if/else
1311 
1312          myDisk.Close();
1313       } else {
1314          cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1315               << errno << "! Aborting write!\n";
1316          allOK = 0;
1317       } // if/else
1318    } else {
1319       cout << "Aborting write of new partition table.\n";
1320    } // if
1321 
1322    return (allOK);
1323 } // GPTData::SaveGPTData()
1324 
1325 // Save GPT data to a backup file. This function does much less error
1326 // checking than SaveGPTData(). It can therefore preserve many types of
1327 // corruption for later analysis; however, it preserves only the MBR,
1328 // the main GPT header, the backup GPT header, and the main partition
1329 // table; it discards the backup partition table, since it should be
1330 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1331 int GPTData::SaveGPTBackup(const string & filename) {
1332    int allOK = 1;
1333    DiskIO backupFile;
1334 
1335    if (backupFile.OpenForWrite(filename)) {
1336       // Recomputing the CRCs is likely to alter them, which could be bad
1337       // if the intent is to save a potentially bad GPT for later analysis;
1338       // but if we don't do this, we get bogus errors when we load the
1339       // backup. I'm favoring misses over false alarms....
1340       RecomputeCRCs();
1341 
1342       protectiveMBR.WriteMBRData(&backupFile);
1343       protectiveMBR.SetDisk(&myDisk);
1344 
1345       if (allOK) {
1346          // MBR write closed disk, so re-open and seek to end....
1347          backupFile.OpenForWrite();
1348          allOK = SaveHeader(&mainHeader, backupFile, 1);
1349       } // if (allOK)
1350 
1351       if (allOK)
1352          allOK = SaveHeader(&secondHeader, backupFile, 2);
1353 
1354       if (allOK)
1355          allOK = SavePartitionTable(backupFile, 3);
1356 
1357       if (allOK) { // writes completed OK
1358          cout << "The operation has completed successfully.\n";
1359       } else {
1360          cerr << "Warning! An error was reported when writing the backup file.\n"
1361               << "It may not be usable!\n";
1362       } // if/else
1363       backupFile.Close();
1364    } else {
1365       cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1366       allOK = 0;
1367    } // if/else
1368    return allOK;
1369 } // GPTData::SaveGPTBackup()
1370 
1371 // Write a GPT header (main or backup) to the specified sector. Used by both
1372 // the SaveGPTData() and SaveGPTBackup() functions.
1373 // Should be passed an architecture-appropriate header (DO NOT call
1374 // ReverseHeaderBytes() on the header before calling this function)
1375 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1376 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1377    int littleEndian, allOK = 1;
1378 
1379    littleEndian = IsLittleEndian();
1380    if (!littleEndian)
1381       ReverseHeaderBytes(header);
1382    if (disk.Seek(sector)) {
1383       if (disk.Write(header, 512) == -1)
1384          allOK = 0;
1385    } else allOK = 0; // if (disk.Seek()...)
1386    if (!littleEndian)
1387       ReverseHeaderBytes(header);
1388    return allOK;
1389 } // GPTData::SaveHeader()
1390 
1391 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1392 // and SaveGPTBackup() functions.
1393 // Should be passed an architecture-appropriate header (DO NOT call
1394 // ReverseHeaderBytes() on the header before calling this function)
1395 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1396 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1397    int littleEndian, allOK = 1;
1398 
1399    littleEndian = IsLittleEndian();
1400    if (disk.Seek(sector)) {
1401       if (!littleEndian)
1402          ReversePartitionBytes();
1403       if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1404          allOK = 0;
1405       if (!littleEndian)
1406          ReversePartitionBytes();
1407    } else allOK = 0; // if (myDisk.Seek()...)
1408    return allOK;
1409 } // GPTData::SavePartitionTable()
1410 
1411 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1412 // does minimal error checking. It returns 1 if it completed successfully,
1413 // 0 if there was a problem. In the latter case, it creates a new empty
1414 // set of partitions.
LoadGPTBackup(const string & filename)1415 int GPTData::LoadGPTBackup(const string & filename) {
1416    int allOK = 1, val, err;
1417    int shortBackup = 0;
1418    DiskIO backupFile;
1419 
1420    if (backupFile.OpenForRead(filename)) {
1421       // Let the MBRData class load the saved MBR...
1422       protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1423       protectiveMBR.SetDisk(&myDisk);
1424 
1425       LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1426 
1427       // Check backup file size and rebuild second header if file is right
1428       // size to be direct dd copy of MBR, main header, and main partition
1429       // table; if other size, treat it like a GPT fdisk-generated backup
1430       // file
1431       shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1432                      (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1433       if (shortBackup) {
1434          RebuildSecondHeader();
1435          secondCrcOk = mainCrcOk;
1436       } else {
1437          LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1438       } // if/else
1439 
1440       // Return valid headers code: 0 = both headers bad; 1 = main header
1441       // good, backup bad; 2 = backup header good, main header bad;
1442       // 3 = both headers good. Note these codes refer to valid GPT
1443       // signatures and version numbers; more subtle problems will elude
1444       // this check!
1445       if ((val = CheckHeaderValidity()) > 0) {
1446          if (val == 2) { // only backup header seems to be good
1447             SetGPTSize(secondHeader.numParts, 0);
1448          } else { // main header is OK
1449             SetGPTSize(mainHeader.numParts, 0);
1450          } // if/else
1451 
1452          if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1453             cout << "Warning! Current disk size doesn't match that of the backup!\n"
1454                  << "Adjusting sizes to match, but subsequent problems are possible!\n";
1455             MoveSecondHeaderToEnd();
1456          } // if
1457 
1458          if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1459             cerr << "Warning! Read error " << errno
1460                  << " loading partition table; strange behavior now likely!\n";
1461       } else {
1462          allOK = 0;
1463       } // if/else
1464       // Something went badly wrong, so blank out partitions
1465       if (allOK == 0) {
1466          cerr << "Improper backup file! Clearing all partition data!\n";
1467          ClearGPTData();
1468          protectiveMBR.MakeProtectiveMBR();
1469       } // if
1470    } else {
1471       allOK = 0;
1472       cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1473    } // if/else
1474 
1475    return allOK;
1476 } // GPTData::LoadGPTBackup()
1477 
SaveMBR(void)1478 int GPTData::SaveMBR(void) {
1479    return protectiveMBR.WriteMBRData(&myDisk);
1480 } // GPTData::SaveMBR()
1481 
1482 // This function destroys the on-disk GPT structures, but NOT the on-disk
1483 // MBR.
