1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // RepeatedField and RepeatedPtrField are used by generated protocol message
36 // classes to manipulate repeated fields. These classes are very similar to
37 // STL's vector, but include a number of optimizations found to be useful
38 // specifically in the case of Protocol Buffers. RepeatedPtrField is
39 // particularly different from STL vector as it manages ownership of the
40 // pointers that it contains.
41 //
42 // Typically, clients should not need to access RepeatedField objects directly,
43 // but should instead use the accessor functions generated automatically by the
44 // protocol compiler.
45
46 #ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
47 #define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
48
49 #include <utility>
50 #ifdef _MSC_VER
51 // This is required for min/max on VS2013 only.
52 #include <algorithm>
53 #endif
54
55 #include <iterator>
56 #include <limits>
57 #include <string>
58 #include <type_traits>
59
60 #include <google/protobuf/stubs/logging.h>
61 #include <google/protobuf/stubs/common.h>
62 #include <google/protobuf/arena.h>
63 #include <google/protobuf/message_lite.h>
64 #include <google/protobuf/port.h>
65 #include <google/protobuf/stubs/casts.h>
66 #include <type_traits>
67
68
69 // Must be included last.
70 #include <google/protobuf/port_def.inc>
71
72 #ifdef SWIG
73 #error "You cannot SWIG proto headers"
74 #endif
75
76 namespace google {
77 namespace protobuf {
78
79 class Message;
80 class Reflection;
81
82 template <typename T>
83 struct WeakRepeatedPtrField;
84
85 namespace internal {
86
87 class MergePartialFromCodedStreamHelper;
88
89 // kRepeatedFieldLowerClampLimit is the smallest size that will be allocated
90 // when growing a repeated field.
91 constexpr int kRepeatedFieldLowerClampLimit = 4;
92
93 // kRepeatedFieldUpperClampLimit is the lowest signed integer value that
94 // overflows when multiplied by 2 (which is undefined behavior). Sizes above
95 // this will clamp to the maximum int value instead of following exponential
96 // growth when growing a repeated field.
97 constexpr int kRepeatedFieldUpperClampLimit =
98 (std::numeric_limits<int>::max() / 2) + 1;
99
100 // A utility function for logging that doesn't need any template types.
101 void LogIndexOutOfBounds(int index, int size);
102
103 template <typename Iter>
CalculateReserve(Iter begin,Iter end,std::forward_iterator_tag)104 inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
105 return static_cast<int>(std::distance(begin, end));
106 }
107
108 template <typename Iter>
CalculateReserve(Iter,Iter,std::input_iterator_tag)109 inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
110 std::input_iterator_tag /*unused*/) {
111 return -1;
112 }
113
114 template <typename Iter>
CalculateReserve(Iter begin,Iter end)115 inline int CalculateReserve(Iter begin, Iter end) {
116 typedef typename std::iterator_traits<Iter>::iterator_category Category;
117 return CalculateReserve(begin, end, Category());
118 }
119
120 // Swaps two blocks of memory of size sizeof(T).
121 template <typename T>
SwapBlock(char * p,char * q)122 inline void SwapBlock(char* p, char* q) {
123 T tmp;
124 memcpy(&tmp, p, sizeof(T));
125 memcpy(p, q, sizeof(T));
126 memcpy(q, &tmp, sizeof(T));
127 }
128
129 // Swaps two blocks of memory of size kSize:
130 // template <int kSize> void memswap(char* p, char* q);
131
132 template <int kSize>
memswap(char *,char *)133 inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
134 }
135
136 #define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \
137 template <int kSize> \
138 typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
139 void>::type \
140 memswap(char* p, char* q) { \
141 SwapBlock<reg_type>(p, q); \
142 memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \
143 q + sizeof(reg_type)); \
144 }
145
146 PROTO_MEMSWAP_DEF_SIZE(uint8, 2)
147 PROTO_MEMSWAP_DEF_SIZE(uint16, 4)
148 PROTO_MEMSWAP_DEF_SIZE(uint32, 8)
149
150 #ifdef __SIZEOF_INT128__
151 PROTO_MEMSWAP_DEF_SIZE(uint64, 16)
152 PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
153 #else
154 PROTO_MEMSWAP_DEF_SIZE(uint64, (1u << 31))
155 #endif
156
157 #undef PROTO_MEMSWAP_DEF_SIZE
158
159 } // namespace internal
160
161 // RepeatedField is used to represent repeated fields of a primitive type (in
162 // other words, everything except strings and nested Messages). Most users will
163 // not ever use a RepeatedField directly; they will use the get-by-index,
164 // set-by-index, and add accessors that are generated for all repeated fields.
165 template <typename Element>
166 class RepeatedField final {
167 static_assert(
168 alignof(Arena) >= alignof(Element),
169 "We only support types that have an alignment smaller than Arena");
170
171 public:
172 constexpr RepeatedField();
173 explicit RepeatedField(Arena* arena);
174 RepeatedField(const RepeatedField& other);
175 template <typename Iter>
176 RepeatedField(Iter begin, const Iter& end);
177 ~RepeatedField();
178
179 RepeatedField& operator=(const RepeatedField& other);
180
181 RepeatedField(RepeatedField&& other) noexcept;
182 RepeatedField& operator=(RepeatedField&& other) noexcept;
183
184 bool empty() const;
185 int size() const;
186
187 const Element& Get(int index) const;
188 Element* Mutable(int index);
189
190 const Element& operator[](int index) const { return Get(index); }
191 Element& operator[](int index) { return *Mutable(index); }
192
193 const Element& at(int index) const;
194 Element& at(int index);
195
196 void Set(int index, const Element& value);
197 void Add(const Element& value);
198 // Appends a new element and return a pointer to it.
199 // The new element is uninitialized if |Element| is a POD type.
200 Element* Add();
201 // Append elements in the range [begin, end) after reserving
202 // the appropriate number of elements.
203 template <typename Iter>
204 void Add(Iter begin, Iter end);
205
206 // Remove the last element in the array.
207 void RemoveLast();
208
209 // Extract elements with indices in "[start .. start+num-1]".
210 // Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
211 // Caution: implementation also moves elements with indices [start+num ..].
212 // Calling this routine inside a loop can cause quadratic behavior.
213 void ExtractSubrange(int start, int num, Element* elements);
214
215 void Clear();
216 void MergeFrom(const RepeatedField& other);
217 void CopyFrom(const RepeatedField& other);
218
219 // Reserve space to expand the field to at least the given size. If the
220 // array is grown, it will always be at least doubled in size.
221 void Reserve(int new_size);
222
223 // Resize the RepeatedField to a new, smaller size. This is O(1).
224 void Truncate(int new_size);
225
226 void AddAlreadyReserved(const Element& value);
227 // Appends a new element and return a pointer to it.
228 // The new element is uninitialized if |Element| is a POD type.
229 // Should be called only if Capacity() > Size().
230 Element* AddAlreadyReserved();
231 Element* AddNAlreadyReserved(int elements);
232 int Capacity() const;
233
234 // Like STL resize. Uses value to fill appended elements.
235 // Like Truncate() if new_size <= size(), otherwise this is
236 // O(new_size - size()).
237 void Resize(int new_size, const Element& value);
238
239 // Gets the underlying array. This pointer is possibly invalidated by
240 // any add or remove operation.
