1 /*
2 * Copyright (c) 2023 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "custom_vibration_matcher.h"
17
18 #include "sensors_errors.h"
19 #include "vibrator_hdi_connection.h"
20
21 #undef LOG_TAG
22 #define LOG_TAG "CustomVibrationMatcher"
23
24 namespace OHOS {
25 namespace Sensors {
26 namespace {
27 constexpr int32_t FREQUENCY_MIN = 0;
28 constexpr int32_t FREQUENCY_MAX = 100;
29 constexpr int32_t INTENSITY_MIN = 0;
30 constexpr int32_t INTENSITY_MAX = 100;
31 constexpr int32_t VIBRATOR_DELAY = 20;
32 #ifdef HDF_DRIVERS_INTERFACE_VIBRATOR
33 constexpr int32_t CONTINUOUS_GRADE_NUM = 8;
34 constexpr int32_t CONTINUOUS_GRADE_MASK = 100;
35 constexpr float ROUND_OFFSET = 0.5;
36 constexpr float CONTINUOUS_GRADE_SCALE = 100. / 8;
37 constexpr float INTENSITY_WEIGHT = 0.5;
38 constexpr float FREQUENCY_WEIGHT = 0.5;
39 constexpr float WEIGHT_SUM_INIT = 100;
40 constexpr int32_t EFFECT_ID_BOUNDARY = 1000;
41 constexpr int32_t DURATION_MAX = 1600;
42 #endif // HDF_DRIVERS_INTERFACE_VIBRATOR
43 constexpr float CURVE_INTENSITY_SCALE = 100.00;
44 constexpr float EPSILON = 0.00001;
45 #ifdef HDF_DRIVERS_INTERFACE_VIBRATOR
46 constexpr int32_t SLICE_STEP = 50;
47 constexpr int32_t CONTINUOUS_VIBRATION_DURATION_MIN = 15;
48 constexpr int32_t INDEX_MIN_RESTRICT = 1;
49 constexpr int32_t WAVE_INFO_DIMENSION = 3;
50 #endif // HDF_DRIVERS_INTERFACE_VIBRATOR
51 } // namespace
52
CustomVibrationMatcher()53 CustomVibrationMatcher::CustomVibrationMatcher()
54 {
55 #ifdef HDF_DRIVERS_INTERFACE_VIBRATOR
56 auto &VibratorDevice = VibratorHdiConnection::GetInstance();
57 int32_t ret = VibratorDevice.GetAllWaveInfo(hdfWaveInfos_);
58 if (ret != ERR_OK) {
59 MISC_HILOGE("GetAllWaveInfo failed infoSize:%{public}zu", hdfWaveInfos_.size());
60 return;
61 }
62 if (!hdfWaveInfos_.empty()) {
63 for (auto it = hdfWaveInfos_.begin(); it != hdfWaveInfos_.end(); ++it) {
64 MISC_HILOGI("waveId:%{public}d, intensity:%{public}f, frequency:%{public}f, duration:%{public}d",
65 it->waveId, it->intensity, it->frequency, it->duration);
66 }
67 NormalizedWaveInfo();
68 }
69 }
70
NormalizedWaveInfo()71 void CustomVibrationMatcher::NormalizedWaveInfo()
72 {
73 CALL_LOG_ENTER;
74 auto firstIt = hdfWaveInfos_.begin();
75 float maxIntensity = firstIt->intensity;
76 float minFrequency = firstIt->frequency;
77 float maxFrequency = firstIt->frequency;
78 for (auto it = hdfWaveInfos_.begin(); it != hdfWaveInfos_.end(); ++it) {
79 maxIntensity = (maxIntensity > it->intensity) ? maxIntensity : it->intensity;
80 minFrequency = (minFrequency < it->frequency) ? minFrequency : it->frequency;
81 maxFrequency = (maxFrequency > it->frequency) ? maxFrequency : it->frequency;
82 }
83
84 float intensityEqualValue = maxIntensity / INTENSITY_MAX;
85 float frequencyEqualValue = (maxFrequency - minFrequency) / FREQUENCY_MAX;
86 if ((std::abs(intensityEqualValue) <= EPSILON) || (std::abs(frequencyEqualValue) <= EPSILON)) {
87 MISC_HILOGE("The equal value of intensity or frequency is zero");
88 return;
89 }
90 for (auto it = hdfWaveInfos_.begin(); it != hdfWaveInfos_.end(); ++it) {
91 std::vector<int32_t> normalizedValue;
92 normalizedValue.push_back(static_cast<int32_t>(it->intensity / intensityEqualValue));
93 normalizedValue.push_back(static_cast<int32_t>((it->frequency - minFrequency) / frequencyEqualValue));
94 normalizedValue.push_back(it->duration);
95 waveInfos_[it->waveId] = normalizedValue;
96 }
97 for (auto it = waveInfos_.begin(); it != waveInfos_.end(); ++it) {