1484 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1485 int GPTData::DestroyGPT(void) {
1486    int sum, tableSize, allOK = 1;
1487    uint8_t blankSector[512];
1488    uint8_t* emptyTable;
1489 
1490    memset(blankSector, 0, sizeof(blankSector));
1491    ClearGPTData();
1492 
1493    if (myDisk.OpenForWrite()) {
1494       if (!myDisk.Seek(mainHeader.currentLBA))
1495          allOK = 0;
1496       if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1497          cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1498          allOK = 0;
1499       } // if
1500       if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1501          allOK = 0;
1502       tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1503       emptyTable = new uint8_t[tableSize];
1504       if (emptyTable == NULL) {
1505          cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1506          exit(1);
1507       } // if
1508       memset(emptyTable, 0, tableSize);
1509       if (allOK) {
1510          sum = myDisk.Write(emptyTable, tableSize);
1511          if (sum != tableSize) {
1512             cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1513             allOK = 0;
1514          } // if write failed
1515       } // if
1516       if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1517          allOK = 0;
1518       if (allOK) {
1519          sum = myDisk.Write(emptyTable, tableSize);
1520          if (sum != tableSize) {
1521             cerr << "Warning! GPT backup partition table not overwritten! Error is "
1522                  << errno << "\n";
1523             allOK = 0;
1524          } // if wrong size written
1525       } // if
1526       if (!myDisk.Seek(secondHeader.currentLBA))
1527          allOK = 0;
1528       if (allOK) {
1529          if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1530             cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1531             allOK = 0;
1532          } // if
1533       } // if
1534       myDisk.DiskSync();
1535       myDisk.Close();
1536       cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1537            << "other utilities.\n";
1538       delete[] emptyTable;
1539    } else {
1540       cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1541    } // if/else (fd != -1)
1542    return (allOK);
1543 } // GPTDataTextUI::DestroyGPT()
1544 
1545 // Wipe MBR data from the disk (zero it out completely)
1546 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1547 int GPTData::DestroyMBR(void) {
1548    int allOK;
1549    uint8_t blankSector[512];
1550 
1551    memset(blankSector, 0, sizeof(blankSector));
1552 
1553    allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1554 
1555    if (!allOK)
1556       cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1557    return allOK;
1558 } // GPTData::DestroyMBR(void)
1559 
1560 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1561 void GPTData::ShowAPMState(void) {
1562    if (apmFound)
1563       cout << "  APM: present\n";
1564    else
1565       cout << "  APM: not present\n";
1566 } // GPTData::ShowAPMState()
1567 
1568 // Tell user about the state of the GPT data....
ShowGPTState(void)1569 void GPTData::ShowGPTState(void) {
1570    switch (state) {
1571       case gpt_invalid:
1572          cout << "  GPT: not present\n";
1573          break;
1574       case gpt_valid:
1575          cout << "  GPT: present\n";
1576          break;
1577       case gpt_corrupt:
1578          cout << "  GPT: damaged\n";
1579          break;
1580       default:
1581          cout << "\a  GPT: unknown -- bug!\n";
1582          break;
1583    } // switch
1584 } // GPTData::ShowGPTState()
1585 
1586 // Display the basic GPT data
DisplayGPTData(void)1587 void GPTData::DisplayGPTData(void) {
1588    uint32_t i;
1589    uint64_t temp, totalFree;
1590 
1591    cout << "Disk " << device << ": " << diskSize << " sectors, "
1592         << BytesToIeee(diskSize, blockSize) << "\n";
1593    if (myDisk.GetModel() != "")
1594       cout << "Model: " << myDisk.GetModel() << "\n";
1595    if (physBlockSize > 0)
1596       cout << "Sector size (logical/physical): " << blockSize << "/" << physBlockSize << " bytes\n";
1597    else
1598       cout << "Sector size (logical): " << blockSize << " bytes\n";
1599    cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1600    cout << "Partition table holds up to " << numParts << " entries\n";
1601    cout << "Main partition table begins at sector " << mainHeader.partitionEntriesLBA
1602         << " and ends at sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << "\n";
1603    cout << "First usable sector is " << mainHeader.firstUsableLBA
1604         << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1605    totalFree = FindFreeBlocks(&i, &temp);
1606    cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1607    cout << "Total free space is " << totalFree << " sectors ("
1608         << BytesToIeee(totalFree, blockSize) << ")\n";
1609    cout << "\nNumber  Start (sector)    End (sector)  Size       Code  Name\n";
1610    for (i = 0; i < numParts; i++) {
1611       partitions[i].ShowSummary(i, blockSize);
1612    } // for
1613 } // GPTData::DisplayGPTData()
1614 
1615 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1616 void GPTData::ShowPartDetails(uint32_t partNum) {
1617    if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1618       partitions[partNum].ShowDetails(blockSize);
1619    } else {
1620       cout << "Partition #" << partNum + 1 << " does not exist.\n";
1621    } // if
1622 } // GPTData::ShowPartDetails()
1623 
1624 /**************************************************************************
1625  *                                                                        *
1626  * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1627  * (some of these functions may require user interaction)                 *
1628  *                                                                        *
1629  **************************************************************************/
1630 
1631 // Examines the MBR & GPT data to determine which set of data to use: the
1632 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1633 // a new set of partitions (use_new). A return value of use_abort indicates
1634 // that this function couldn't determine what to do. Overriding functions
1635 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1636 WhichToUse GPTData::UseWhichPartitions(void) {
1637    WhichToUse which = use_new;
1638    MBRValidity mbrState;
1639 
1640    mbrState = protectiveMBR.GetValidity();
1641 
1642    if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1643       cout << "\n***************************************************************\n"
1644            << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1645            << "in memory. ";
1646       if (!justLooking) {
1647          cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1648               << "typing 'q' if you don't want to convert your MBR partitions\n"
1649               << "to GPT format!";
1650       } // if
1651       cout << "\n***************************************************************\n\n";
1652       which = use_mbr;
1653    } // if
1654 
1655    if ((state == gpt_invalid) && bsdFound) {
1656       cout << "\n**********************************************************************\n"
1657            << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1658            << "to GPT format.";
1659       if ((!justLooking) && (!beQuiet)) {
1660       cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1661            << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1662            << "want to convert your BSD partitions to GPT format!";
1663       } // if
1664       cout << "\n**********************************************************************\n\n";
1665       which = use_bsd;
1666    } // if
1667 
1668    if ((state == gpt_valid) && (mbrState == gpt)) {
1669       which = use_gpt;
1670       if (!beQuiet)
1671          cout << "Found valid GPT with protective MBR; using GPT.\n";
1672    } // if
1673    if ((state == gpt_valid) && (mbrState == hybrid)) {
1674       which = use_gpt;
1675       if (!beQuiet)
1676          cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1677    } // if
1678    if ((state == gpt_valid) && (mbrState == invalid)) {
1679       cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1680            << "protective MBR on save.\n";
1681       which = use_gpt;
1682    } // if
1683    if ((state == gpt_valid) && (mbrState == mbr)) {
1684       which = use_abort;
1685    } // if
1686 
1687    if (state == gpt_corrupt) {
1688       if (mbrState == gpt) {
1689          cout << "\a\a****************************************************************************\n"
1690               << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1691               << "verification and recovery are STRONGLY recommended.\n"
1692               << "****************************************************************************\n";
1693          which = use_gpt;
1694       } else {
1695          which = use_abort;
1696       } // if/else MBR says disk is GPT
1697    } // if GPT corrupt
1698 
1699    if (which == use_new)
1700       cout << "Creating new GPT entries in memory.\n";
1701 
1702    return which;
1703 } // UseWhichPartitions()
1704 
1705 // Convert MBR partition table into GPT form.
