• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jdhuff_opt.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8  * Copyright (C) 2018, Matthias Räncker.
9  * For conditions of distribution and use, see the accompanying README.ijg
10  * file.
11  *
12  * This file contains Huffman entropy decoding routines.
13  *
14  * Much of the complexity here has to do with supporting input suspension.
15  * If the data source module demands suspension, we want to be able to back
16  * up to the start of the current MCU.  To do this, we copy state variables
17  * into local working storage, and update them back to the permanent
18  * storage only upon successful completion of an MCU.
19  *
20  * NOTE: All referenced figures are from
21  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22  */
23 
24 #define JPEG_INTERNALS
25 #include "jinclude.h"
26 #include "jpeglib.h"
27 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28 #include "jpegcomp.h"
29 #include "jstdhuff.c"
30 
31 
32 /*
33  * Expanded entropy decoder object for Huffman decoding.
34  *
35  * The savable_state subrecord contains fields that change within an MCU,
36  * but must not be updated permanently until we complete the MCU.
37  */
38 
39 typedef struct {
40   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41 } savable_state;
42 
43 typedef struct {
44   struct jpeg_entropy_decoder pub; /* public fields */
45 
46   /* These fields are loaded into local variables at start of each MCU.
47    * In case of suspension, we exit WITHOUT updating them.
48    */
49   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50   savable_state saved;          /* Other state at start of MCU */
51 
52   /* These fields are NOT loaded into local working state. */
53   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54 
55   /* Pointers to derived tables (these workspaces have image lifespan) */
56   d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57   d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58 
59   /* Precalculated info set up by start_pass for use in decode_mcu: */
60 
61   /* Pointers to derived tables to be used for each block within an MCU */
62   d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63   d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64   /* Whether we care about the DC and AC coefficient values for each block */
65   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67 } huff_entropy_decoder;
68 
69 typedef huff_entropy_decoder *huff_entropy_ptr;
70 
71 /*
72  * Figure F.12: extend sign bit.
73  * On some machines, a shift and add will be faster than a table lookup.
74  */
75 
76 #define AVOID_TABLES
77 #ifdef AVOID_TABLES
78 
79 #define NEG_1  ((unsigned int)-1)
80 #define HUFF_EXTEND(x, s) \
81   ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
82 
83 #else
84 
85 #define HUFF_EXTEND(x, s) \
86   ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
87 
88 static const int extend_test[16] = {   /* entry n is 2**(n-1) */
89   0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
90   0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
91 };
92 
93 static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
94   0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
95   ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
96   ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
97   ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
98 };
99 
100 #endif /* AVOID_TABLES */
101 
102 /*
103  * Initialize for a Huffman-compressed scan.
104  */
105 
106 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)107 start_pass_huff_decoder(j_decompress_ptr cinfo)
108 {
109   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
110   int ci, blkn, dctbl, actbl;
111   d_derived_tbl **pdtbl;
112   jpeg_component_info *compptr;
113 
114   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
115    * This ought to be an error condition, but we make it a warning because
116    * there are some baseline files out there with all zeroes in these bytes.
117    */
118   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
119       cinfo->Ah != 0 || cinfo->Al != 0)
120     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
121 
122   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
123     compptr = cinfo->cur_comp_info[ci];
124     dctbl = compptr->dc_tbl_no;
125     actbl = compptr->ac_tbl_no;
126     /* Compute derived values for Huffman tables */
127     /* We may do this more than once for a table, but it's not expensive */
128     pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
129     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
130     pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
131     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
132     /* Initialize DC predictions to 0 */
133     entropy->saved.last_dc_val[ci] = 0;
134   }
135 
136   /* Precalculate decoding info for each block in an MCU of this scan */
137   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
138     ci = cinfo->MCU_membership[blkn];
139     compptr = cinfo->cur_comp_info[ci];
140     /* Precalculate which table to use for each block */
141     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
142     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
143     /* Decide whether we really care about the coefficient values */
144     if (compptr->component_needed) {
145       entropy->dc_needed[blkn] = TRUE;
146       /* we don't need the ACs if producing a 1/8th-size image */
147       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
148     } else {
149       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
150     }
151   }
152 
153   /* Initialize bitread state variables */
154   entropy->bitstate.bits_left = 0;
155   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
156   entropy->pub.insufficient_data = FALSE;
157 
158   /* Initialize restart counter */
159   entropy->restarts_to_go = cinfo->restart_interval;
160 }
161 
162 LOCAL(void)
jpeg_make_d_ac_derived_tbl(JHUFF_TBL * htbl,d_derived_tbl * dtbl,const unsigned int * huffcode)163 jpeg_make_d_ac_derived_tbl(JHUFF_TBL *htbl, d_derived_tbl *dtbl, const unsigned int* huffcode)
164 {
165   // Look up tables for AC, index is huffman code, value is the symbol and the length
166   // htbl->bits[l], number of symbol that of which the code length is l
167   // htbl->huffval[l], symbol in order
168   int p, i, l, lookbits, ctr;
169   // nb <= LOOKAHEAD
170   p = 0;
171   int coef0;
172   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
173     for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
174       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
175       /* Generate left-justified code followed by all possible bit sequences */