241 Element* mutable_data();
242 const Element* data() const;
243
244 // Swap entire contents with "other". If they are separate arenas then, copies
245 // data between each other.
246 void Swap(RepeatedField* other);
247
248 // Swap entire contents with "other". Should be called only if the caller can
249 // guarantee that both repeated fields are on the same arena or are on the
250 // heap. Swapping between different arenas is disallowed and caught by a
251 // GOOGLE_DCHECK (see API docs for details).
252 void UnsafeArenaSwap(RepeatedField* other);
253
254 // Swap two elements.
255 void SwapElements(int index1, int index2);
256
257 // STL-like iterator support
258 typedef Element* iterator;
259 typedef const Element* const_iterator;
260 typedef Element value_type;
261 typedef value_type& reference;
262 typedef const value_type& const_reference;
263 typedef value_type* pointer;
264 typedef const value_type* const_pointer;
265 typedef int size_type;
266 typedef ptrdiff_t difference_type;
267
268 iterator begin();
269 const_iterator begin() const;
270 const_iterator cbegin() const;
271 iterator end();
272 const_iterator end() const;
273 const_iterator cend() const;
274
275 // Reverse iterator support
276 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
277 typedef std::reverse_iterator<iterator> reverse_iterator;
rbegin()278 reverse_iterator rbegin() { return reverse_iterator(end()); }
rbegin()279 const_reverse_iterator rbegin() const {
280 return const_reverse_iterator(end());
281 }
rend()282 reverse_iterator rend() { return reverse_iterator(begin()); }
rend()283 const_reverse_iterator rend() const {
284 return const_reverse_iterator(begin());
285 }
286
287 // Returns the number of bytes used by the repeated field, excluding
288 // sizeof(*this)
289 size_t SpaceUsedExcludingSelfLong() const;
290
SpaceUsedExcludingSelf()291 int SpaceUsedExcludingSelf() const {
292 return internal::ToIntSize(SpaceUsedExcludingSelfLong());
293 }
294
295 // Removes the element referenced by position.
296 //
297 // Returns an iterator to the element immediately following the removed
298 // element.
299 //
300 // Invalidates all iterators at or after the removed element, including end().
301 iterator erase(const_iterator position);
302
303 // Removes the elements in the range [first, last).
304 //
305 // Returns an iterator to the element immediately following the removed range.
306 //
307 // Invalidates all iterators at or after the removed range, including end().
308 iterator erase(const_iterator first, const_iterator last);
309
310 // Get the Arena on which this RepeatedField stores its elements.
GetArena()311 inline Arena* GetArena() const {
312 return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
313 : rep()->arena;
314 }
315
316 // For internal use only.
317 //
318 // This is public due to it being called by generated code.
319 inline void InternalSwap(RepeatedField* other);
320
321 private:
322 static constexpr int kInitialSize = 0;
323 // A note on the representation here (see also comment below for
324 // RepeatedPtrFieldBase's struct Rep):
325 //
326 // We maintain the same sizeof(RepeatedField) as before we added arena support
327 // so that we do not degrade performance by bloating memory usage. Directly
328 // adding an arena_ element to RepeatedField is quite costly. By using
329 // indirection in this way, we keep the same size when the RepeatedField is
330 // empty (common case), and add only an 8-byte header to the elements array
331 // when non-empty. We make sure to place the size fields directly in the
332 // RepeatedField class to avoid costly cache misses due to the indirection.
333 int current_size_;
334 int total_size_;
335 struct Rep {
336 Arena* arena;
337 // Here we declare a huge array as a way of approximating C's "flexible
338 // array member" feature without relying on undefined behavior.
339 Element elements[(std::numeric_limits<int>::max() - 2 * sizeof(Arena*)) /
340 sizeof(Element)];
341 };
342 static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
343
344 // If total_size_ == 0 this points to an Arena otherwise it points to the
345 // elements member of a Rep struct. Using this invariant allows the storage of
346 // the arena pointer without an extra allocation in the constructor.
347 void* arena_or_elements_;
348
349 // Return pointer to elements array.
350 // pre-condition: the array must have been allocated.
elements()351 Element* elements() const {
352 GOOGLE_DCHECK_GT(total_size_, 0);
353 // Because of above pre-condition this cast is safe.
354 return unsafe_elements();
355 }
356
357 // Return pointer to elements array if it exists otherwise either null or
358 // a invalid pointer is returned. This only happens for empty repeated fields,
359 // where you can't dereference this pointer anyway (it's empty).
unsafe_elements()360 Element* unsafe_elements() const {
361 return static_cast<Element*>(arena_or_elements_);
362 }
363
364 // Return pointer to the Rep struct.
365 // pre-condition: the Rep must have been allocated, ie elements() is safe.
rep()366 Rep* rep() const {
367 char* addr = reinterpret_cast<char*>(elements()) - offsetof(Rep, elements);
368 return reinterpret_cast<Rep*>(addr);
369 }
370
371 friend class Arena;
372 typedef void InternalArenaConstructable_;
373
374 // Move the contents of |from| into |to|, possibly clobbering |from| in the
375 // process. For primitive types this is just a memcpy(), but it could be
376 // specialized for non-primitive types to, say, swap each element instead.
377 void MoveArray(Element* to, Element* from, int size);
378
379 // Copy the elements of |from| into |to|.
380 void CopyArray(Element* to, const Element* from, int size);
381
382 // Internal helper to delete all elements and deallocate the storage.
InternalDeallocate(Rep * rep,int size)383 void InternalDeallocate(Rep* rep, int size) {
384 if (rep != NULL) {
385 Element* e = &rep->elements[0];
386 if (!std::is_trivial<Element>::value) {
387 Element* limit = &rep->elements[size];
388 for (; e < limit; e++) {
389 e->~Element();
390 }
391 }
392 if (rep->arena == NULL) {
393 #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
394 const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
395 ::operator delete(static_cast<void*>(rep), bytes);
396 #else
397 ::operator delete(static_cast<void*>(rep));
398 #endif
399 }
400 }
401 }
402
403 // This class is a performance wrapper around RepeatedField::Add(const T&)
404 // function. In general unless a RepeatedField is a local stack variable LLVM
405 // has a hard time optimizing Add. The machine code tends to be
406 // loop:
407 // mov %size, dword ptr [%repeated_field] // load
408 // cmp %size, dword ptr [%repeated_field + 4]
409 // jae fallback
410 // mov %buffer, qword ptr [%repeated_field + 8]
411 // mov dword [%buffer + %size * 4], %value
412 // inc %size // increment
413 // mov dword ptr [%repeated_field], %size // store
414 // jmp loop
415 //
416 // This puts a load/store in each iteration of the important loop variable
417 // size. It's a pretty bad compile that happens even in simple cases, but
418 // largely the presence of the fallback path disturbs the compilers mem-to-reg
419 // analysis.
420 //
421 // This class takes ownership of a repeated field for the duration of it's
422 // lifetime. The repeated field should not be accessed during this time, ie.