98 MISC_HILOGI("waveId:%{public}d, intensity:%{public}d, frequency:%{public}d, duration:%{public}d",
99 it->first, it->second[0], it->second[1], it->second[WAVE_INFO_DIMENSION - 1]);
100 }
101 #endif // HDF_DRIVERS_INTERFACE_VIBRATOR
102 }
103
GetInstance()104 CustomVibrationMatcher &CustomVibrationMatcher::GetInstance()
105 {
106 static CustomVibrationMatcher instance;
107 return instance;
108 }
109
110 #ifdef HDF_DRIVERS_INTERFACE_VIBRATOR
TransformTime(const VibratePackage & package,std::vector<CompositeEffect> & compositeEffects)111 int32_t CustomVibrationMatcher::TransformTime(const VibratePackage &package,
112 std::vector<CompositeEffect> &compositeEffects)
113 {
114 CALL_LOG_ENTER;
115 VibratePattern flatPattern = MixedWaveProcess(package);
116 if (flatPattern.events.empty()) {
117 MISC_HILOGE("The events of pattern is empty");
118 return ERROR;
119 }
120 int32_t frontTime = 0;
121 for (const VibrateEvent &event : flatPattern.events) {
122 TimeEffect timeEffect;
123 timeEffect.delay = event.time - frontTime;
124 timeEffect.time = event.duration;
125 timeEffect.intensity = event.intensity;
126 timeEffect.frequency = event.frequency;
127 CompositeEffect compositeEffect;
128 compositeEffect.timeEffect = timeEffect;
129 compositeEffects.push_back(compositeEffect);
130 frontTime = event.time;
131 }
132 TimeEffect timeEffect;
133 timeEffect.delay = flatPattern.events.back().duration;
134 timeEffect.time = 0;
135 timeEffect.intensity = 0;
136 timeEffect.frequency = 0;
137 CompositeEffect compositeEffect;
138 compositeEffect.timeEffect = timeEffect;
139 compositeEffects.push_back(compositeEffect);
140 return SUCCESS;
141 }
142
TransformEffect(const VibratePackage & package,std::vector<CompositeEffect> & compositeEffects)143 int32_t CustomVibrationMatcher::TransformEffect(const VibratePackage &package,
144 std::vector<CompositeEffect> &compositeEffects)
145 {
146 CALL_LOG_ENTER;
147 VibratePattern flatPattern = MixedWaveProcess(package);
148 if (flatPattern.events.empty()) {
149 MISC_HILOGE("The events of pattern is empty");
150 return ERROR;
151 }
152 int32_t preStartTime = flatPattern.startTime;
153 int32_t preDuration = 0;
154 for (const VibrateEvent &event : flatPattern.events) {
155 if ((event.tag == EVENT_TAG_CONTINUOUS) || waveInfos_.empty()) {
156 PrimitiveEffect primitiveEffect;
157 primitiveEffect.delay = event.time - preStartTime;
158 primitiveEffect.effectId = event.duration;
159 primitiveEffect.intensity = event.intensity;
160 CompositeEffect compositeEffect;
161 compositeEffect.primitiveEffect = primitiveEffect;
162 compositeEffects.push_back(compositeEffect);
163 preStartTime = event.time;
164 preDuration = event.duration;
165 } else if (event.tag == EVENT_TAG_TRANSIENT) {
166 ProcessTransientEvent(event, preStartTime, preDuration, compositeEffects);
167 } else {
168 MISC_HILOGE("Unknown event tag, tag:%{public}d", event.tag);
169 return ERROR;
170 }
171 }
172 PrimitiveEffect primitiveEffect;
173 primitiveEffect.delay = preDuration;
174 primitiveEffect.effectId = 0;
175 primitiveEffect.intensity = 0;
176 CompositeEffect compositeEffect;
177 compositeEffect.primitiveEffect = primitiveEffect;
178 compositeEffects.push_back(compositeEffect);
179 return SUCCESS;
180 }
181 #endif // HDF_DRIVERS_INTERFACE_VIBRATOR
182
MixedWaveProcess(const VibratePackage & package)183 VibratePattern CustomVibrationMatcher::MixedWaveProcess(const VibratePackage &package)
184 {
185 VibratePattern outputPattern;