176       UINT8 rs = htbl->huffval[p]; // run length symbol (zero num + coeff bits)
177       UINT8 coef_bits = rs & 0x0F;
178       if ((l + coef_bits) <= HUFF_LOOKAHEAD) {
179         // save DCT coeffs in higher bits
180         for (coef0 = 0; coef0 < (1 << coef_bits); coef0++) {
181           INT16 coef_value = HUFF_EXTEND(coef0, coef_bits);  // save value after extended.
182           lookbits = (huffcode[p] << (HUFF_LOOKAHEAD - l)) | (coef0 << (HUFF_LOOKAHEAD - l - coef_bits));
183           for (ctr = 1 << (HUFF_LOOKAHEAD - l - coef_bits); ctr > 0; ctr--) {
184             if (coef_bits == 0 && (rs >> 4) != 0xF) { // the low 4 bits are number of coef bits
185               // use 63 to exit the loop when symbol is 00
186               dtbl->lookup[lookbits] = MAKE_COEF1(coef_value) | MAKE_NB(l + coef_bits) | MAKE_ZERO_NUM1(63);
187              } else { // F0 and other symbols
188               // save the low 4 bits
189               dtbl->lookup[lookbits] = MAKE_COEF1(coef_value) | MAKE_NB(l + coef_bits) | MAKE_ZERO_NUM1(rs >> 4);
190             }
191             lookbits++;
192           }
193         }
194       } else {
195         // same as the original lookup table
196         lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
197         for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
198           dtbl->lookup[lookbits] = MAKE_NB(l) | MAKE_SYM(rs);
199           lookbits++;
200         }
201       }
202     }
203   }
204   // nb > LOOKAHEAD
205   int offset = 0;
206   int base = 1 << HUFF_LOOKAHEAD;
207   int short_tbl_index = 0xFFFFFFFF;
208   int cur_long_tbl_base = 1 << HUFF_LOOKAHEAD;
209   int left;
210   int offset_bit = 0;
211   int first = p;  // the index of the first code of this length.
212   int max_code_len;
213   for (max_code_len = MAX_HUFF_CODE_LEN; max_code_len >= 1; max_code_len--) {
214     if (htbl->bits[max_code_len]) {
215         break;
216     }
217   }
218   for (l = HUFF_LOOKAHEAD + 1; l <= MAX_HUFF_CODE_LEN; l++) {
219     for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
220       UINT8 rs = htbl->huffval[p]; // run length symbol (zero num + coeff bits)
221       UINT8 coef_bits = rs & 0x0f;
222       // similar as 1st table as before
223       lookbits = huffcode[p] >> (l - HUFF_LOOKAHEAD); // index in 1st table
224       // check if a new 2nd tbl should be created
225       if (lookbits != short_tbl_index) {
226         short_tbl_index = lookbits;
227         cur_long_tbl_base += offset;
228         offset = 0;
229         offset_bit = l - HUFF_LOOKAHEAD;
230         left = (1 << offset_bit) - (htbl->bits[l] - (p - first));
231         while (offset_bit + HUFF_LOOKAHEAD < max_code_len && left > 0) {
232           offset_bit++;
233           left = (left << 1) - htbl->bits[offset_bit + HUFF_LOOKAHEAD];
234         }
235       }
236       base = cur_long_tbl_base;
237       // set 1st table value
238       dtbl->lookup[lookbits] = MAKE_BASE(base) | MAKE_NB(l) | MAKE_EXTRA_BITS(offset_bit);
239       // set 2nd table value
240       // index is guarenteed to be valid
241       for (ctr = 0; ctr < (1 << (offset_bit - (l - HUFF_LOOKAHEAD))); ctr++) {
242         if (coef_bits == 0) {
243           dtbl->lookup[base + offset] = MAKE_NB(l) | MAKE_SYM(rs) | MAKE_COEF_BITS(0xF);
244         } else {
245           dtbl->lookup[base + offset] = MAKE_NB(l) | MAKE_SYM(rs);
246         }
247         offset++;
248       }
249     }
250     first = p;
251   }
252 }
253 
254 /*
255  * Compute the derived values for a Huffman table.
