1 /*
2 * Copyright 2021 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef FLATBUFFERS_ARRAY_H_
18 #define FLATBUFFERS_ARRAY_H_
19
20 #include <cstdint>
21 #include <memory>
22
23 #include "flatbuffers/base.h"
24 #include "flatbuffers/stl_emulation.h"
25 #include "flatbuffers/vector.h"
26
27 namespace flatbuffers {
28
29 // This is used as a helper type for accessing arrays.
30 template<typename T, uint16_t length> class Array {
31 // Array<T> can carry only POD data types (scalars or structs).
32 typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value>
33 scalar_tag;
34 typedef
35 typename flatbuffers::conditional<scalar_tag::value, T, const T *>::type
36 IndirectHelperType;
37
38 public:
39 typedef uint16_t size_type;
40 typedef typename IndirectHelper<IndirectHelperType>::return_type return_type;
41 typedef VectorConstIterator<T, return_type, uoffset_t> const_iterator;
42 typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
43
44 // If T is a LE-scalar or a struct (!scalar_tag::value).
45 static FLATBUFFERS_CONSTEXPR bool is_span_observable =
46 (scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1)) ||
47 !scalar_tag::value;
48
size()49 FLATBUFFERS_CONSTEXPR uint16_t size() const { return length; }
50
Get(uoffset_t i)51 return_type Get(uoffset_t i) const {
52 FLATBUFFERS_ASSERT(i < size());
53 return IndirectHelper<IndirectHelperType>::Read(Data(), i);
54 }
55
56 return_type operator[](uoffset_t i) const { return Get(i); }
57
58 // If this is a Vector of enums, T will be its storage type, not the enum
59 // type. This function makes it convenient to retrieve value with enum
60 // type E.
GetEnum(uoffset_t i)61 template<typename E> E GetEnum(uoffset_t i) const {
62 return static_cast<E>(Get(i));
63 }
64
begin()65 const_iterator begin() const { return const_iterator(Data(), 0); }
end()66 const_iterator end() const { return const_iterator(Data(), size()); }
67
rbegin()68 const_reverse_iterator rbegin() const {
69 return const_reverse_iterator(end());
70 }
rend()71 const_reverse_iterator rend() const {
72 return const_reverse_iterator(begin());
73 }
74
cbegin()75 const_iterator cbegin() const { return begin(); }
cend()76 const_iterator cend() const { return end(); }
77
crbegin()78 const_reverse_iterator crbegin() const { return rbegin(); }
crend()79 const_reverse_iterator crend() const { return rend(); }
80
81 // Get a mutable pointer to elements inside this array.
82 // This method used to mutate arrays of structs followed by a @p Mutate
83 // operation. For primitive types use @p Mutate directly.
84 // @warning Assignments and reads to/from the dereferenced pointer are not
85 // automatically converted to the correct endianness.
86 typename flatbuffers::conditional<scalar_tag::value, void, T *>::type
GetMutablePointer(uoffset_t i)87 GetMutablePointer(uoffset_t i) const {
88 FLATBUFFERS_ASSERT(i < size());
89 return const_cast<T *>(&data()[i]);
90 }
91
92 // Change elements if you have a non-const pointer to this object.
Mutate(uoffset_t i,const T & val)93 void Mutate(uoffset_t i, const T &val) { MutateImpl(scalar_tag(), i, val); }
94
95 // The raw data in little endian format. Use with care.
Data()96 const uint8_t *Data() const { return data_; }
97
Data()98 uint8_t *Data() { return data_; }
99
100 // Similarly, but typed, much like std::vector::data
data()101 const T *data() const { return reinterpret_cast<const T *>(Data()); }
data()102 T *data() { return reinterpret_cast<T *>(Data()); }
103
104 // Copy data from a span with endian conversion.
105 // If this Array and the span overlap, the behavior is undefined.
CopyFromSpan(flatbuffers::span<const T,length> src)106 void CopyFromSpan(flatbuffers::span<const T, length> src) {
107 const auto p1 = reinterpret_cast<const uint8_t *>(src.data());
108 const auto p2 = Data();
109 FLATBUFFERS_ASSERT(!(p1 >= p2 && p1 < (p2 + length)) &&
110 !(p2 >= p1 && p2 < (p1 + length)));
111 (void)p1;
112 (void)p2;
113 CopyFromSpanImpl(flatbuffers::bool_constant<is_span_observable>(), src);
114 }
115
116 protected:
MutateImpl(flatbuffers::true_type,uoffset_t i,const T & val)117 void MutateImpl(flatbuffers::true_type, uoffset_t i, const T &val) {
118 FLATBUFFERS_ASSERT(i < size());
119 WriteScalar(data() + i, val);
120 }
121
MutateImpl(flatbuffers::false_type,uoffset_t i,const T & val)122 void MutateImpl(flatbuffers::false_type, uoffset_t i, const T &val) {
123 *(GetMutablePointer(i)) = val;
124 }
125
CopyFromSpanImpl(flatbuffers::true_type,flatbuffers::span<const T,length> src)126 void CopyFromSpanImpl(flatbuffers::true_type,
127 flatbuffers::span<const T, length> src) {
128 // Use std::memcpy() instead of std::copy() to avoid performance degradation
129 // due to aliasing if T is char or unsigned char.