186 std::vector<VibrateEvent> &outputEvents = outputPattern.events;
187 for (const VibratePattern &pattern : package.patterns) {
188 for (VibrateEvent event : pattern.events) {
189 event.time += pattern.startTime;
190 PreProcessEvent(event);
191 if ((outputEvents.empty()) || (outputEvents.back().tag == EVENT_TAG_TRANSIENT)) {
192 outputEvents.emplace_back(event);
193 } else if ((event.time >= (outputEvents.back().time + outputEvents.back().duration))) {
194 int32_t diffTime = event.time - outputEvents.back().time - outputEvents.back().duration;
195 outputEvents.back().duration += ((diffTime < VIBRATOR_DELAY) ? (diffTime - VIBRATOR_DELAY) : 0);
196 outputEvents.back().duration = std::max(outputEvents.back().duration, 0);
197 outputEvents.emplace_back(event);
198 } else {
199 VibrateEvent &lastEvent = outputEvents.back();
200 VibrateEvent newEvent = {
201 .tag = EVENT_TAG_CONTINUOUS,
202 .time = lastEvent.time,
203 .duration = std::max(lastEvent.time + lastEvent.duration, event.time + event.duration)
204 - lastEvent.time,
205 .intensity = lastEvent.intensity,
206 .frequency = lastEvent.frequency,
207 .index = lastEvent.index,
208 .points = MergeCurve(lastEvent.points, event.points),
209 };
210 outputEvents.pop_back();
211 outputEvents.push_back(newEvent);
212 }
213 }
214 }
215 return outputPattern;
216 }
217
PreProcessEvent(VibrateEvent & event)218 void CustomVibrationMatcher::PreProcessEvent(VibrateEvent &event)
219 {
220 if (event.points.empty()) {
221 VibrateCurvePoint startPoint = {
222 .time = 0,
223 .intensity = INTENSITY_MAX,
224 .frequency = 0,
225 };
226 event.points.push_back(startPoint);
227 VibrateCurvePoint endPoint = {
228 .time = event.duration,
229 .intensity = INTENSITY_MAX,
230 .frequency = 0,
231 };
232 event.points.push_back(endPoint);
233 }
234 #ifdef HDF_DRIVERS_INTERFACE_VIBRATOR
235 event.duration = std::max(event.duration, CONTINUOUS_VIBRATION_DURATION_MIN);
236 #endif // HDF_DRIVERS_INTERFACE_VIBRATOR
237 for (VibrateCurvePoint &curvePoint : event.points) {
238 curvePoint.time += event.time;
239 curvePoint.intensity *= (event.intensity / CURVE_INTENSITY_SCALE);
240 curvePoint.intensity = std::max(curvePoint.intensity, INTENSITY_MIN);
241 curvePoint.intensity = std::min(curvePoint.intensity, INTENSITY_MAX);
242 curvePoint.frequency += event.frequency;
243 curvePoint.frequency = std::max(curvePoint.frequency, FREQUENCY_MIN);
244 curvePoint.frequency = std::min(curvePoint.frequency, FREQUENCY_MAX);
245 }
246 }
247
MergeCurve(const std::vector<VibrateCurvePoint> & curveLeft,const std::vector<VibrateCurvePoint> & curveRight)248 std::vector<VibrateCurvePoint> CustomVibrationMatcher::MergeCurve(const std::vector<VibrateCurvePoint> &curveLeft,
249 const std::vector<VibrateCurvePoint> &curveRight)
250 {
251 if (curveLeft.empty()) {
252 return curveRight;
253 }
254 if (curveRight.empty()) {
255 return curveLeft;
256 }
257 int32_t overlapLeft = std::max(curveLeft.front().time, curveRight.front().time);
258 int32_t overlapRight = std::min(curveLeft.back().time, curveRight.back().time);
259 std::vector<VibrateCurvePoint> newCurve;
260 size_t i = 0;
261 size_t j = 0;
262 while (i < curveLeft.size() || j < curveRight.size()) {
263 while (i < curveLeft.size() && ((curveLeft[i].time < overlapLeft) || (curveLeft[i].time > overlapRight) ||
264 (j == curveRight.size()))) {
265 newCurve.push_back(curveLeft[i]);
266 ++i;
267 }
268 while (j < curveRight.size() && ((curveRight[j].time < overlapLeft) || (curveRight[j].time > overlapRight) ||