423 // only access through this class is allowed. This class should always be a
424 // function local stack variable. Intended use
425 //
426 // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
427 // {
428 // RepeatedFieldAdder<int> adder(out); // Take ownership of out
429 // for (auto it = begin; it != end; ++it) {
430 // adder.Add(*it);
431 // }
432 // }
433 //
434 // Typically due to the fact adder is a local stack variable. The compiler
435 // will be successful in mem-to-reg transformation and the machine code will
436 // be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer + %size *
437 // 4], %val inc %size jmp loop
438 //
439 // The first version executes at 7 cycles per iteration while the second
440 // version near 1 or 2 cycles.
441 template <int = 0, bool = std::is_pod<Element>::value>
442 class FastAdderImpl {
443 public:
FastAdderImpl(RepeatedField * rf)444 explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {
445 index_ = repeated_field_->current_size_;
446 capacity_ = repeated_field_->total_size_;
447 buffer_ = repeated_field_->unsafe_elements();
448 }
~FastAdderImpl()449 ~FastAdderImpl() { repeated_field_->current_size_ = index_; }
450
Add(Element val)451 void Add(Element val) {
452 if (index_ == capacity_) {
453 repeated_field_->current_size_ = index_;
454 repeated_field_->Reserve(index_ + 1);
455 capacity_ = repeated_field_->total_size_;
456 buffer_ = repeated_field_->unsafe_elements();
457 }
458 buffer_[index_++] = val;
459 }
460
461 private:
462 RepeatedField* repeated_field_;
463 int index_;
464 int capacity_;
465 Element* buffer_;
466
467 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
468 };
469
470 // FastAdder is a wrapper for adding fields. The specialization above handles
471 // POD types more efficiently than RepeatedField.
472 template <int I>
473 class FastAdderImpl<I, false> {
474 public:
FastAdderImpl(RepeatedField * rf)475 explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {}
Add(const Element & val)476 void Add(const Element& val) { repeated_field_->Add(val); }
477
478 private:
479 RepeatedField* repeated_field_;
480 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
481 };
482
483 using FastAdder = FastAdderImpl<>;
484
485 friend class TestRepeatedFieldHelper;
486 friend class ::google::protobuf::internal::ParseContext;
487 };
488
489 namespace internal {
490 template <typename It>
491 class RepeatedPtrIterator;
492 template <typename It, typename VoidPtr>
493 class RepeatedPtrOverPtrsIterator;
494 } // namespace internal
495
496 namespace internal {
497
498 // This is a helper template to copy an array of elements efficiently when they
499 // have a trivial copy constructor, and correctly otherwise. This really
500 // shouldn't be necessary, but our compiler doesn't optimize std::copy very
501 // effectively.
502 template <typename Element,
503 bool HasTrivialCopy =
504 std::is_pod<Element>::value>
505 struct ElementCopier {
506 void operator()(Element* to, const Element* from, int array_size);
507 };
508
509 } // namespace internal
510
511 namespace internal {
512
513 // type-traits helper for RepeatedPtrFieldBase: we only want to invoke
514 // arena-related "copy if on different arena" behavior if the necessary methods
515 // exist on the contained type. In particular, we rely on MergeFrom() existing
516 // as a general proxy for the fact that a copy will work, and we also provide a
517 // specific override for std::string*.
518 template <typename T>
519 struct TypeImplementsMergeBehaviorProbeForMergeFrom {
520 typedef char HasMerge;
521 typedef long HasNoMerge;
522
523 // We accept either of:
524 // - void MergeFrom(const T& other)
525 // - bool MergeFrom(const T& other)
526 //
527 // We mangle these names a bit to avoid compatibility issues in 'unclean'
528 // include environments that may have, e.g., "#define test ..." (yes, this
529 // exists).
530 template <typename U, typename RetType, RetType (U::*)(const U& arg)>
531 struct CheckType;
532 template <typename U>
533 static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
534 template <typename U>
535 static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
536 template <typename U>
537 static HasNoMerge Check(...);
538
539 // Resolves to either std::true_type or std::false_type.
540 typedef std::integral_constant<bool,
541 (sizeof(Check<T>(0)) == sizeof(HasMerge))>
542 type;
543 };
544
545 template <typename T, typename = void>
546 struct TypeImplementsMergeBehavior
547 : TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};
548
549
550 template <>
551 struct TypeImplementsMergeBehavior<std::string> {
552 typedef std::true_type type;
553 };
554
555 template <typename T>
556 struct IsMovable
557 : std::integral_constant<bool, std::is_move_constructible<T>::value &&
558 std::is_move_assignable<T>::value> {};
559
560 // This is the common base class for RepeatedPtrFields. It deals only in void*
561 // pointers. Users should not use this interface directly.
562 //
563 // The methods of this interface correspond to the methods of RepeatedPtrField,
564 // but may have a template argument called TypeHandler. Its signature is:
565 // class TypeHandler {
566 // public:
567 // typedef MyType Type;
568 // static Type* New();
569 // static Type* NewFromPrototype(const Type* prototype,
570 // Arena* arena);
571 // static void Delete(Type*);
572 // static void Clear(Type*);
573 // static void Merge(const Type& from, Type* to);
574 //
575 // // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
576 // static int SpaceUsedLong(const Type&);
577 // };
578 class PROTOBUF_EXPORT RepeatedPtrFieldBase {
579 protected:
580 constexpr RepeatedPtrFieldBase();
581 explicit RepeatedPtrFieldBase(Arena* arena);
582 ~RepeatedPtrFieldBase() {
583 #ifndef NDEBUG
584 // Try to trigger segfault / asan failure in non-opt builds. If arena_
585 // lifetime has ended before the destructor.
586 if (arena_) (void)arena_->SpaceAllocated();
587 #endif
588 }
589
590 public:
591 // Must be called from destructor.
592 template <typename TypeHandler>
593 void Destroy();
594
595 protected:
596 bool empty() const;
597 int size() const;
598
599 template <typename TypeHandler>
600 const typename TypeHandler::Type& at(int index) const;
601 template <typename TypeHandler>
602 typename TypeHandler::Type& at(int index);
603
604 template <typename TypeHandler>
605 typename TypeHandler::Type* Mutable(int index);
606 template <typename TypeHandler>
607 void Delete(int index);
608 template <typename TypeHandler>
609 typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);
610
611 public:
612 // The next few methods are public so that they can be called from generated
613 // code when implicit weak fields are used, but they should never be called by
614 // application code.
615
616 template <typename TypeHandler>
617 const typename TypeHandler::Type& Get(int index) const;
618
619 // Creates and adds an element using the given prototype, without introducing
620 // a link-time dependency on the concrete message type. This method is used to
621 // implement implicit weak fields. The prototype may be NULL, in which case an
622 // ImplicitWeakMessage will be used as a placeholder.
623 MessageLite* AddWeak(const MessageLite* prototype);
624
625 template <typename TypeHandler>
626 void Clear();
627
628 template <typename TypeHandler>
629 void MergeFrom(const RepeatedPtrFieldBase& other);
630
631 inline void InternalSwap(RepeatedPtrFieldBase* other);
632
633 protected:
634 template <
635 typename TypeHandler,
636 typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
637 void Add(typename TypeHandler::Type&& value);
638
639 template <typename TypeHandler>
640 void RemoveLast();
641 template <typename TypeHandler>
642 void CopyFrom(const RepeatedPtrFieldBase& other);
643
644 void CloseGap(int start, int num);
645
646 void Reserve(int new_size);
647
648 int Capacity() const;
649
650 // Used for constructing iterators.