XFormPartitions(void)1706 void GPTData::XFormPartitions(void) {
1707    int i, numToConvert;
1708    uint8_t origType;
1709 
1710    // Clear out old data & prepare basics....
1711    ClearGPTData();
1712 
1713    // Convert the smaller of the # of GPT or MBR partitions
1714    if (numParts > MAX_MBR_PARTS)
1715       numToConvert = MAX_MBR_PARTS;
1716    else
1717       numToConvert = numParts;
1718 
1719    for (i = 0; i < numToConvert; i++) {
1720       origType = protectiveMBR.GetType(i);
1721       // don't waste CPU time trying to convert extended, hybrid protective, or
1722       // null (non-existent) partitions
1723       if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1724           (origType != 0x00) && (origType != 0xEE))
1725          partitions[i] = protectiveMBR.AsGPT(i);
1726    } // for
1727 
1728    // Convert MBR into protective MBR
1729    protectiveMBR.MakeProtectiveMBR();
1730 
1731    // Record that all original CRCs were OK so as not to raise flags
1732    // when doing a disk verification
1733    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1734 } // GPTData::XFormPartitions()
1735 
1736 // Transforms BSD disklabel on the specified partition (numbered from 0).
1737 // If an invalid partition number is given, the program does nothing.
1738 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1739 int GPTData::XFormDisklabel(uint32_t partNum) {
1740    uint32_t low, high;
1741    int goOn = 1, numDone = 0;
1742    BSDData disklabel;
1743 
1744    if (GetPartRange(&low, &high) == 0) {
1745       goOn = 0;
1746       cout << "No partitions!\n";
1747    } // if
1748    if (partNum > high) {
1749       goOn = 0;
1750       cout << "Specified partition is invalid!\n";
1751    } // if
1752 
1753    // If all is OK, read the disklabel and convert it.
1754    if (goOn) {
1755       goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1756                                    partitions[partNum].GetLastLBA());
1757       if ((goOn) && (disklabel.IsDisklabel())) {
1758          numDone = XFormDisklabel(&disklabel);
1759          if (numDone == 1)
1760             cout << "Converted 1 BSD partition.\n";
1761          else
1762             cout << "Converted " << numDone << " BSD partitions.\n";
1763       } else {
1764          cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1765       } // if/else
1766    } // if
1767    if (numDone > 0) { // converted partitions; delete carrier
1768       partitions[partNum].BlankPartition();
1769    } // if
1770    return numDone;
1771 } // GPTData::XFormDisklabel(uint32_t i)
1772 
1773 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1774 int GPTData::XFormDisklabel(BSDData* disklabel) {
1775    int i, partNum = 0, numDone = 0;
1776 
1777    if (disklabel->IsDisklabel()) {
1778       for (i = 0; i < disklabel->GetNumParts(); i++) {
1779          partNum = FindFirstFreePart();
1780          if (partNum >= 0) {
1781             partitions[partNum] = disklabel->AsGPT(i);
1782             if (partitions[partNum].IsUsed())
1783                numDone++;
1784          } // if
1785       } // for
1786       if (partNum == -1)
1787          cerr << "Warning! Too many partitions to convert!\n";
1788    } // if
1789 
1790    // Record that all original CRCs were OK so as not to raise flags
1791    // when doing a disk verification
1792    mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1793 
1794    return numDone;
1795 } // GPTData::XFormDisklabel(BSDData* disklabel)
1796 
1797 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1798 // partition has the active/bootable flag UNset and uses the GPT fdisk
1799 // type code divided by 0x0100 as the MBR type code.
1800 // Returns 1 if operation was 100% successful, 0 if there were ANY
1801 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1802 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1803    int allOK = 1;
1804 
1805    if ((mbrPart < 0) || (mbrPart > 3)) {
1806       cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1807       allOK = 0;
1808    } // if
1809    if (gptPart >= numParts) {
1810       cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1811       allOK = 0;
1812    } // if
1813    if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1814       cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1815       allOK = 0;
1816    } // if
1817    if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1818        (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1819       if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1820          cout << "Caution: Partition end point past 32-bit pointer boundary;"
1821               << " some OSes may\nreact strangely.\n";
1822       } // if
1823       protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1824                              (uint32_t) partitions[gptPart].GetLengthLBA(),
1825                              partitions[gptPart].GetHexType() / 256, 0);
1826    } else { // partition out of range
1827       if (allOK) // Display only if "else" triggered by out-of-bounds condition
1828          cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1829               << "partitions, or is\n too big; omitting it.\n";
1830       allOK = 0;
1831    } // if/else
1832    return allOK;
1833 } // GPTData::OnePartToMBR()
1834 
1835 
1836 /**********************************************************************
1837  *                                                                    *
1838  * Functions that adjust GPT data structures WITHOUT user interaction *
1839  * (they may display information for the user's benefit, though)      *
1840  *                                                                    *
1841  **********************************************************************/
1842 
1843 // Resizes GPT to specified number of entries. Creates a new table if
1844 // necessary, copies data if it already exists. If fillGPTSectors is 1
1845 // (the default), rounds numEntries to fill all the sectors necessary to
1846 // hold the GPT.
1847 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1848 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1849    GPTPart* newParts;
1850    uint32_t i, high, copyNum, entriesPerSector;
1851    int allOK = 1;
1852 
1853    // First, adjust numEntries upward, if necessary, to get a number
1854    // that fills the allocated sectors
1855    entriesPerSector = blockSize / GPT_SIZE;
1856    if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1857       cout << "Adjusting GPT size from " << numEntries << " to ";
1858       numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1859       cout << numEntries << " to fill the sector\n";
1860    } // if
1861 
1862    // Do the work only if the # of partitions is changing. Along with being
1863    // efficient, this prevents mucking with the location of the secondary
1864    // partition table, which causes problems when loading data from a RAID
1865    // array that's been expanded because this function is called when loading
1866    // data.