269 (i == curveLeft.size()))) {
270 newCurve.push_back(curveRight[j]);
271 ++j;
272 }
273 VibrateCurvePoint newCurvePoint;
274 if (i < curveLeft.size() && j < curveRight.size()) {
275 if ((curveLeft[i].time < curveRight[j].time) && (j > 0)) {
276 int32_t intensity = Interpolation(curveRight[j - 1].time, curveRight[j].time,
277 curveRight[j - 1].intensity, curveRight[j].intensity, curveLeft[i].time);
278 int32_t frequency = Interpolation(curveRight[j - 1].time, curveRight[j].time,
279 curveRight[j - 1].frequency, curveRight[j].frequency, curveLeft[i].time);
280 newCurvePoint.time = curveLeft[i].time;
281 newCurvePoint.intensity = std::max(curveLeft[i].intensity, intensity);
282 newCurvePoint.frequency = (curveLeft[i].frequency + frequency) / 2;
283 ++i;
284 } else if ((curveLeft[i].time > curveRight[j].time) && (i > 0)) {
285 int32_t intensity = Interpolation(curveLeft[i - 1].time, curveLeft[i].time,
286 curveLeft[i - 1].intensity, curveLeft[i].intensity, curveRight[j].time);
287 int32_t frequency = Interpolation(curveLeft[i - 1].time, curveLeft[i].time,
288 curveLeft[i - 1].frequency, curveLeft[i].frequency, curveRight[j].time);
289 newCurvePoint.time = curveRight[j].time;
290 newCurvePoint.intensity = std::max(curveRight[j].intensity, intensity);
291 newCurvePoint.frequency = (curveRight[j].frequency + frequency) / 2;
292 ++j;
293 } else {
294 newCurvePoint.time = curveRight[i].time;
295 newCurvePoint.intensity = std::max(curveLeft[i].intensity, curveRight[j].intensity);
296 newCurvePoint.frequency = (curveLeft[i].frequency + curveRight[j].frequency) / 2;
297 ++i;
298 ++j;
299 }
300 newCurve.push_back(newCurvePoint);
301 }
302 }
303 return newCurve;
304 }
305
306 #ifdef HDF_DRIVERS_INTERFACE_VIBRATOR
ProcessContinuousEvent(const VibrateEvent & event,int32_t & preStartTime,int32_t & preDuration,std::vector<CompositeEffect> & compositeEffects)307 void CustomVibrationMatcher::ProcessContinuousEvent(const VibrateEvent &event, int32_t &preStartTime,
308 int32_t &preDuration, std::vector<CompositeEffect> &compositeEffects)
309 {
310 if (event.duration < 2 * SLICE_STEP) {
311 VibrateSlice slice = {
312 .time = event.time,
313 .duration = event.duration,
314 .intensity = event.intensity,
315 .frequency = event.frequency,
316 };
317 ProcessContinuousEventSlice(slice, preStartTime, preDuration, compositeEffects);
318 return;
319 }
320 const std::vector<VibrateCurvePoint> &curve = event.points;
321 int32_t endTime = curve.back().time;
322 int32_t curTime = curve.front().time;
323 int32_t curIntensity = curve.front().intensity;
324 int32_t curFrequency = curve.front().frequency;
325 int32_t nextTime = 0;
326 int32_t i = 0;
327 while (curTime < endTime) {
328 int32_t nextIntensity = 0;
329 int32_t nextFrequency = 0;
330 if ((endTime - curTime) >= (2 * SLICE_STEP)) {
331 nextTime = curTime + SLICE_STEP;
332 } else {
333 nextTime = endTime;
334 }
335 while (curve[i].time < nextTime) {
336 ++i;
337 }
338 if (i < INDEX_MIN_RESTRICT) {
339 curTime = nextTime;
340 continue;
341 }
342 nextIntensity = Interpolation(curve[i - 1].time, curve[i].time, curve[i - 1].intensity, curve[i].intensity,
343 nextTime);
344 nextFrequency = Interpolation(curve[i - 1].time, curve[i].time, curve[i - 1].frequency, curve[i].frequency,
345 nextTime);
346 VibrateSlice slice = {
347 .time = curTime,
348 .duration = nextTime - curTime,
349 .intensity = (curIntensity + nextIntensity) / 2,
350 .frequency = (curFrequency + nextFrequency) / 2,