130 // The size is known at compile time, so memcpy would be inlined.
131 std::memcpy(data(), src.data(), length * sizeof(T));
132 }
133
134 // Copy data from flatbuffers::span with endian conversion.
CopyFromSpanImpl(flatbuffers::false_type,flatbuffers::span<const T,length> src)135 void CopyFromSpanImpl(flatbuffers::false_type,
136 flatbuffers::span<const T, length> src) {
137 for (size_type k = 0; k < length; k++) { Mutate(k, src[k]); }
138 }
139
140 // This class is only used to access pre-existing data. Don't ever
141 // try to construct these manually.
142 // 'constexpr' allows us to use 'size()' at compile time.
143 // @note Must not use 'FLATBUFFERS_CONSTEXPR' here, as const is not allowed on
144 // a constructor.
145 #if defined(__cpp_constexpr)
146 constexpr Array();
147 #else
148 Array();
149 #endif
150
151 uint8_t data_[length * sizeof(T)];
152
153 private:
154 // This class is a pointer. Copying will therefore create an invalid object.
155 // Private and unimplemented copy constructor.
156 Array(const Array &);
157 Array &operator=(const Array &);
158 };
159
160 // Specialization for Array[struct] with access using Offset<void> pointer.
161 // This specialization used by idl_gen_text.cpp.
162 template<typename T, uint16_t length, template<typename> class OffsetT>
163 class Array<OffsetT<T>, length> {
164 static_assert(flatbuffers::is_same<T, void>::value, "unexpected type T");
165
166 public:
167 typedef const void *return_type;
168 typedef uint16_t size_type;
169
Data()170 const uint8_t *Data() const { return data_; }
171
172 // Make idl_gen_text.cpp::PrintContainer happy.
173 return_type operator[](uoffset_t) const {
174 FLATBUFFERS_ASSERT(false);
175 return nullptr;
176 }
177
178 private:
179 // This class is only used to access pre-existing data.
180 Array();
181 Array(const Array &);
182 Array &operator=(const Array &);
183
184 uint8_t data_[1];
185 };
186
187 template<class U, uint16_t N>
make_span(Array<U,N> & arr)188 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U, N> make_span(Array<U, N> &arr)
189 FLATBUFFERS_NOEXCEPT {
190 static_assert(
191 Array<U, N>::is_span_observable,
192 "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
193 return span<U, N>(arr.data(), N);
194 }
195
196 template<class U, uint16_t N>
make_span(const Array<U,N> & arr)197 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U, N> make_span(
198 const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
199 static_assert(
200 Array<U, N>::is_span_observable,
201 "wrong type U, only plain struct, LE-scalar, or byte types are allowed");
202 return span<const U, N>(arr.data(), N);
203 }
204
205 template<class U, uint16_t N>
206 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t, sizeof(U) * N>
make_bytes_span(Array<U,N> & arr)207 make_bytes_span(Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
208 static_assert(Array<U, N>::is_span_observable,
209 "internal error, Array<T> might hold only scalars or structs");
210 return span<uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
211 }
212
213 template<class U, uint16_t N>
214 FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t, sizeof(U) * N>
make_bytes_span(const Array<U,N> & arr)215 make_bytes_span(const Array<U, N> &arr) FLATBUFFERS_NOEXCEPT {
216 static_assert(Array<U, N>::is_span_observable,
217 "internal error, Array<T> might hold only scalars or structs");
218 return span<const uint8_t, sizeof(U) * N>(arr.Data(), sizeof(U) * N);
219 }
220
221 // Cast a raw T[length] to a raw flatbuffers::Array<T, length>
222 // without endian conversion. Use with care.
223 // TODO: move these Cast-methods to `internal` namespace.
224 template<typename T, uint16_t length>
CastToArray(T (& arr)[length])225 Array<T, length> &CastToArray(T (&arr)[length]) {
226 return *reinterpret_cast<Array<T, length> *>(arr);
227 }
228
229 template<typename T, uint16_t length>
CastToArray(const T (& arr)[length])230 const Array<T, length> &CastToArray(const T (&arr)[length]) {
231 return *reinterpret_cast<const Array<T, length> *>(arr);
232 }
233
234 template<typename E, typename T, uint16_t length>
CastToArrayOfEnum(T (& arr)[length])235 Array<E, length> &CastToArrayOfEnum(T (&arr)[length]) {
236 static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
237 return *reinterpret_cast<Array<E, length> *>(arr);
238 }
239
240 template<typename E, typename T, uint16_t length>
CastToArrayOfEnum(const T (& arr)[length])241 const Array<E, length> &CastToArrayOfEnum(const T (&arr)[length]) {
242 static_assert(sizeof(E) == sizeof(T), "invalid enum type E");
243 return *reinterpret_cast<const Array<E, length> *>(arr);
244 }
245
246 template<typename T, uint16_t length>
247 bool operator==(const Array<T, length> &lhs,
248 const Array<T, length> &rhs) noexcept {
249 return std::addressof(lhs) == std::addressof(rhs) ||
250 (lhs.size() == rhs.size() &&
251 std::memcmp(lhs.Data(), rhs.Data(), rhs.size() * sizeof(T)) == 0);
252 }
253
254 } // namespace flatbuffers
255
256 #endif // FLATBUFFERS_ARRAY_H_
257