651 void* const* raw_data() const;
652 void** raw_mutable_data() const;
653
654 template <typename TypeHandler>
655 typename TypeHandler::Type** mutable_data();
656 template <typename TypeHandler>
657 const typename TypeHandler::Type* const* data() const;
658
659 template <typename TypeHandler>
660 PROTOBUF_ALWAYS_INLINE void Swap(RepeatedPtrFieldBase* other);
661
662 void SwapElements(int index1, int index2);
663
664 template <typename TypeHandler>
665 size_t SpaceUsedExcludingSelfLong() const;
666
667 // Advanced memory management --------------------------------------
668
669 // Like Add(), but if there are no cleared objects to use, returns NULL.
670 template <typename TypeHandler>
671 typename TypeHandler::Type* AddFromCleared();
672
673 template <typename TypeHandler>
674 void AddAllocated(typename TypeHandler::Type* value) {
675 typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
676 AddAllocatedInternal<TypeHandler>(value, t);
677 }
678
679 template <typename TypeHandler>
680 void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);
681
682 template <typename TypeHandler>
683 typename TypeHandler::Type* ReleaseLast() {
684 typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
685 return ReleaseLastInternal<TypeHandler>(t);
686 }
687
688 // Releases last element and returns it, but does not do out-of-arena copy.
689 // And just returns the raw pointer to the contained element in the arena.
690 template <typename TypeHandler>
691 typename TypeHandler::Type* UnsafeArenaReleaseLast();
692
693 int ClearedCount() const;
694 template <typename TypeHandler>
695 void AddCleared(typename TypeHandler::Type* value);
696 template <typename TypeHandler>
697 typename TypeHandler::Type* ReleaseCleared();
698
699 template <typename TypeHandler>
700 void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type);
701 template <typename TypeHandler>
702 void AddAllocatedInternal(typename TypeHandler::Type* value, std::false_type);
703
704 template <typename TypeHandler>
705 PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
706 typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena);
707 template <typename TypeHandler>
708 PROTOBUF_NOINLINE void AddAllocatedSlowWithoutCopy(
709 typename TypeHandler::Type* value);
710
711 template <typename TypeHandler>
712 typename TypeHandler::Type* ReleaseLastInternal(std::true_type);
713 template <typename TypeHandler>
714 typename TypeHandler::Type* ReleaseLastInternal(std::false_type);
715
716 template <typename TypeHandler>
717 PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other);
718
719 inline Arena* GetArena() const { return arena_; }
720
721 private:
722 static constexpr int kInitialSize = 0;
723 // A few notes on internal representation:
724 //
725 // We use an indirected approach, with struct Rep, to keep
726 // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
727 // was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
728 // allocated only when the repeated field is non-empty, and it is a
729 // dynamically-sized struct (the header is directly followed by elements[]).
730 // We place arena_ and current_size_ directly in the object to avoid cache
731 // misses due to the indirection, because these fields are checked frequently.
732 // Placing all fields directly in the RepeatedPtrFieldBase instance costs
733 // significant performance for memory-sensitive workloads.
734 Arena* arena_;
735 int current_size_;
736 int total_size_;
737 struct Rep {
738 int allocated_size;
739 // Here we declare a huge array as a way of approximating C's "flexible
740 // array member" feature without relying on undefined behavior.
741 void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
742 sizeof(void*)];
743 };
744 static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
745 Rep* rep_;
746
747 template <typename TypeHandler>
748 static inline typename TypeHandler::Type* cast(void* element) {
749 return reinterpret_cast<typename TypeHandler::Type*>(element);
750 }
751 template <typename TypeHandler>
752 static inline const typename TypeHandler::Type* cast(const void* element) {
753 return reinterpret_cast<const typename TypeHandler::Type*>(element);
754 }
755
756 // Non-templated inner function to avoid code duplication. Takes a function
757 // pointer to the type-specific (templated) inner allocate/merge loop.
758 void MergeFromInternal(const RepeatedPtrFieldBase& other,
759 void (RepeatedPtrFieldBase::*inner_loop)(void**,
760 void**, int,
761 int));
762
763 template <typename TypeHandler>
764 void MergeFromInnerLoop(void** our_elems, void** other_elems, int length,
765 int already_allocated);
766
767 // Internal helper: extend array space if necessary to contain |extend_amount|
768 // more elements, and return a pointer to the element immediately following
769 // the old list of elements. This interface factors out common behavior from
770 // Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
771 void** InternalExtend(int extend_amount);
772
773 // The reflection implementation needs to call protected methods directly,
774 // reinterpreting pointers as being to Message instead of a specific Message
775 // subclass.
776 friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
777
778 // ExtensionSet stores repeated message extensions as
779 // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
780 // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
781 // reinterpreting MessageLite as Message. ExtensionSet also needs to make use
782 // of AddFromCleared(), which is not part of the public interface.
783 friend class ExtensionSet;
784
785 // The MapFieldBase implementation needs to call protected methods directly,
786 // reinterpreting pointers as being to Message instead of a specific Message
787 // subclass.
788 friend class MapFieldBase;
789
790 // The table-driven MergePartialFromCodedStream implementation needs to
791 // operate on RepeatedPtrField<MessageLite>.
792 friend class MergePartialFromCodedStreamHelper;
793 friend class AccessorHelper;
794 template <typename T>
795 friend struct google::protobuf::WeakRepeatedPtrField;
796
797 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
798 };
799
800 template <typename GenericType>
801 class GenericTypeHandler {
802 public:
803 typedef GenericType Type;
804 using Movable = IsMovable<GenericType>;
805
806 static inline GenericType* New(Arena* arena) {
807 return Arena::CreateMaybeMessage<Type>(arena);
808 }
809 static inline GenericType* New(Arena* arena, GenericType&& value) {
810 return Arena::Create<GenericType>(arena, std::move(value));
811 }
812 static inline GenericType* NewFromPrototype(const GenericType* prototype,
813 Arena* arena = NULL);
814 static inline void Delete(GenericType* value, Arena* arena) {
815 if (arena == NULL) {
816 delete value;
817 }
818 }
819 static inline Arena* GetArena(GenericType* value) {
820 return Arena::GetArena<Type>(value);
821 }
822 static inline void* GetMaybeArenaPointer(GenericType* value) {
823 return Arena::GetArena<Type>(value);
824 }
825
826 static inline void Clear(GenericType* value) { value->Clear(); }
827 PROTOBUF_NOINLINE
828 static void Merge(const GenericType& from, GenericType* to);
829 static inline size_t SpaceUsedLong(const GenericType& value) {
830 return value.SpaceUsedLong();
831 }
832 };
833
834 template <typename GenericType>
835 GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
836 const GenericType* /* prototype */, Arena* arena) {
837 return New(arena);
838 }
839 template <typename GenericType>
840 void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
841 GenericType* to) {
842 to->MergeFrom(from);
843 }
844
845 // NewFromPrototype() and Merge() are not defined inline here, as we will need
846 // to do a virtual function dispatch anyways to go from Message* to call
847 // New/Merge.