1867    if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1868       newParts = new GPTPart [numEntries];
1869       if (newParts != NULL) {
1870          if (partitions != NULL) { // existing partitions; copy them over
1871             GetPartRange(&i, &high);
1872             if (numEntries < (high + 1)) { // Highest entry too high for new #
1873                cout << "The highest-numbered partition is " << high + 1
1874                     << ", which is greater than the requested\n"
1875                     << "partition table size of " << numEntries
1876                     << "; cannot resize. Perhaps sorting will help.\n";
1877                allOK = 0;
1878                delete[] newParts;
1879             } else { // go ahead with copy
1880                if (numEntries < numParts)
1881                   copyNum = numEntries;
1882                else
1883                   copyNum = numParts;
1884                for (i = 0; i < copyNum; i++) {
1885                   newParts[i] = partitions[i];
1886                } // for
1887                delete[] partitions;
1888                partitions = newParts;
1889             } // if
1890          } else { // No existing partition table; just create it
1891             partitions = newParts;
1892          } // if/else existing partitions
1893          numParts = numEntries;
1894          mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
1895          secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1896          MoveSecondHeaderToEnd();
1897          if (diskSize > 0)
1898             CheckGPTSize();
1899       } else { // Bad memory allocation
1900          cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1901          allOK = 0;
1902       } // if/else
1903    } // if/else
1904    mainHeader.numParts = numParts;
1905    secondHeader.numParts = numParts;
1906    return (allOK);
1907 } // GPTData::SetGPTSize()
1908 
1909 // Change the start sector for the main partition table.
1910 // Returns 1 on success, 0 on failure
MoveMainTable(uint64_t pteSector)1911 int GPTData::MoveMainTable(uint64_t pteSector) {
1912     uint64_t pteSize = GetTableSizeInSectors();
1913     int retval = 1;
1914 
1915     if ((pteSector >= 2) && ((pteSector + pteSize) <= FindFirstUsedLBA())) {
1916        mainHeader.partitionEntriesLBA = pteSector;
1917        mainHeader.firstUsableLBA = pteSector + pteSize;
1918        RebuildSecondHeader();
1919     } else {
1920        cerr << "Unable to set the main partition table's location to " << pteSector << "!\n";
1921        retval = 0;
1922     } // if/else
1923     return retval;
1924 } // GPTData::MoveMainTable()
1925 
1926 // Change the start sector for the secondary partition table.
1927 // Returns 1 on success, 0 on failure
MoveSecondTable(uint64_t pteSector)1928 int GPTData::MoveSecondTable(uint64_t pteSector) {
1929     uint64_t pteSize = GetTableSizeInSectors();
1930     int retval = 1;
1931 
1932     if ((pteSector > FindLastUsedLBA()) && ((pteSector + pteSize) < diskSize)) {
1933         secondHeader.partitionEntriesLBA = pteSector; // (RebuildSecondHeader actually replaces this with lastUsableLBA+1)
1934         mainHeader.lastUsableLBA = secondHeader.partitionEntriesLBA - UINT64_C(1);
1935         RebuildSecondHeader();
1936     } else {
1937         cerr << "Unable to set the secondary partition table's location to " << pteSector << "!\n";
1938         retval = 0;
1939     } // if/else
1940     return retval;
1941 } // GPTData::MoveSecondTable()
1942 
1943 // Blank the partition array
BlankPartitions(void)1944 void GPTData::BlankPartitions(void) {
1945    uint32_t i;
1946 
1947    for (i = 0; i < numParts; i++) {
1948       partitions[i].BlankPartition();
1949    } // for
1950 } // GPTData::BlankPartitions()
1951 
1952 // Delete a partition by number. Returns 1 if successful,
1953 // 0 if there was a problem. Returns 1 if partition was in
1954 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1955 int GPTData::DeletePartition(uint32_t partNum) {
1956    uint64_t startSector, length;
1957    uint32_t low, high, numUsedParts, retval = 1;;
1958 
1959    numUsedParts = GetPartRange(&low, &high);
1960    if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1961       // In case there's a protective MBR, look for & delete matching
1962       // MBR partition....
1963       startSector = partitions[partNum].GetFirstLBA();
1964       length = partitions[partNum].GetLengthLBA();
1965       protectiveMBR.DeleteByLocation(startSector, length);
1966 
1967       // Now delete the GPT partition
1968       partitions[partNum].BlankPartition();
1969    } else {
1970       cerr << "Partition number " << partNum + 1 << " out of range!\n";
1971       retval = 0;
1972    } // if/else
1973    return retval;
1974 } // GPTData::DeletePartition(uint32_t partNum)
1975 
1976 // Non-interactively create a partition.
1977 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1978 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1979    int retval = 1; // assume there'll be no problems
1980    uint64_t origSector = startSector;
1981 
1982    if (IsFreePartNum(partNum)) {
1983       if (Align(&startSector)) {
1984          cout << "Information: Moved requested sector from " << origSector << " to "
1985               << startSector << " in\norder to align on " << sectorAlignment
1986               << "-sector boundaries.\n";
1987       } // if
1988       if (IsFree(startSector) && (startSector <= endSector)) {
1989          if (FindLastInFree(startSector) >= endSector) {
1990             partitions[partNum].SetFirstLBA(startSector);
1991             partitions[partNum].SetLastLBA(endSector);
1992             partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1993             partitions[partNum].RandomizeUniqueGUID();
1994          } else retval = 0; // if free space until endSector
1995       } else retval = 0; // if startSector is free
1996    } else retval = 0; // if legal partition number
1997    return retval;
1998 } // GPTData::CreatePartition(partNum, startSector, endSector)
1999 
2000 // Sort the GPT entries, eliminating gaps and making for a logical
2001 // ordering.
SortGPT(void)2002 void GPTData::SortGPT(void) {
2003    if (numParts > 0)
2004       sort(partitions, partitions + numParts);
2005 } // GPTData::SortGPT()
2006 
2007 // Swap the contents of two partitions.
2008 // Returns 1 if successful, 0 if either partition is out of range
2009 // (that is, not a legal number; either or both can be empty).