256  * This routine also performs some validation checks on the table.
257  *
258  * Note this is also used by jdphuff.c.
259  */
260 
261 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)262 jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
263                         d_derived_tbl **pdtbl)
264 {
265   JHUFF_TBL *htbl;
266   d_derived_tbl *dtbl;
267   int p, i, l, si, numsymbols;
268   int lookbits, ctr;
269   char huffsize[257];
270   unsigned int huffcode[257];
271   unsigned int code;
272 
273   /* Note that huffsize[] and huffcode[] are filled in code-length order,
274    * paralleling the order of the symbols themselves in htbl->huffval[].
275    */
276 
277   /* Find the input Huffman table */
278   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
279     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
280   htbl =
281     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
282   if (htbl == NULL)
283     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
284 
285   /* Allocate a workspace if we haven't already done so. */
286   if (*pdtbl == NULL)
287     *pdtbl = (d_derived_tbl *)
288       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
289                                   sizeof(d_derived_tbl));
290   dtbl = *pdtbl;
291   dtbl->pub = htbl;             /* fill in back link */
292 
293   /* Figure C.1: make table of Huffman code length for each symbol */
294 
295   p = 0;
296   for (l = 1; l <= MAX_HUFF_CODE_LEN; l++) {
297     i = (int)htbl->bits[l];
298     if (i < 0 || p + i > 256)   /* protect against table overrun, 256 is the max number of symbols */
299       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
300     while (i--)
301       huffsize[p++] = (char)l;
302   }
303   huffsize[p] = 0;
304   numsymbols = p;
305 
306   /* Figure C.2: generate the codes themselves */
307   /* We also validate that the counts represent a legal Huffman code tree. */
308 
309   code = 0;
310   si = huffsize[0];
311   p = 0;
312   while (huffsize[p]) {
313     while (((int)huffsize[p]) == si) {
314       huffcode[p++] = code;
315       code++;
316     }
317     /* code is now 1 more than the last code used for codelength si; but
318      * it must still fit in si bits, since no code is allowed to be all ones.
319      */
320     if (((JLONG)code) >= (((JLONG)1) << si))
321       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
322     code <<= 1;
323     si++;
324   }
325 
326   /* Figure F.15: generate decoding tables for bit-sequential decoding */
327 
328   p = 0;
329   for (l = 1; l <= MAX_HUFF_CODE_LEN; l++) {
330     if (htbl->bits[l]) {
331       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
332        * minus the minimum code of length l
333        */
334       dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
335       p += htbl->bits[l];
336       dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
337     } else {
338       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
339     }
340   }
341   dtbl->valoffset[17] = 0;  /* 17 is always max symbol length in Huffman spec */
342   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates, 17 has the same meaning above */
343 
344   /* Compute lookahead tables to speed up decoding.
345    * First we set all the table entries to 0, indicating "too long";
346    * then we iterate through the Huffman codes that are short enough and
347    * fill in all the entries that correspond to bit sequences starting
348    * with that code.
349    */
350 
351   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) {
352     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
353   }
354   if (!isDC) {
355     jpeg_make_d_ac_derived_tbl(htbl, dtbl, huffcode);
356   } else {
357     for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
358       dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
359     p = 0;
360     for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
361       for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
362         /* l = current code's length, p = its index in huffcode[] & huffval[]. */
363         /* Generate left-justified code followed by all possible bit sequences */
364         lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
365         for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
366           dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
367           lookbits++;
368         }
369       }
370     }
371   }
372 
373   /* Validate symbols as being reasonable.
374    * For AC tables, we make no check, but accept all byte values 0..255.
375    * For DC tables, we require the symbols to be in range 0..15.
376    * (Tighter bounds could be applied depending on the data depth and mode,
377    * but this is sufficient to ensure safe decoding.)
378    */
379   if (isDC) {
380     for (i = 0; i < numsymbols; i++) {
381       int sym = htbl->huffval[i];
382       if (sym < 0 || sym > 15)  // 15 is the max value of DC symbol
383         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
384     }
385   }
386 }
387 
388 
389 /*
390  * Out-of-line code for bit fetching (shared with jdphuff.c).
391  * See jdhuff.h for info about usage.
392  * Note: current values of get_buffer and bits_left are passed as parameters,
393  * but are returned in the corresponding fields of the state struct.