351 };
352 ProcessContinuousEventSlice(slice, preStartTime, preDuration, compositeEffects);
353 curTime = nextTime;
354 curIntensity = nextIntensity;
355 curFrequency = nextFrequency;
356 }
357 }
358
ProcessContinuousEventSlice(const VibrateSlice & slice,int32_t & preStartTime,int32_t & preDuration,std::vector<CompositeEffect> & compositeEffects)359 void CustomVibrationMatcher::ProcessContinuousEventSlice(const VibrateSlice &slice, int32_t &preStartTime,
360 int32_t &preDuration, std::vector<CompositeEffect> &compositeEffects)
361 {
362 int32_t grade = -1;
363 if (slice.intensity == INTENSITY_MAX) {
364 grade = CONTINUOUS_GRADE_NUM - 1;
365 } else {
366 grade = round(slice.intensity / CONTINUOUS_GRADE_SCALE + ROUND_OFFSET) - 1;
367 }
368 if ((!compositeEffects.empty()) && (slice.time == preStartTime + preDuration)) {
369 PrimitiveEffect &prePrimitiveEffect = compositeEffects.back().primitiveEffect;
370 int32_t preEffectId = prePrimitiveEffect.effectId;
371 int32_t preGrade = preEffectId % CONTINUOUS_GRADE_MASK;
372 int32_t mergeDuration = preDuration + slice.duration;
373 if (preEffectId > EFFECT_ID_BOUNDARY && preGrade == grade && mergeDuration < DURATION_MAX) {
374 prePrimitiveEffect.effectId = mergeDuration * CONTINUOUS_GRADE_MASK + grade;
375 preDuration = mergeDuration;
376 return;
377 }
378 }
379 PrimitiveEffect primitiveEffect;
380 primitiveEffect.delay = slice.time - preStartTime;
381 primitiveEffect.effectId = slice.duration * CONTINUOUS_GRADE_MASK + grade;
382 CompositeEffect compositeEffect;
383 compositeEffect.primitiveEffect = primitiveEffect;
384 compositeEffects.push_back(compositeEffect);
385 preStartTime = slice.time;
386 preDuration = slice.duration;
387 }
388
ProcessTransientEvent(const VibrateEvent & event,int32_t & preStartTime,int32_t & preDuration,std::vector<CompositeEffect> & compositeEffects)389 void CustomVibrationMatcher::ProcessTransientEvent(const VibrateEvent &event, int32_t &preStartTime,
390 int32_t &preDuration, std::vector<CompositeEffect> &compositeEffects)
391 {
392 int32_t matchId = 0;
393 float minWeightSum = WEIGHT_SUM_INIT;
394 for (const auto &transientInfo : waveInfos_) {
395 int32_t id = transientInfo.first;
396 const std::vector<int32_t> &info = transientInfo.second;
397 float intensityDistance = std::abs(event.intensity - info[0]);
398 float frequencyDistance = std::abs(event.frequency - info[1]);
399 float weightSum = INTENSITY_WEIGHT * intensityDistance + FREQUENCY_WEIGHT * frequencyDistance;
400 if (weightSum < minWeightSum) {
401 minWeightSum = weightSum;
402 matchId = id;
403 }
404 }
405 PrimitiveEffect primitiveEffect;
406 primitiveEffect.delay = event.time - preStartTime;
407 primitiveEffect.effectId = (-matchId);
408 primitiveEffect.intensity = INTENSITY_MAX;
409 CompositeEffect compositeEffect;
410 compositeEffect.primitiveEffect = primitiveEffect;
411 compositeEffects.push_back(compositeEffect);
412 preStartTime = event.time;
413 preDuration = event.duration;
414 }
415 #endif // HDF_DRIVERS_INTERFACE_VIBRATOR
416
Interpolation(int32_t x1,int32_t x2,int32_t y1,int32_t y2,int32_t x)417 int32_t CustomVibrationMatcher::Interpolation(int32_t x1, int32_t x2, int32_t y1, int32_t y2, int32_t x)
418 {
419 if (x1 == x2) {
420 return y1;
421 }
422 float delta_y = static_cast<float>(y2 - y1);
423 float delta_x = static_cast<float>(x2 - x1);
424 return y1 + delta_y / delta_x * (x - x1);
425 }
426 } // namespace Sensors
427 } // namespace OHOS
428