2010 // Note that if partNum1 = partNum2 and this number is in range,
2011 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)2012 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
2013    GPTPart temp;
2014    int allOK = 1;
2015 
2016    if ((partNum1 < numParts) && (partNum2 < numParts)) {
2017       if (partNum1 != partNum2) {
2018          temp = partitions[partNum1];
2019          partitions[partNum1] = partitions[partNum2];
2020          partitions[partNum2] = temp;
2021       } // if
2022    } else allOK = 0; // partition numbers are valid
2023    return allOK;
2024 } // GPTData::SwapPartitions()
2025 
2026 // Set up data structures for entirely new set of partitions on the
2027 // specified device. Returns 1 if OK, 0 if there were problems.
2028 // Note that this function does NOT clear the protectiveMBR data
2029 // structure, since it may hold the original MBR partitions if the
2030 // program was launched on an MBR disk, and those may need to be
2031 // converted to GPT format.
ClearGPTData(void)2032 int GPTData::ClearGPTData(void) {
2033    int goOn = 1, i;
2034 
2035    // Set up the partition table....
2036    delete[] partitions;
2037    partitions = NULL;
2038    SetGPTSize(NUM_GPT_ENTRIES);
2039 
2040    // Now initialize a bunch of stuff that's static....
2041    mainHeader.signature = GPT_SIGNATURE;
2042    mainHeader.revision = 0x00010000;
2043    mainHeader.headerSize = HEADER_SIZE;
2044    mainHeader.reserved = 0;
2045    mainHeader.currentLBA = UINT64_C(1);
2046    mainHeader.partitionEntriesLBA = (uint64_t) 2;
2047    mainHeader.sizeOfPartitionEntries = GPT_SIZE;
2048    mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
2049    for (i = 0; i < GPT_RESERVED; i++) {
2050       mainHeader.reserved2[i] = '\0';
2051    } // for
2052    if (blockSize > 0)
2053       sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2054    else
2055       sectorAlignment = DEFAULT_ALIGNMENT;
2056 
2057    // Now some semi-static items (computed based on end of disk)
2058    mainHeader.backupLBA = diskSize - UINT64_C(1);
2059    mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
2060 
2061    // Set a unique GUID for the disk, based on random numbers
2062    mainHeader.diskGUID.Randomize();
2063 
2064    // Copy main header to backup header
2065    RebuildSecondHeader();
2066 
2067    // Blank out the partitions array....
2068    BlankPartitions();
2069 
2070    // Flag all CRCs as being OK....
2071    mainCrcOk = 1;
2072    secondCrcOk = 1;
2073    mainPartsCrcOk = 1;
2074    secondPartsCrcOk = 1;
2075 
2076    return (goOn);
2077 } // GPTData::ClearGPTData()
2078 
2079 // Set the location of the second GPT header data to the end of the disk.
2080 // If the disk size has actually changed, this also adjusts the protective
2081 // entry in the MBR, since it's probably no longer correct.
2082 // Used internally and called by the 'e' option on the recovery &
2083 // transformation menu, to help users of RAID arrays who add disk space
2084 // to their arrays or to adjust data structures in restore operations
2085 // involving unequal-sized disks.
MoveSecondHeaderToEnd()2086 void GPTData::MoveSecondHeaderToEnd() {
2087    mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
2088    if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
2089       if (protectiveMBR.GetValidity() == hybrid) {
2090          protectiveMBR.OptimizeEESize();
2091          RecomputeCHS();
2092       } // if
2093       if (protectiveMBR.GetValidity() == gpt)
2094          MakeProtectiveMBR();
2095    } // if
2096    mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
2097    secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
2098 } // GPTData::FixSecondHeaderLocation()
2099 
2100 // Sets the partition's name to the specified UnicodeString without
2101 // user interaction.
2102 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)2103 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
2104    int retval = 1;
2105 
2106    if (IsUsedPartNum(partNum))
2107       partitions[partNum].SetName(theName);
2108    else
2109       retval = 0;
2110 
2111    return retval;
2112 } // GPTData::SetName
2113 
2114 // Set the disk GUID to the specified value. Note that the header CRCs must
2115 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)2116 void GPTData::SetDiskGUID(GUIDData newGUID) {
2117    mainHeader.diskGUID = newGUID;
2118    secondHeader.diskGUID = newGUID;
2119 } // SetDiskGUID()
2120 
2121 // Set the unique GUID of the specified partition. Returns 1 on
2122 // successful completion, 0 if there were problems (invalid
2123 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)2124 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
2125    int retval = 0;
2126 
2127    if (pn < numParts) {
2128       if (partitions[pn].IsUsed()) {
2129          partitions[pn].SetUniqueGUID(theGUID);
2130          retval = 1;
2131       } // if
2132    } // if
2133    return retval;
2134 } // GPTData::SetPartitionGUID()
2135 
2136 // Set new random GUIDs for the disk and all partitions. Intended to be used
2137 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)2138 void GPTData::RandomizeGUIDs(void) {
2139    uint32_t i;
2140 
2141    mainHeader.diskGUID.Randomize();
2142    secondHeader.diskGUID = mainHeader.diskGUID;
2143    for (i = 0; i < numParts; i++)
2144       if (partitions[i].IsUsed())
2145          partitions[i].RandomizeUniqueGUID();
2146 } // GPTData::RandomizeGUIDs()
2147 
2148 // Change partition type code non-interactively. Returns 1 if
2149 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)2150 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
2151    int retval = 1;
2152 
2153    if (!IsFreePartNum(partNum)) {
2154       partitions[partNum].SetType(theGUID);
2155    } else retval = 0;
2156    return retval;
2157 } // GPTData::ChangePartType()
2158 
2159 // Recompute the CHS values of all the MBR partitions. Used to reset
2160 // CHS values that some BIOSes require, despite the fact that the
2161 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)2162 void GPTData::RecomputeCHS(void) {
2163    int i;
2164 
2165    for (i = 0; i < 4; i++)
2166       protectiveMBR.RecomputeCHS(i);
2167 } // GPTData::RecomputeCHS()
2168 
2169 // Adjust sector number so that it falls on a sector boundary that's a
2170 // multiple of sectorAlignment. This is done to improve the performance
2171 // of Western Digital Advanced Format disks and disks with similar
2172 // technology from other companies, which use 4096-byte sectors
2173 // internally although they translate to 512-byte sectors for the
2174 // benefit of the OS. If partitions aren't properly aligned on these
2175 // disks, some filesystem data structures can span multiple physical
2176 // sectors, degrading performance. This function should be called
2177 // only on the FIRST sector of the partition, not the last!
2178 // This function returns 1 if the alignment was altered, 0 if it
2179 // was unchanged.