394  *
395  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
396  * of get_buffer to be used.  (On machines with wider words, an even larger
397  * buffer could be used.)  However, on some machines 32-bit shifts are
398  * quite slow and take time proportional to the number of places shifted.
399  * (This is true with most PC compilers, for instance.)  In this case it may
400  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
401  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
402  */
403 
404 #ifdef SLOW_SHIFT_32
405 #define MIN_GET_BITS  15        /* minimum allowable value */
406 #else
407 #define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
408 #endif
409 
410 
411 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)412 jpeg_fill_bit_buffer(bitread_working_state *state,
413                      register bit_buf_type get_buffer, register int bits_left,
414                      int nbits)
415 /* Load up the bit buffer to a depth of at least nbits */
416 {
417   /* Copy heavily used state fields into locals (hopefully registers) */
418   register const JOCTET *next_input_byte = state->next_input_byte;
419   register size_t bytes_in_buffer = state->bytes_in_buffer;
420   j_decompress_ptr cinfo = state->cinfo;
421 
422   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
423   /* (It is assumed that no request will be for more than that many bits.) */
424   /* We fail to do so only if we hit a marker or are forced to suspend. */
425 
426   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
427     while (bits_left < MIN_GET_BITS) {
428       register int c;
429 
430       /* Attempt to read a byte */
431       if (bytes_in_buffer == 0) {
432         if (!(*cinfo->src->fill_input_buffer) (cinfo))
433           return FALSE;
434         next_input_byte = cinfo->src->next_input_byte;
435         bytes_in_buffer = cinfo->src->bytes_in_buffer;
436       }
437       bytes_in_buffer--;
438       c = *next_input_byte++;
439 
440       /* If it's 0xFF, check and discard stuffed zero byte */
441       if (c == 0xFF) {
442         /* Loop here to discard any padding FF's on terminating marker,
443          * so that we can save a valid unread_marker value.  NOTE: we will
444          * accept multiple FF's followed by a 0 as meaning a single FF data
445          * byte.  This data pattern is not valid according to the standard.
446          */
447         do {
448           if (bytes_in_buffer == 0) {
449             if (!(*cinfo->src->fill_input_buffer) (cinfo))
450               return FALSE;
451             next_input_byte = cinfo->src->next_input_byte;
452             bytes_in_buffer = cinfo->src->bytes_in_buffer;
453           }
454           bytes_in_buffer--;
455           c = *next_input_byte++;
456         } while (c == 0xFF);
457 
458         if (c == 0) {
459           /* Found FF/00, which represents an FF data byte */
460           c = 0xFF;
461         } else {
462           /* Oops, it's actually a marker indicating end of compressed data.
463            * Save the marker code for later use.
464            * Fine point: it might appear that we should save the marker into
465            * bitread working state, not straight into permanent state.  But
466            * once we have hit a marker, we cannot need to suspend within the
467            * current MCU, because we will read no more bytes from the data
468            * source.  So it is OK to update permanent state right away.
469            */
470           cinfo->unread_marker = c;
471           /* See if we need to insert some fake zero bits. */
472           goto no_more_bytes;
473         }
474       }
475 
476       /* OK, load c into get_buffer */
477       get_buffer = (get_buffer << 8) | c; // read 8 bits every time
478       bits_left += 8; // read 8 bits every time
479     } /* end while */
480   } else {
481 no_more_bytes:
482     /* We get here if we've read the marker that terminates the compressed
483      * data segment.  There should be enough bits in the buffer register
484      * to satisfy the request; if so, no problem.
485      */
486     if (nbits > bits_left) {
487       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
488        * the data stream, so that we can produce some kind of image.
489        * We use a nonvolatile flag to ensure that only one warning message
490        * appears per data segment.