848 template <>
849 MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
850 const MessageLite* prototype, Arena* arena);
851 template <>
852 inline Arena* GenericTypeHandler<MessageLite>::GetArena(MessageLite* value) {
853 return value->GetArena();
854 }
855 template <>
856 inline void* GenericTypeHandler<MessageLite>::GetMaybeArenaPointer(
857 MessageLite* value) {
858 return value->GetMaybeArenaPointer();
859 }
860 template <>
861 void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
862 MessageLite* to);
863 template <>
864 inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
865 value->clear();
866 }
867 template <>
868 void GenericTypeHandler<std::string>::Merge(const std::string& from,
869 std::string* to);
870
871 // Message specialization bodies defined in message.cc. This split is necessary
872 // to allow proto2-lite (which includes this header) to be independent of
873 // Message.
874 template <>
875 PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
876 const Message* prototype, Arena* arena);
877 template <>
878 PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetArena(Message* value);
879 template <>
880 PROTOBUF_EXPORT void* GenericTypeHandler<Message>::GetMaybeArenaPointer(
881 Message* value);
882
883 class StringTypeHandler {
884 public:
885 typedef std::string Type;
886 using Movable = IsMovable<Type>;
887
888 static inline std::string* New(Arena* arena) {
889 return Arena::Create<std::string>(arena);
890 }
891 static inline std::string* New(Arena* arena, std::string&& value) {
892 return Arena::Create<std::string>(arena, std::move(value));
893 }
894 static inline std::string* NewFromPrototype(const std::string*,
895 Arena* arena) {
896 return New(arena);
897 }
898 static inline Arena* GetArena(std::string*) { return NULL; }
899 static inline void* GetMaybeArenaPointer(std::string* /* value */) {
900 return NULL;
901 }
902 static inline void Delete(std::string* value, Arena* arena) {
903 if (arena == NULL) {
904 delete value;
905 }
906 }
907 static inline void Clear(std::string* value) { value->clear(); }
908 static inline void Merge(const std::string& from, std::string* to) {
909 *to = from;
910 }
911 static size_t SpaceUsedLong(const std::string& value) {
912 return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
913 }
914 };
915
916 } // namespace internal
917
918 // RepeatedPtrField is like RepeatedField, but used for repeated strings or
919 // Messages.
920 template <typename Element>
921 class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
922 public:
923 constexpr RepeatedPtrField();
924 explicit RepeatedPtrField(Arena* arena);
925
926 RepeatedPtrField(const RepeatedPtrField& other);
927 template <typename Iter>
928 RepeatedPtrField(Iter begin, const Iter& end);
929 ~RepeatedPtrField();
930
931 RepeatedPtrField& operator=(const RepeatedPtrField& other);
932
933 RepeatedPtrField(RepeatedPtrField&& other) noexcept;
934 RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;
935
936 bool empty() const;
937 int size() const;
938
939 const Element& Get(int index) const;
940 Element* Mutable(int index);
941 Element* Add();
942 void Add(Element&& value);
943
944 const Element& operator[](int index) const { return Get(index); }
945 Element& operator[](int index) { return *Mutable(index); }
946
947 const Element& at(int index) const;
948 Element& at(int index);
949
950 // Remove the last element in the array.
951 // Ownership of the element is retained by the array.
952 void RemoveLast();
953
954 // Delete elements with indices in the range [start .. start+num-1].
955 // Caution: implementation moves all elements with indices [start+num .. ].
956 // Calling this routine inside a loop can cause quadratic behavior.
957 void DeleteSubrange(int start, int num);
958
959 void Clear();
960 void MergeFrom(const RepeatedPtrField& other);
961 void CopyFrom(const RepeatedPtrField& other);
962
963 // Reserve space to expand the field to at least the given size. This only
964 // resizes the pointer array; it doesn't allocate any objects. If the
965 // array is grown, it will always be at least doubled in size.
966 void Reserve(int new_size);
967
968 int Capacity() const;
969
970 // Gets the underlying array. This pointer is possibly invalidated by
971 // any add or remove operation.
972 Element** mutable_data();
973 const Element* const* data() const;
974
975 // Swap entire contents with "other". If they are on separate arenas, then
976 // copies data.
977 void Swap(RepeatedPtrField* other);
978
979 // Swap entire contents with "other". Caller should guarantee that either both
980 // fields are on the same arena or both are on the heap. Swapping between
981 // different arenas with this function is disallowed and is caught via
982 // GOOGLE_DCHECK.
983 void UnsafeArenaSwap(RepeatedPtrField* other);
984
985 // Swap two elements.
986 void SwapElements(int index1, int index2);
987
988 // STL-like iterator support
989 typedef internal::RepeatedPtrIterator<Element> iterator;
990 typedef internal::RepeatedPtrIterator<const Element> const_iterator;
991 typedef Element value_type;
992 typedef value_type& reference;
993 typedef const value_type& const_reference;
994 typedef value_type* pointer;
995 typedef const value_type* const_pointer;
996 typedef int size_type;
997 typedef ptrdiff_t difference_type;
998
999 iterator begin();
1000 const_iterator begin() const;
1001 const_iterator cbegin() const;
1002 iterator end();
1003 const_iterator end() const;
1004 const_iterator cend() const;
1005
1006 // Reverse iterator support
1007 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
1008 typedef std::reverse_iterator<iterator> reverse_iterator;
1009 reverse_iterator rbegin() { return reverse_iterator(end()); }
1010 const_reverse_iterator rbegin() const {
1011 return const_reverse_iterator(end());
1012 }
1013 reverse_iterator rend() { return reverse_iterator(begin()); }
1014 const_reverse_iterator rend() const {
1015 return const_reverse_iterator(begin());
1016 }
1017
1018 // Custom STL-like iterator that iterates over and returns the underlying
1019 // pointers to Element rather than Element itself.
1020 typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
1021 pointer_iterator;
1022 typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
1023 const void* const>
1024 const_pointer_iterator;
1025 pointer_iterator pointer_begin();
1026 const_pointer_iterator pointer_begin() const;
1027 pointer_iterator pointer_end();
1028 const_pointer_iterator pointer_end() const;
1029
1030 // Returns (an estimate of) the number of bytes used by the repeated field,
1031 // excluding sizeof(*this).
1032 size_t SpaceUsedExcludingSelfLong() const;
1033
1034 int SpaceUsedExcludingSelf() const {
1035 return internal::ToIntSize(SpaceUsedExcludingSelfLong());
1036 }
1037
1038 // Advanced memory management --------------------------------------
1039 // When hardcore memory management becomes necessary -- as it sometimes
1040 // does here at Google -- the following methods may be useful.
1041
1042 // Add an already-allocated object, passing ownership to the
1043 // RepeatedPtrField.
1044 //
1045 // Note that some special behavior occurs with respect to arenas:
1046 //
1047 // (i) if this field holds submessages, the new submessage will be copied if
1048 // the original is in an arena and this RepeatedPtrField is either in a
1049 // different arena, or on the heap.
1050 // (ii) if this field holds strings, the passed-in string *must* be
1051 // heap-allocated, not arena-allocated. There is no way to dynamically check
1052 // this at runtime, so User Beware.
1053 void AddAllocated(Element* value);
1054
1055 // Remove the last element and return it, passing ownership to the caller.
1056 // Requires: size() > 0
1057 //
1058 // If this RepeatedPtrField is on an arena, an object copy is required to pass
1059 // ownership back to the user (for compatible semantics). Use
1060 // UnsafeArenaReleaseLast() if this behavior is undesired.