Align(uint64_t * sector)2180 int GPTData::Align(uint64_t* sector) {
2181    int retval = 0, sectorOK = 0;
2182    uint64_t earlier, later, testSector;
2183 
2184    if ((*sector % sectorAlignment) != 0) {
2185       earlier = (*sector / sectorAlignment) * sectorAlignment;
2186       later = earlier + (uint64_t) sectorAlignment;
2187 
2188       // Check to see that every sector between the earlier one and the
2189       // requested one is clear, and that it's not too early....
2190       if (earlier >= mainHeader.firstUsableLBA) {
2191          testSector = earlier;
2192          do {
2193             sectorOK = IsFree(testSector++);
2194          } while ((sectorOK == 1) && (testSector < *sector));
2195          if (sectorOK == 1) {
2196             *sector = earlier;
2197             retval = 1;
2198          } // if
2199       } // if firstUsableLBA check
2200 
2201       // If couldn't move the sector earlier, try to move it later instead....
2202       if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2203          testSector = later;
2204          do {
2205             sectorOK = IsFree(testSector--);
2206          } while ((sectorOK == 1) && (testSector > *sector));
2207          if (sectorOK == 1) {
2208             *sector = later;
2209             retval = 1;
2210          } // if
2211       } // if
2212    } // if
2213    return retval;
2214 } // GPTData::Align()
2215 
2216 /********************************************************
2217  *                                                      *
2218  * Functions that return data about GPT data structures *
2219  * (most of these are inline in gpt.h)                  *
2220  *                                                      *
2221  ********************************************************/
2222 
2223 // Find the low and high used partition numbers (numbered from 0).
2224 // Return value is the number of partitions found. Note that the
2225 // *low and *high values are both set to 0 when no partitions
2226 // are found, as well as when a single partition in the first
2227 // position exists. Thus, the return value is the only way to
2228 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2229 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2230    uint32_t i;
2231    int numFound = 0;
2232 
2233    *low = numParts + 1; // code for "not found"
2234    *high = 0;
2235    for (i = 0; i < numParts; i++) {
2236       if (partitions[i].IsUsed()) { // it exists
2237          *high = i; // since we're counting up, set the high value
2238          // Set the low value only if it's not yet found...
2239          if (*low == (numParts + 1)) *low = i;
2240             numFound++;
2241       } // if
2242    } // for
2243 
2244    // Above will leave *low pointing to its "not found" value if no partitions
2245    // are defined, so reset to 0 if this is the case....
2246    if (*low == (numParts + 1))
2247       *low = 0;
2248    return numFound;
2249 } // GPTData::GetPartRange()
2250 
2251 // Returns the value of the first free partition, or -1 if none is
2252 // unused.
FindFirstFreePart(void)2253 int GPTData::FindFirstFreePart(void) {
2254    int i = 0;
2255 
2256    if (partitions != NULL) {
2257       while ((i < (int) numParts) && (partitions[i].IsUsed()))
2258          i++;
2259       if (i >= (int) numParts)
2260          i = -1;
2261    } else i = -1;
2262    return i;
2263 } // GPTData::FindFirstFreePart()
2264 
2265 // Returns the number of defined partitions.
CountParts(void)2266 uint32_t GPTData::CountParts(void) {
2267    uint32_t i, counted = 0;
2268 
2269    for (i = 0; i < numParts; i++) {
2270       if (partitions[i].IsUsed())
2271          counted++;
2272    } // for
2273    return counted;
2274 } // GPTData::CountParts()
2275 
2276 /****************************************************
2277  *                                                  *
2278  * Functions that return data about disk free space *
2279  *                                                  *
2280  ****************************************************/
2281 
2282 // Find the first available block after the starting point; returns 0 if
2283 // there are no available blocks left
FindFirstAvailable(uint64_t start)2284 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2285    uint64_t first;
2286    uint32_t i;
2287    int firstMoved = 0;
2288 
2289    // Begin from the specified starting point or from the first usable
2290    // LBA, whichever is greater...
2291    if (start < mainHeader.firstUsableLBA)
2292       first = mainHeader.firstUsableLBA;
2293    else
2294       first = start;
2295 
2296    // ...now search through all partitions; if first is within an
2297    // existing partition, move it to the next sector after that
2298    // partition and repeat. If first was moved, set firstMoved
2299    // flag; repeat until firstMoved is not set, so as to catch
2300    // cases where partitions are out of sequential order....
2301    do {
2302       firstMoved = 0;
2303       for (i = 0; i < numParts; i++) {
2304          if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2305              (first <= partitions[i].GetLastLBA())) { // in existing part.
2306             first = partitions[i].GetLastLBA() + 1;
2307             firstMoved = 1;
2308          } // if
2309       } // for
2310    } while (firstMoved == 1);
2311    if (first > mainHeader.lastUsableLBA)
2312       first = 0;
2313    return (first);
2314 } // GPTData::FindFirstAvailable()
2315 
2316 // Returns the LBA of the start of the first partition on the disk (by
2317 // sector number), or UINT64_MAX if there are no partitions defined.
FindFirstUsedLBA(void)2318 uint64_t GPTData::FindFirstUsedLBA(void) {
2319     uint32_t i;
2320     uint64_t firstFound = UINT64_MAX;
2321 
2322     for (i = 0; i < numParts; i++) {
2323         if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() < firstFound)) {
2324             firstFound = partitions[i].GetFirstLBA();
2325         } // if
2326     } // for
2327     return firstFound;
2328 } // GPTData::FindFirstUsedLBA()
2329 
2330 // Returns the LBA of the end of the last partition on the disk (by
2331 // sector number), or 0 if there are no partitions defined.
FindLastUsedLBA(void)2332 uint64_t GPTData::FindLastUsedLBA(void) {
2333     uint32_t i;
2334     uint64_t lastFound = 0;
2335 
2336     for (i = 0; i < numParts; i++) {
2337         if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() > lastFound)) {
2338             lastFound = partitions[i].GetLastLBA();
2339         } // if
2340     } // for
2341     return lastFound;
2342 } // GPTData::FindLastUsedLBA()
2343 
2344 // Finds the first available sector in the largest block of unallocated
2345 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2346 uint64_t GPTData::FindFirstInLargest(void) {
2347    uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2348 
2349    start = 0;
2350    do {
2351       firstBlock = FindFirstAvailable(start);
2352       if (firstBlock != UINT32_C(0)) { // something's free...
2353          lastBlock = FindLastInFree(firstBlock);
2354          segmentSize = lastBlock - firstBlock + UINT32_C(1);
2355          if (segmentSize > selectedSize) {
2356             selectedSize = segmentSize;
2357             selectedSegment = firstBlock;
2358          } // if
2359          start = lastBlock + 1;
2360       } // if
2361    } while (firstBlock != 0);
2362    return selectedSegment;
2363 } // GPTData::FindFirstInLargest()
2364 
2365 // Find the last available block on the disk.