491        */
492       if (!cinfo->entropy->insufficient_data) {
493         WARNMS(cinfo, JWRN_HIT_MARKER);
494         cinfo->entropy->insufficient_data = TRUE;
495       }
496       /* Fill the buffer with zero bits */
497       get_buffer <<= MIN_GET_BITS - bits_left;
498       bits_left = MIN_GET_BITS;
499     }
500   }
501 
502   /* Unload the local registers */
503   state->next_input_byte = next_input_byte;
504   state->bytes_in_buffer = bytes_in_buffer;
505   state->get_buffer = get_buffer;
506   state->bits_left = bits_left;
507 
508   return TRUE;
509 }
510 
511 
512 /* Macro version of the above, which performs much better but does not
513    handle markers.  We have to hand off any blocks with markers to the
514    slower routines. */
515 
516 #define GET_BYTE { \
517   register int c0, c1; \
518   c0 = *buffer++; \
519   c1 = *buffer; \
520   /* Pre-execute most common case */ \
521   get_buffer = (get_buffer << 8) | c0; \
522   bits_left += 8; \
523   if (c0 == 0xFF) { \
524     /* Pre-execute case of FF/00, which represents an FF data byte */ \
525     buffer++; \
526     if (c1 != 0) { \
527       /* Oops, it's actually a marker indicating end of compressed data. */ \
528       cinfo->unread_marker = c1; \
529       /* Back out pre-execution and fill the buffer with zero bits */ \
530       buffer -= 2; \
531       get_buffer &= ~0xFF; \
532     } \
533   } \
534 }
535 
536 #if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
537 
538 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
539 #define FILL_BIT_BUFFER_FAST \
540   if (bits_left <= 16) { \
541     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
542   }
543 
544 #else
545 
546 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
547 #define FILL_BIT_BUFFER_FAST \
548   if (bits_left <= 16) { \
549     GET_BYTE GET_BYTE \
550   }
551 
552 #endif
553 
554 
555 /*
556  * Out-of-line code for Huffman code decoding.
557  * See jdhuff.h for info about usage.
558  */
559 
560 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)561 jpeg_huff_decode(bitread_working_state *state,
562                  register bit_buf_type get_buffer, register int bits_left,
563                  d_derived_tbl *htbl, int min_bits)
564 {
565   register int l = min_bits;
566   register JLONG code;
567 
568   /* HUFF_DECODE has determined that the code is at least min_bits */
569   /* bits long, so fetch that many bits in one swoop. */
570 
571   CHECK_BIT_BUFFER(*state, l, return -1);
572   code = GET_BITS(l);
573 
574   /* Collect the rest of the Huffman code one bit at a time. */
575   /* This is per Figure F.16. */
576 
577   while (code > htbl->maxcode[l]) {
578     code <<= 1;
579     CHECK_BIT_BUFFER(*state, 1, return -1);
580     code |= GET_BITS(1);
581     l++;
582   }
583 
584   /* Unload the local registers */
585   state->get_buffer = get_buffer;
586   state->bits_left = bits_left;
587 
588   /* With garbage input we may reach the sentinel value l = 17. */
589 
590   if (l > MAX_HUFF_CODE_LEN) {
591     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
592     return 0;                   /* fake a zero as the safest result */
593   }
594 
595   return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
596 }
597 
598 /*
599  * Check for a restart marker & resynchronize decoder.
600  * Returns FALSE if must suspend.
601  */
602 
603 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)604 process_restart(j_decompress_ptr cinfo)
605 {
606   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
607   int ci;
608 
609   /* Throw away any unused bits remaining in bit buffer; */
610   /* include any full bytes in next_marker's count of discarded bytes */
611   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; // 8 bits in a byte
612   entropy->bitstate.bits_left = 0;
613 
614   /* Advance past the RSTn marker */
615   if (!(*cinfo->marker->read_restart_marker) (cinfo))
616     return FALSE;
617 
618   /* Re-initialize DC predictions to 0 */
619   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
620     entropy->saved.last_dc_val[ci] = 0;
621 
622   /* Reset restart counter */
623   entropy->restarts_to_go = cinfo->restart_interval;
624 
625   /* Reset out-of-data flag, unless read_restart_marker left us smack up
626    * against a marker.  In that case we will end up treating the next data
627    * segment as empty, and we can avoid producing bogus output pixels by
628    * leaving the flag set.
629    */
630   if (cinfo->unread_marker == 0)
631     entropy->pub.insufficient_data = FALSE;
632 
633   return TRUE;
634 }
635 
636 
637 #if defined(__has_feature)
638 #if __has_feature(undefined_behavior_sanitizer)
639 __attribute__((no_sanitize("signed-integer-overflow"),
640                no_sanitize("unsigned-integer-overflow")))
641 #endif
642 #endif
643 LOCAL(boolean)
decode_mcu_slow(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)644 decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
645 {
646   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
647   BITREAD_STATE_VARS;
648   int blkn;
649   savable_state state;
650   /* Outer loop handles each block in the MCU */
651 
652   /* Load up working state */
653   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
654   state = entropy->saved;
655 
656   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
657     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
658     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
659     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
660     register int s, k, r;
661 
662     /* Decode a single block's worth of coefficients */
663 
664     /* Section F.2.2.1: decode the DC coefficient difference */
665     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
666     if (s) {
667       CHECK_BIT_BUFFER(br_state, s, return FALSE);
668       r = GET_BITS(s);
669       s = HUFF_EXTEND(r, s);
670     }
671 
672     if (entropy->dc_needed[blkn]) {
673       /* Convert DC difference to actual value, update last_dc_val */
674       int ci = cinfo->MCU_membership[blkn];
675       /* Certain malformed JPEG images produce repeated DC coefficient
676        * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
677        * grow until it overflows or underflows a 32-bit signed integer.  This
678        * behavior is, to the best of our understanding, innocuous, and it is
679        * unclear how to work around it without potentially affecting
680        * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
681        * overflow errors for this function.