1061 Element* ReleaseLast();
1062
1063 // Add an already-allocated object, skipping arena-ownership checks. The user
1064 // must guarantee that the given object is in the same arena as this
1065 // RepeatedPtrField.
1066 // It is also useful in legacy code that uses temporary ownership to avoid
1067 // copies. Example:
1068 // RepeatedPtrField<T> temp_field;
1069 // temp_field.AddAllocated(new T);
1070 // ... // Do something with temp_field
1071 // temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
1072 // If you put temp_field on the arena this fails, because the ownership
1073 // transfers to the arena at the "AddAllocated" call and is not released
1074 // anymore causing a double delete. UnsafeArenaAddAllocated prevents this.
1075 void UnsafeArenaAddAllocated(Element* value);
1076
1077 // Remove the last element and return it. Works only when operating on an
1078 // arena. The returned pointer is to the original object in the arena, hence
1079 // has the arena's lifetime.
1080 // Requires: current_size_ > 0
1081 Element* UnsafeArenaReleaseLast();
1082
1083 // Extract elements with indices in the range "[start .. start+num-1]".
1084 // The caller assumes ownership of the extracted elements and is responsible
1085 // for deleting them when they are no longer needed.
1086 // If "elements" is non-NULL, then pointers to the extracted elements
1087 // are stored in "elements[0 .. num-1]" for the convenience of the caller.
1088 // If "elements" is NULL, then the caller must use some other mechanism
1089 // to perform any further operations (like deletion) on these elements.
1090 // Caution: implementation also moves elements with indices [start+num ..].
1091 // Calling this routine inside a loop can cause quadratic behavior.
1092 //
1093 // Memory copying behavior is identical to ReleaseLast(), described above: if
1094 // this RepeatedPtrField is on an arena, an object copy is performed for each
1095 // returned element, so that all returned element pointers are to
1096 // heap-allocated copies. If this copy is not desired, the user should call
1097 // UnsafeArenaExtractSubrange().
1098 void ExtractSubrange(int start, int num, Element** elements);
1099
1100 // Identical to ExtractSubrange() described above, except that when this
1101 // repeated field is on an arena, no object copies are performed. Instead, the
1102 // raw object pointers are returned. Thus, if on an arena, the returned
1103 // objects must not be freed, because they will not be heap-allocated objects.
1104 void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
1105
1106 // When elements are removed by calls to RemoveLast() or Clear(), they
1107 // are not actually freed. Instead, they are cleared and kept so that
1108 // they can be reused later. This can save lots of CPU time when
1109 // repeatedly reusing a protocol message for similar purposes.
1110 //
1111 // Hardcore programs may choose to manipulate these cleared objects
1112 // to better optimize memory management using the following routines.
1113
1114 // Get the number of cleared objects that are currently being kept
1115 // around for reuse.
1116 int ClearedCount() const;
1117 // Add an element to the pool of cleared objects, passing ownership to
1118 // the RepeatedPtrField. The element must be cleared prior to calling
1119 // this method.
1120 //
1121 // This method cannot be called when the repeated field is on an arena or when
1122 // |value| is; both cases will trigger a GOOGLE_DCHECK-failure.
1123 void AddCleared(Element* value);
1124 // Remove a single element from the cleared pool and return it, passing
1125 // ownership to the caller. The element is guaranteed to be cleared.
1126 // Requires: ClearedCount() > 0
1127 //
1128 //
1129 // This method cannot be called when the repeated field is on an arena; doing
1130 // so will trigger a GOOGLE_DCHECK-failure.
1131 Element* ReleaseCleared();
1132
1133 // Removes the element referenced by position.
1134 //
1135 // Returns an iterator to the element immediately following the removed
1136 // element.
1137 //
1138 // Invalidates all iterators at or after the removed element, including end().
1139 iterator erase(const_iterator position);
1140
1141 // Removes the elements in the range [first, last).
1142 //
1143 // Returns an iterator to the element immediately following the removed range.
1144 //
1145 // Invalidates all iterators at or after the removed range, including end().
1146 iterator erase(const_iterator first, const_iterator last);
1147
1148 // Gets the arena on which this RepeatedPtrField stores its elements.
1149 inline Arena* GetArena() const;
1150
1151 // For internal use only.
1152 //
1153 // This is public due to it being called by generated code.
1154 void InternalSwap(RepeatedPtrField* other) {
1155 internal::RepeatedPtrFieldBase::InternalSwap(other);
1156 }
1157
1158 private:
1159 // Note: RepeatedPtrField SHOULD NOT be subclassed by users.
1160 class TypeHandler;
1161
1162 // Implementations for ExtractSubrange(). The copying behavior must be
1163 // included only if the type supports the necessary operations (e.g.,
1164 // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
1165 // uses SFINAE to choose one of the below implementations.
1166 void ExtractSubrangeInternal(int start, int num, Element** elements,
1167 std::true_type);
1168 void ExtractSubrangeInternal(int start, int num, Element** elements,
1169 std::false_type);
1170
1171 friend class Arena;
1172
1173 template <typename T>
1174 friend struct WeakRepeatedPtrField;
1175
1176 typedef void InternalArenaConstructable_;
1177
1178 };
1179
1180 // implementation ====================================================
1181
1182 template <typename Element>
1183 constexpr RepeatedField<Element>::RepeatedField()
1184 : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}
1185
1186 template <typename Element>
1187 inline RepeatedField<Element>::RepeatedField(Arena* arena)
1188 : current_size_(0), total_size_(0), arena_or_elements_(arena) {}
1189
1190 template <typename Element>
1191 inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
1192 : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
1193 if (other.current_size_ != 0) {
1194 Reserve(other.size());
1195 AddNAlreadyReserved(other.size());
1196 CopyArray(Mutable(0), &other.Get(0), other.size());
1197 }
1198 }
1199
1200 template <typename Element>
1201 template <typename Iter>
1202 RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
1203 : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
1204 Add(begin, end);
1205 }
1206
1207 template <typename Element>
1208 RepeatedField<Element>::~RepeatedField() {
1209 if (total_size_ > 0) {
1210 InternalDeallocate(rep(), total_size_);
1211 }
1212 }
1213
1214 template <typename Element>
1215 inline RepeatedField<Element>& RepeatedField<Element>::operator=(
1216 const RepeatedField& other) {
1217 if (this != &other) CopyFrom(other);
1218 return *this;
1219 }
1220
1221 template <typename Element>
1222 inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
1223 : RepeatedField() {
1224 // We don't just call Swap(&other) here because it would perform 3 copies if
1225 // other is on an arena. This field can't be on an arena because arena
1226 // construction always uses the Arena* accepting constructor.
1227 if (other.GetArena()) {
1228 CopyFrom(other);
1229 } else {
1230 InternalSwap(&other);
1231 }
1232 }
1233
1234 template <typename Element>
1235 inline RepeatedField<Element>& RepeatedField<Element>::operator=(
1236 RepeatedField&& other) noexcept {
1237 // We don't just call Swap(&other) here because it would perform 3 copies if
1238 // the two fields are on different arenas.