2366 // Returns 0 if there are no available sectors
FindLastAvailable(void)2367 uint64_t GPTData::FindLastAvailable(void) {
2368    uint64_t last;
2369    uint32_t i;
2370    int lastMoved = 0;
2371 
2372    // Start by assuming the last usable LBA is available....
2373    last = mainHeader.lastUsableLBA;
2374 
2375    // ...now, similar to algorithm in FindFirstAvailable(), search
2376    // through all partitions, moving last when it's in an existing
2377    // partition. Set the lastMoved flag so we repeat to catch cases
2378    // where partitions are out of logical order.
2379    do {
2380       lastMoved = 0;
2381       for (i = 0; i < numParts; i++) {
2382          if ((last >= partitions[i].GetFirstLBA()) &&
2383              (last <= partitions[i].GetLastLBA())) { // in existing part.
2384             last = partitions[i].GetFirstLBA() - 1;
2385             lastMoved = 1;
2386          } // if
2387       } // for
2388    } while (lastMoved == 1);
2389    if (last < mainHeader.firstUsableLBA)
2390       last = 0;
2391    return (last);
2392 } // GPTData::FindLastAvailable()
2393 
2394 // Find the last available block in the free space pointed to by start.
2395 // If align == true, returns the last sector that's aligned on the
2396 // system alignment value (unless that's less than the start value);
2397 // if align == false, returns the last available block regardless of
2398 // alignment. (The align variable is set to false by default.)
FindLastInFree(uint64_t start,bool align)2399 uint64_t GPTData::FindLastInFree(uint64_t start, bool align) {
2400    uint64_t nearestEnd, endPlus;
2401    uint32_t i;
2402 
2403    nearestEnd = mainHeader.lastUsableLBA;
2404    for (i = 0; i < numParts; i++) {
2405       if ((nearestEnd > partitions[i].GetFirstLBA()) &&
2406           (partitions[i].GetFirstLBA() > start)) {
2407          nearestEnd = partitions[i].GetFirstLBA() - 1;
2408       } // if
2409    } // for
2410    if (align) {
2411        endPlus = nearestEnd + 1;
2412        if (Align(&endPlus) && IsFree(endPlus - 1) && (endPlus > start)) {
2413            nearestEnd = endPlus - 1;
2414        } // if
2415    } // if
2416    return (nearestEnd);
2417 } // GPTData::FindLastInFree()
2418 
2419 // Finds the total number of free blocks, the number of segments in which
2420 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2421 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2422    uint64_t start = UINT64_C(0); // starting point for each search
2423    uint64_t totalFound = UINT64_C(0); // running total
2424    uint64_t firstBlock; // first block in a segment
2425    uint64_t lastBlock; // last block in a segment
2426    uint64_t segmentSize; // size of segment in blocks
2427    uint32_t num = 0;
2428 
2429    *largestSegment = UINT64_C(0);
2430    if (diskSize > 0) {
2431       do {
2432          firstBlock = FindFirstAvailable(start);
2433          if (firstBlock != UINT64_C(0)) { // something's free...
2434             lastBlock = FindLastInFree(firstBlock);
2435             segmentSize = lastBlock - firstBlock + UINT64_C(1);
2436             if (segmentSize > *largestSegment) {
2437                *largestSegment = segmentSize;
2438             } // if
2439             totalFound += segmentSize;
2440             num++;
2441             start = lastBlock + 1;
2442          } // if
2443       } while (firstBlock != 0);
2444    } // if
2445    *numSegments = num;
2446    return totalFound;
2447 } // GPTData::FindFreeBlocks()
2448 
2449 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2450 // If it's allocated, return the partition number to which it's allocated
2451 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2452 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2453 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2454    int isFree = 1;
2455    uint32_t i;
2456 
2457    for (i = 0; i < numParts; i++) {
2458       if ((sector >= partitions[i].GetFirstLBA()) &&
2459            (sector <= partitions[i].GetLastLBA())) {
2460          isFree = 0;
2461          if (partNum != NULL)
2462             *partNum = i;
2463       } // if
2464    } // for
2465    if ((sector < mainHeader.firstUsableLBA) ||
2466         (sector > mainHeader.lastUsableLBA)) {
2467       isFree = 0;
2468       if (partNum != NULL)
2469          *partNum = UINT32_MAX;
2470    } // if
2471    return (isFree);
2472 } // GPTData::IsFree()
2473 
2474 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2475 int GPTData::IsFreePartNum(uint32_t partNum) {
2476    return ((partNum < numParts) && (partitions != NULL) &&
2477            (!partitions[partNum].IsUsed()));
2478 } // GPTData::IsFreePartNum()
2479 
2480 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2481 int GPTData::IsUsedPartNum(uint32_t partNum) {
2482    return ((partNum < numParts) && (partitions != NULL) &&
2483            (partitions[partNum].IsUsed()));
2484 } // GPTData::IsUsedPartNum()
2485 
2486 /***********************************************************
2487  *                                                         *
2488  * Change how functions work or return information on them *
2489  *                                                         *
2490  ***********************************************************/
2491 
2492 // Set partition alignment value; partitions will begin on multiples of
2493 // the specified value, and the default end values will be set so that
2494 // partition sizes are multiples of this value in cgdisk and gdisk, too.
2495 // (In sgdisk, end-alignment is done only if the '-I' command-line option
2496 // is used.)
SetAlignment(uint32_t n)2497 void GPTData::SetAlignment(uint32_t n) {
2498    if (n > 0) {
2499       sectorAlignment = n;
2500       if ((physBlockSize > 0) && (n % (physBlockSize / blockSize) != 0)) {
2501          cout << "Warning: Setting alignment to a value that does not match the disk's\n"
2502               << "physical block size! Performance degradation may result!\n"
2503               << "Physical block size = " << physBlockSize << "\n"
2504               << "Logical block size = " << blockSize << "\n"
2505               << "Optimal alignment = " << physBlockSize / blockSize << " or multiples thereof.\n";
2506       } // if
2507    } else {
2508       cerr << "Attempt to set partition alignment to 0!\n";
2509    } // if/else
2510 } // GPTData::SetAlignment()
2511 
2512 // Compute sector alignment based on the current partitions (if any). Each
2513 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2514 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2515 // sector size), but not by the previously-located alignment value, then the
2516 // alignment value is adjusted down. If the computed alignment is less than 8
2517 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2518 // is a safety measure for Advanced Format drives. If no partitions are
2519 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2520 // adjustment of that based on the current sector size). The result is that new
2521 // drives are aligned to 2048-sector multiples but the program won't complain
2522 // about other alignments on existing disks unless a smaller-than-8 alignment
2523 // is used on big disks (as safety for Advanced Format drives).