682        */
683       s += state.last_dc_val[ci];
684       state.last_dc_val[ci] = s;
685       if (block) {
686         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
687         (*block)[0] = (JCOEF)s;
688       }
689     }
690 
691     if (entropy->ac_needed[blkn] && block) {
692       /* Section F.2.2.2: decode the AC coefficients */
693       /* Since zeroes are skipped, output area must be cleared beforehand */
694       for (k = 1; k < DCTSIZE2; k++) {
695         register int nb, look;
696         if (bits_left < HUFF_LOOKAHEAD) {
697           if (!jpeg_fill_bit_buffer(&br_state, get_buffer, bits_left, 0)) {
698             return FALSE;
699           }
700           get_buffer = br_state.get_buffer;
701           bits_left = br_state.bits_left;
702           if (bits_left < HUFF_LOOKAHEAD) {
703             nb = 1;
704             goto slowlabel;
705           }
706         }
707         look = PEEK_BITS(HUFF_LOOKAHEAD);
708         r = actbl->lookup[look];
709         nb = GET_NB(r);
710         unsigned int zero_num;
711         unsigned int coef_bits = GET_COEF_BITS(r);
712         if (nb <= HUFF_LOOKAHEAD) {
713           DROP_BITS(nb);
714           s = actbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1);
715           zero_num = GET_ZERO_NUM1(r);
716           k += zero_num;
717           if (coef_bits == 0) {
718             s = GET_COEF1(r);
719             (*block)[jpeg_natural_order[k]] = (JCOEF)s;
720           } else {
721             CHECK_BIT_BUFFER(br_state, (int)coef_bits, return FALSE);
722             r = GET_BITS(coef_bits);
723             s = HUFF_EXTEND(r, coef_bits);
724             (*block)[jpeg_natural_order[k]] = (JCOEF)s;
725           }
726         } else {
727         slowlabel:
728           nb = 1;
729           if ((s = jpeg_huff_decode(&br_state, get_buffer, bits_left, actbl, nb)) < 0) { return FALSE; }
730           get_buffer = br_state.get_buffer;
731           bits_left = br_state.bits_left;
732 
733           r = s >> 4; // get higher 4 bits
734           s &= 15;  // use 15 as a mask to get the lower 4 bits
735 
736           if (s) {
737             k += r;
738             CHECK_BIT_BUFFER(br_state, s, return FALSE);
739             r = GET_BITS(s);
740             s = HUFF_EXTEND(r, s);
741             /* Output coefficient in natural (dezigzagged) order.
742              * Note: the extra entries in jpeg_natural_order[] will save us
743              * if k >= DCTSIZE2, which could happen if the data is corrupted.