1239 if (this != &other) {
1240 if (this->GetArena() != other.GetArena()) {
1241 CopyFrom(other);
1242 } else {
1243 InternalSwap(&other);
1244 }
1245 }
1246 return *this;
1247 }
1248
1249 template <typename Element>
1250 inline bool RepeatedField<Element>::empty() const {
1251 return current_size_ == 0;
1252 }
1253
1254 template <typename Element>
1255 inline int RepeatedField<Element>::size() const {
1256 return current_size_;
1257 }
1258
1259 template <typename Element>
1260 inline int RepeatedField<Element>::Capacity() const {
1261 return total_size_;
1262 }
1263
1264 template <typename Element>
1265 inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
1266 GOOGLE_DCHECK_LT(current_size_, total_size_);
1267 elements()[current_size_++] = value;
1268 }
1269
1270 template <typename Element>
1271 inline Element* RepeatedField<Element>::AddAlreadyReserved() {
1272 GOOGLE_DCHECK_LT(current_size_, total_size_);
1273 return &elements()[current_size_++];
1274 }
1275
1276 template <typename Element>
1277 inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n) {
1278 GOOGLE_DCHECK_GE(total_size_ - current_size_, n)
1279 << total_size_ << ", " << current_size_;
1280 // Warning: sometimes people call this when n == 0 and total_size_ == 0. In
1281 // this case the return pointer points to a zero size array (n == 0). Hence
1282 // we can just use unsafe_elements(), because the user cannot dereference the
1283 // pointer anyway.
1284 Element* ret = unsafe_elements() + current_size_;
1285 current_size_ += n;
1286 return ret;
1287 }
1288
1289 template <typename Element>
1290 inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
1291 GOOGLE_DCHECK_GE(new_size, 0);
1292 if (new_size > current_size_) {
1293 Reserve(new_size);
1294 std::fill(&elements()[current_size_], &elements()[new_size], value);
1295 }
1296 current_size_ = new_size;
1297 }
1298
1299 template <typename Element>
1300 inline const Element& RepeatedField<Element>::Get(int index) const {
1301 GOOGLE_DCHECK_GE(index, 0);
1302 GOOGLE_DCHECK_LT(index, current_size_);
1303 return elements()[index];
1304 }
1305
1306 template <typename Element>
1307 inline const Element& RepeatedField<Element>::at(int index) const {
1308 GOOGLE_CHECK_GE(index, 0);
1309 GOOGLE_CHECK_LT(index, current_size_);
1310 return elements()[index];
1311 }
1312
1313 template <typename Element>
1314 inline Element& RepeatedField<Element>::at(int index) {
1315 GOOGLE_CHECK_GE(index, 0);
1316 GOOGLE_CHECK_LT(index, current_size_);
1317 return elements()[index];
1318 }
1319
1320 template <typename Element>
1321 inline Element* RepeatedField<Element>::Mutable(int index) {
1322 GOOGLE_DCHECK_GE(index, 0);
1323 GOOGLE_DCHECK_LT(index, current_size_);
1324 return &elements()[index];
1325 }
1326
1327 template <typename Element>
1328 inline void RepeatedField<Element>::Set(int index, const Element& value) {
1329 GOOGLE_DCHECK_GE(index, 0);
1330 GOOGLE_DCHECK_LT(index, current_size_);
1331 elements()[index] = value;
1332 }
1333
1334 template <typename Element>
1335 inline void RepeatedField<Element>::Add(const Element& value) {
1336 uint32 size = current_size_;
1337 if (static_cast<int>(size) == total_size_) {
1338 // value could reference an element of the array. Reserving new space will
1339 // invalidate the reference. So we must make a copy first.
1340 auto tmp = value;
1341 Reserve(total_size_ + 1);
1342 elements()[size] = std::move(tmp);
1343 } else {
1344 elements()[size] = value;
1345 }
1346 current_size_ = size + 1;
1347 }
1348
1349 template <typename Element>
1350 inline Element* RepeatedField<Element>::Add() {
1351 uint32 size = current_size_;
1352 if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
1353 auto ptr = &elements()[size];
1354 current_size_ = size + 1;
1355 return ptr;
1356 }
1357
1358 template <typename Element>
1359 template <typename Iter>
1360 inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
1361 int reserve = internal::CalculateReserve(begin, end);
1362 if (reserve != -1) {
1363 if (reserve == 0) {
1364 return;
1365 }
1366
1367 Reserve(reserve + size());
1368 // TODO(ckennelly): The compiler loses track of the buffer freshly
1369 // allocated by Reserve() by the time we call elements, so it cannot
1370 // guarantee that elements does not alias [begin(), end()).
1371 //
1372 // If restrict is available, annotating the pointer obtained from elements()
1373 // causes this to lower to memcpy instead of memmove.
1374 std::copy(begin, end, elements() + size());
1375 current_size_ = reserve + size();
1376 } else {
1377 FastAdder fast_adder(this);
1378 for (; begin != end; ++begin) fast_adder.Add(*begin);
1379 }
1380 }
1381
1382 template <typename Element>
1383 inline void RepeatedField<Element>::RemoveLast() {
1384 GOOGLE_DCHECK_GT(current_size_, 0);
1385 current_size_--;
1386 }
1387
1388 template <typename Element>
1389 void RepeatedField<Element>::ExtractSubrange(int start, int num,
1390 Element* elements) {
1391 GOOGLE_DCHECK_GE(start, 0);
1392 GOOGLE_DCHECK_GE(num, 0);
1393 GOOGLE_DCHECK_LE(start + num, this->current_size_);
1394
1395 // Save the values of the removed elements if requested.
1396 if (elements != NULL) {
1397 for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
1398 }
1399
1400 // Slide remaining elements down to fill the gap.
1401 if (num > 0) {
1402 for (int i = start + num; i < this->current_size_; ++i)
1403 this->Set(i - num, this->Get(i));
1404 this->Truncate(this->current_size_ - num);
1405 }
1406 }
1407
1408 template <typename Element>
1409 inline void RepeatedField<Element>::Clear() {
1410 current_size_ = 0;
1411 }
1412
1413 template <typename Element>
1414 inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
1415 GOOGLE_DCHECK_NE(&other, this);
1416 if (other.current_size_ != 0) {
1417 int existing_size = size();
1418 Reserve(existing_size + other.size());
1419 AddNAlreadyReserved(other.size());
1420 CopyArray(Mutable(existing_size), &other.Get(0), other.size());
1421 }
1422 }
1423
1424 template <typename Element>
1425 inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
1426 if (&other == this) return;
1427 Clear();
1428 MergeFrom(other);
1429 }
1430
1431 template <typename Element>
1432 inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
1433 const_iterator position) {
1434 return erase(position, position + 1);
1435 }
1436
1437 template <typename Element>
1438 inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
1439 const_iterator first, const_iterator last) {
1440 size_type first_offset = first - cbegin();
1441 if (first != last) {
1442 Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
1443 }
1444 return begin() + first_offset;
1445 }
1446
1447 template <typename Element>
1448 inline Element* RepeatedField<Element>::mutable_data() {
1449 return unsafe_elements();
1450 }
1451
1452 template <typename Element>
1453 inline const Element* RepeatedField<Element>::data() const {
1454 return unsafe_elements();
1455 }
1456
1457 template <typename Element>
1458 inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
1459 GOOGLE_DCHECK(this != other);
1460 GOOGLE_DCHECK(GetArena() == other->GetArena());
1461
1462 // Swap all fields at once.