2524 // Returns the computed alignment value.
ComputeAlignment(void)2525 uint32_t GPTData::ComputeAlignment(void) {
2526    uint32_t i = 0, found, exponent;
2527    uint32_t align = DEFAULT_ALIGNMENT;
2528 
2529    if (blockSize > 0)
2530       align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2531    exponent = (uint32_t) log2(align);
2532    for (i = 0; i < numParts; i++) {
2533       if (partitions[i].IsUsed()) {
2534          found = 0;
2535          while (!found) {
2536             align = UINT64_C(1) << exponent;
2537             if ((partitions[i].GetFirstLBA() % align) == 0) {
2538                found = 1;
2539             } else {
2540                exponent--;
2541             } // if/else
2542          } // while
2543       } // if
2544    } // for
2545    if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2546       align = MIN_AF_ALIGNMENT;
2547    sectorAlignment = align;
2548    return align;
2549 } // GPTData::ComputeAlignment()
2550 
2551 /********************************
2552  *                              *
2553  * Endianness support functions *
2554  *                              *
2555  ********************************/
2556 
ReverseHeaderBytes(struct GPTHeader * header)2557 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2558    ReverseBytes(&header->signature, 8);
2559    ReverseBytes(&header->revision, 4);
2560    ReverseBytes(&header->headerSize, 4);
2561    ReverseBytes(&header->headerCRC, 4);
2562    ReverseBytes(&header->reserved, 4);
2563    ReverseBytes(&header->currentLBA, 8);
2564    ReverseBytes(&header->backupLBA, 8);
2565    ReverseBytes(&header->firstUsableLBA, 8);
2566    ReverseBytes(&header->lastUsableLBA, 8);
2567    ReverseBytes(&header->partitionEntriesLBA, 8);
2568    ReverseBytes(&header->numParts, 4);
2569    ReverseBytes(&header->sizeOfPartitionEntries, 4);
2570    ReverseBytes(&header->partitionEntriesCRC, 4);
2571    ReverseBytes(header->reserved2, GPT_RESERVED);
2572 } // GPTData::ReverseHeaderBytes()
2573 
2574 // Reverse byte order for all partitions.
ReversePartitionBytes()2575 void GPTData::ReversePartitionBytes() {
2576    uint32_t i;
2577 
2578    for (i = 0; i < numParts; i++) {
2579       partitions[i].ReversePartBytes();
2580    } // for
2581 } // GPTData::ReversePartitionBytes()
2582 
2583 // Validate partition number
ValidPartNum(const uint32_t partNum)2584 bool GPTData::ValidPartNum (const uint32_t partNum) {
2585    if (partNum >= numParts) {
2586       cerr << "Partition number out of range: " << partNum << "\n";
2587       return false;
2588    } // if
2589    return true;
2590 } // GPTData::ValidPartNum
2591 
2592 // Return a single partition for inspection (not modification!) by other
2593 // functions.
operator [](uint32_t partNum) const2594 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2595    if (partNum >= numParts) {
2596       cerr << "Partition number out of range (" << partNum << " requested, but only "
2597            << numParts << " available)\n";
2598       exit(1);
2599    } // if
2600    if (partitions == NULL) {
2601       cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2602       exit(1);
2603    } // if
2604    return partitions[partNum];
2605 } // operator[]
2606 
2607 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2608 const GUIDData & GPTData::GetDiskGUID(void) const {
2609    return mainHeader.diskGUID;
2610 } // GPTData::GetDiskGUID()
2611 
2612 // Manage attributes for a partition, based on commands passed to this function.
2613 // (Function is non-interactive.)
2614 // Returns 1 if a modification command succeeded, 0 if the command should not have
2615 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2616 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2617    int retval = 0;
2618    Attributes theAttr;
2619 
2620    if (partNum >= (int) numParts) {
2621       cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2622       retval = -1;
2623    } else {
2624       if (command == "show") {
2625          ShowAttributes(partNum);
2626       } else if (command == "get") {
2627          GetAttribute(partNum, bits);
2628       } else {
2629          theAttr = partitions[partNum].GetAttributes();
2630          if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2631             partitions[partNum].SetAttributes(theAttr.GetAttributes());
2632             retval = 1;
2633          } else {
2634             retval = -1;
2635          } // if/else
2636       } // if/elseif/else
2637    } // if/else invalid partition #
2638 
2639    return retval;
2640 } // GPTData::ManageAttributes()
2641 
2642 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2643 void GPTData::ShowAttributes(const uint32_t partNum) {
2644    if ((partNum < numParts) && partitions[partNum].IsUsed())
2645       partitions[partNum].ShowAttributes(partNum);
2646 } // GPTData::ShowAttributes
2647 
2648 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2649 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2650    if (partNum < numParts)
2651       partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2652 } // GPTData::GetAttribute
2653 
2654 
2655 /******************************************
2656  *                                        *
2657  * Additional non-class support functions *
2658  *                                        *
2659  ******************************************/
2660 
2661 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2662 // never fail these tests, but the struct types may fail depending on compile options.
2663 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2664 // sizes.
SizesOK(void)2665 int SizesOK(void) {
2666    int allOK = 1;
2667 
2668    if (sizeof(uint8_t) != 1) {
2669       cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2670       allOK = 0;
2671    } // if
2672    if (sizeof(uint16_t) != 2) {
2673       cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2674       allOK = 0;
2675    } // if
2676    if (sizeof(uint32_t) != 4) {
2677       cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2678       allOK = 0;
2679    } // if
2680    if (sizeof(uint64_t) != 8) {
2681       cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2682       allOK = 0;
2683    } // if
2684    if (sizeof(struct MBRRecord) != 16) {
2685       cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2686       allOK = 0;
2687    } // if
2688    if (sizeof(struct TempMBR) != 512) {
2689       cerr << "TempMBR is " <<  sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2690       allOK = 0;
2691    } // if
2692    if (sizeof(struct GPTHeader) != 512) {
2693       cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2694       allOK = 0;
2695    } // if
2696    if (sizeof(GPTPart) != 128) {
2697       cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2698       allOK = 0;
2699    } // if
2700    if (sizeof(GUIDData) != 16) {
2701       cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2702       allOK = 0;
2703    } // if
2704    if (sizeof(PartType) != 16) {
2705       cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2706       allOK = 0;
2707    } // if
2708    return (allOK);
2709 } // SizesOK()
2710 
2711