744              */
745             (*block)[jpeg_natural_order[k]] = (JCOEF)s;
746           } else {
747             if (r != 15)  // 15 = 0xF0 is a special symbol means 16 zeros in RLE coding
748               break;
749             k += 15;  // use 15 to skip DCT coef zero
750           }
751         }
752       }
753     } else {
754       /* Section F.2.2.2: decode the AC coefficients */
755       /* In this path we just discard the values */
756       for (k = 1; k < DCTSIZE2; k++) {
757         register int nb, look;
758         if (bits_left < HUFF_LOOKAHEAD) {
759           if (!jpeg_fill_bit_buffer(&br_state, get_buffer, bits_left, 0)) {
760             return FALSE;
761           }
762           get_buffer = br_state.get_buffer;
763           bits_left = br_state.bits_left;
764           if (bits_left < HUFF_LOOKAHEAD) {
765             nb = 1;
766             goto slowlabel2;
767           }
768         }
769         look = PEEK_BITS(HUFF_LOOKAHEAD);
770         r = actbl->lookup[look];
771         nb = GET_NB(r);
772         unsigned int zero_num;
773         unsigned int coef_bits = GET_COEF_BITS(r);
774         if (nb <= HUFF_LOOKAHEAD) {
775           DROP_BITS(nb);
776           s = actbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1);
777           zero_num = GET_ZERO_NUM1(r);
778           k += zero_num;
779           if (coef_bits != 0) {
780             CHECK_BIT_BUFFER(br_state, (int)coef_bits, return FALSE);
781             DROP_BITS(coef_bits);
782           }
783         } else {
784         slowlabel2:
785           nb = 1;
786           if ((s = jpeg_huff_decode(&br_state, get_buffer, bits_left, actbl, nb)) < 0) { return FALSE; }
787           get_buffer = br_state.get_buffer;
788           bits_left = br_state.bits_left;
789 
790           r = s >> 4; // get higher 4 bits
791           s &= 15; // use 15 as a mask to get the lower 4 bits
792 
793           if (s) {
794             k += r;
795             CHECK_BIT_BUFFER(br_state, s, return FALSE);
796             DROP_BITS(s);
797           } else {
798             if (r != 15) // 15 = 0xF0 is a special symbol means 16 zeros in RLE coding
799               break;
800             k += 15;  // use 15 to skip DCT coef zero
801           }
802         }
803       }
804     }
805   }
806 
807   /* Completed MCU, so update state */
808   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
809   entropy->saved = state;
810   return TRUE;
811 }
812 
813 
814 LOCAL(boolean)
decode_mcu_fast(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)815 decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
816 {
817   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
818   BITREAD_STATE_VARS;
819   JOCTET *buffer;
820   int blkn;
821   savable_state state;
822   /* Outer loop handles each block in the MCU */
823 
824   /* Load up working state */
825   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
826   buffer = (JOCTET *)br_state.next_input_byte;
827   state = entropy->saved;
828 
829   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
830     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
831     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
832     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
833     register int s, k, r, l;
834 
835     HUFF_DECODE_FAST(s, l, dctbl);
836     if (s) {
837       FILL_BIT_BUFFER_FAST
838       r = GET_BITS(s);
839       s = HUFF_EXTEND(r, s);
840     }
841 
842     if (entropy->dc_needed[blkn]) {
843       int ci = cinfo->MCU_membership[blkn];
844       s += state.last_dc_val[ci];
845       state.last_dc_val[ci] = s;
846       if (block)
847         (*block)[0] = (JCOEF)s;
848     }
849 
850     if (entropy->ac_needed[blkn] && block) {
851       for (k = 1; k < DCTSIZE2; k++) {
852         FILL_BIT_BUFFER_FAST;
853         r = PEEK_BITS(HUFF_LOOKAHEAD);
854         r = actbl->lookup[r];
855         l = GET_NB(r);
856         unsigned int zero_num;
857         unsigned int coef_bits = GET_COEF_BITS(r);
858 
859         if (l <= HUFF_LOOKAHEAD) {
860           zero_num = GET_ZERO_NUM1(r);
861           DROP_BITS(l);
862           if (coef_bits == 0) {
863             s = GET_COEF1(r);
864             k += zero_num;
865             (*block)[jpeg_natural_order[k]] = (JCOEF)s;
866           } else {
867             FILL_BIT_BUFFER_FAST
868             r = GET_BITS(coef_bits);
869             s = HUFF_EXTEND(r, coef_bits);
870             k += zero_num;
871             (*block)[jpeg_natural_order[k]] = (JCOEF)s;
872           }
873         } else {
874           unsigned int base = GET_BASE(r);  // base, higher 16 bits
875           unsigned int offset_bits = GET_EXTRA_BITS(r);  // l = nb, the max code length in 2nd table
876           r = PEEK_BITS(l); // offset_bits as the index of 2nd table
877           s = actbl->lookup[base + (r & ((1 << offset_bits) - 1))];
878           l = GET_NB(s); // actual huff code length
879           coef_bits = GET_COEF_BITS(s);
880           zero_num = GET_ZERO_NUM1(s);
881           DROP_BITS(l);
882           if (coef_bits == 0xF) {
883             if (zero_num != 0xF) {
884               break;
885             } else {
886               k += 15; // use 15 to skip DCT coef zero
887             }
888           } else {
889             FILL_BIT_BUFFER_FAST
890             r = GET_BITS(coef_bits);
891             s = HUFF_EXTEND(r, coef_bits);
892             k += zero_num;
893             (*block)[jpeg_natural_order[k]] = (JCOEF)s;
894           }
895         }
896       }
897     } else {
898       for (k = 1; k < DCTSIZE2; k++) {
899         FILL_BIT_BUFFER_FAST;
900         r = PEEK_BITS(HUFF_LOOKAHEAD);
901         r = actbl->lookup[r];
902         l = GET_NB(r);
903         unsigned int zero_num;
904         unsigned int coef_bits = GET_COEF_BITS(r);
905 
906         if (l <= HUFF_LOOKAHEAD) {
907           zero_num = GET_ZERO_NUM1(r);
908           DROP_BITS(l);
909           if (coef_bits == 0) {
910             s = GET_COEF1(r);
911             k += zero_num;
912           } else {
913             FILL_BIT_BUFFER_FAST
914             DROP_BITS(coef_bits);
915             k += zero_num;
916           }
917         } else {
918           unsigned int base = GET_BASE(r);  // base, higher 16 bits
919           unsigned int offset_bits = GET_EXTRA_BITS(r);  // l = nb, the max code length in 2nd table
920           r = PEEK_BITS(l); // offset_bits as the index of 2nd table
921           s = actbl->lookup[base + (r & ((1 << offset_bits) - 1))];
922           l = GET_NB(s); // actual huff code length
923           coef_bits = GET_COEF_BITS(s);
924           zero_num = GET_ZERO_NUM1(s);
925           DROP_BITS(l);
926           if (coef_bits == 0xF) {
927             if (zero_num != 0xF) {
928               break;
929             } else {
930               k += 15; // use 15 to skip DCT coef zero
931             }
932           } else {
933             FILL_BIT_BUFFER_FAST
934             DROP_BITS(coef_bits);
935             k += zero_num;
936           }
937         }
938       }
939     }
940   }
941 
942   if (cinfo->unread_marker != 0) {
943     cinfo->unread_marker = 0;
944     return FALSE;
945   }
946 
947   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
948   br_state.next_input_byte = buffer;
949   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
950   entropy->saved = state;
951   return TRUE;
952 }
953 
954 
955 /*
956  * Decode and return one MCU's worth of Huffman-compressed coefficients.
957  * The coefficients are reordered from zigzag order into natural array order,
958  * but are not dequantized.
959  *
960  * The i'th block of the MCU is stored into the block pointed to by
961  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
962  * (Wholesale zeroing is usually a little faster than retail...)
963  *
964  * Returns FALSE if data source requested suspension.  In that case no
965  * changes have been made to permanent state.  (Exception: some output
966  * coefficients may already have been assigned.  This is harmless for
967  * this module, since we'll just re-assign them on the next call.)
968  */
969 
970 #define BUFSIZE  (DCTSIZE2 * 8)
971 
972 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)973 decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
974 {
975   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
976   int usefast = 1;
977 
978   /* Process restart marker if needed; may have to suspend */
979   if (cinfo->restart_interval) {
980     if (entropy->restarts_to_go == 0)
981       if (!process_restart(cinfo))
982         return FALSE;
983     usefast = 0;
984   }
985 
986   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
987       cinfo->unread_marker != 0)
988     usefast = 0;
989 
990   /* If we've run out of data, just leave the MCU set to zeroes.
991    * This way, we return uniform gray for the remainder of the segment.
992    */
993   if (!entropy->pub.insufficient_data) {
994     if (usefast) {
995       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
996     } else {
997 use_slow:
998       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
999     }
1000   }
1001 
1002   /* Account for restart interval (no-op if not using restarts) */
1003   if (cinfo->restart_interval)
1004     entropy->restarts_to_go--;
1005 
1006   return TRUE;
1007 }
1008 
1009 
1010 /*
1011  * Module initialization routine for Huffman entropy decoding.
1012  */
1013 
1014 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)1015 jinit_huff_decoder(j_decompress_ptr cinfo)
1016 {
1017   huff_entropy_ptr entropy;
1018   int i;
1019 
1020   /* Motion JPEG frames typically do not include the Huffman tables if they
1021      are the default tables.  Thus, if the tables are not set by the time
1022      the Huffman decoder is initialized (usually within the body of
1023      jpeg_start_decompress()), we set them to default values. */
1024   std_huff_tables((j_common_ptr)cinfo);
1025 
1026   entropy = (huff_entropy_ptr)
1027     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1028                                 sizeof(huff_entropy_decoder));
1029   cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
1030   entropy->pub.start_pass = start_pass_huff_decoder;
1031   entropy->pub.decode_mcu = decode_mcu;
1032 
1033   /* Mark tables unallocated */
1034   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1035     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1036   }
1037 }
1038