1463 static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
1464 "offsetof() requires standard layout before c++17");
1465 internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
1466 sizeof(this->arena_or_elements_) -
1467 offsetof(RepeatedField, current_size_)>(
1468 reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
1469 reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
1470 }
1471
1472 template <typename Element>
1473 void RepeatedField<Element>::Swap(RepeatedField* other) {
1474 if (this == other) return;
1475 if (GetArena() == other->GetArena()) {
1476 InternalSwap(other);
1477 } else {
1478 RepeatedField<Element> temp(other->GetArena());
1479 temp.MergeFrom(*this);
1480 CopyFrom(*other);
1481 other->UnsafeArenaSwap(&temp);
1482 }
1483 }
1484
1485 template <typename Element>
1486 void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
1487 if (this == other) return;
1488 InternalSwap(other);
1489 }
1490
1491 template <typename Element>
1492 void RepeatedField<Element>::SwapElements(int index1, int index2) {
1493 using std::swap; // enable ADL with fallback
1494 swap(elements()[index1], elements()[index2]);
1495 }
1496
1497 template <typename Element>
1498 inline typename RepeatedField<Element>::iterator
1499 RepeatedField<Element>::begin() {
1500 return unsafe_elements();
1501 }
1502 template <typename Element>
1503 inline typename RepeatedField<Element>::const_iterator
1504 RepeatedField<Element>::begin() const {
1505 return unsafe_elements();
1506 }
1507 template <typename Element>
1508 inline typename RepeatedField<Element>::const_iterator
1509 RepeatedField<Element>::cbegin() const {
1510 return unsafe_elements();
1511 }
1512 template <typename Element>
1513 inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
1514 return unsafe_elements() + current_size_;
1515 }
1516 template <typename Element>
1517 inline typename RepeatedField<Element>::const_iterator
1518 RepeatedField<Element>::end() const {
1519 return unsafe_elements() + current_size_;
1520 }
1521 template <typename Element>
1522 inline typename RepeatedField<Element>::const_iterator
1523 RepeatedField<Element>::cend() const {
1524 return unsafe_elements() + current_size_;
1525 }
1526
1527 template <typename Element>
1528 inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
1529 return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
1530 }
1531
1532 namespace internal {
1533 // Returns the new size for a reserved field based on its 'total_size' and the
1534 // requested 'new_size'. The result is clamped to the closed interval:
1535 // [internal::kMinRepeatedFieldAllocationSize,
1536 // std::numeric_limits<int>::max()]
1537 // Requires:
1538 // new_size > total_size &&
1539 // (total_size == 0 ||
1540 // total_size >= kRepeatedFieldLowerClampLimit)
1541 inline int CalculateReserveSize(int total_size, int new_size) {
1542 if (new_size < kRepeatedFieldLowerClampLimit) {
1543 // Clamp to smallest allowed size.
1544 return kRepeatedFieldLowerClampLimit;
1545 }
1546 if (total_size < kRepeatedFieldUpperClampLimit) {
1547 return std::max(total_size * 2, new_size);
1548 } else {
1549 // Clamp to largest allowed size.
1550 GOOGLE_DCHECK_GT(new_size, kRepeatedFieldUpperClampLimit);
1551 return std::numeric_limits<int>::max();
1552 }
1553 }
1554 } // namespace internal
1555
1556 // Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
1557 // amount of code bloat.
1558 template <typename Element>
1559 void RepeatedField<Element>::Reserve(int new_size) {
1560 if (total_size_ >= new_size) return;
1561 Rep* old_rep = total_size_ > 0 ? rep() : NULL;
1562 Rep* new_rep;
1563 Arena* arena = GetArena();
1564 new_size = internal::CalculateReserveSize(total_size_, new_size);
1565 GOOGLE_DCHECK_LE(
1566 static_cast<size_t>(new_size),
1567 (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
1568 << "Requested size is too large to fit into size_t.";
1569 size_t bytes =
1570 kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
1571 if (arena == NULL) {
1572 new_rep = static_cast<Rep*>(::operator new(bytes));
1573 } else {
1574 new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes));
1575 }
1576 new_rep->arena = arena;
1577 int old_total_size = total_size_;
1578 // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
1579 // Maintain invariant:
1580 // total_size_ == 0 ||
1581 // total_size_ >= internal::kMinRepeatedFieldAllocationSize
1582 total_size_ = new_size;
1583 arena_or_elements_ = new_rep->elements;
1584 // Invoke placement-new on newly allocated elements. We shouldn't have to do
1585 // this, since Element is supposed to be POD, but a previous version of this
1586 // code allocated storage with "new Element[size]" and some code uses
1587 // RepeatedField with non-POD types, relying on constructor invocation. If
1588 // Element has a trivial constructor (e.g., int32), gcc (tested with -O2)
1589 // completely removes this loop because the loop body is empty, so this has no
1590 // effect unless its side-effects are required for correctness.
1591 // Note that we do this before MoveArray() below because Element's copy
1592 // assignment implementation will want an initialized instance first.
1593 Element* e = &elements()[0];
1594 Element* limit = e + total_size_;
1595 for (; e < limit; e++) {
1596 new (e) Element;
1597 }
1598 if (current_size_ > 0) {
1599 MoveArray(&elements()[0], old_rep->elements, current_size_);
1600 }
1601
1602 // Likewise, we need to invoke destructors on the old array.
1603 InternalDeallocate(old_rep, old_total_size);
1604
1605 }
1606
1607 template <typename Element>
1608 inline void RepeatedField<Element>::Truncate(int new_size) {
1609 GOOGLE_DCHECK_LE(new_size, current_size_);
1610 if (current_size_ > 0) {
1611 current_size_ = new_size;
1612 }
1613 }
1614
1615 template <typename Element>
1616 inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
1617 int array_size) {
1618 CopyArray(to, from, array_size);
1619 }
1620
1621 template <typename Element>
1622 inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
1623 int array_size) {
1624 internal::ElementCopier<Element>()(to, from, array_size);
1625 }
1626
1627 namespace internal {
1628
1629 template <typename Element, bool HasTrivialCopy>
1630 void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
1631 const Element* from,
1632 int array_size) {
1633 std::copy(from, from + array_size, to);
1634 }
1635
1636 template <typename Element>
1637 struct ElementCopier<Element, true> {
1638 void operator()(Element* to, const Element* from, int array_size) {
1639 memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
1640 }
1641 };
1642
1643 } // namespace internal
1644
1645
1646 // -------------------------------------------------------------------
1647
1648 namespace internal {
1649
1650 constexpr RepeatedPtrFieldBase::RepeatedPtrFieldBase()
1651 : arena_(NULL), current_size_(0), total_size_(0), rep_(NULL) {}
1652
1653 inline RepeatedPtrFieldBase::RepeatedPtrFieldBase(Arena* arena)
1654 : arena_(arena), current_size_(0), total_size_(0), rep_(NULL) {}
1655
1656 template <typename TypeHandler>
1657 void RepeatedPtrFieldBase::Destroy() {
1658 if (rep_ != NULL && arena_ == NULL) {
1659 int n = rep_->allocated_size;
1660 void* const* elements = rep_->elements;
1661 for (int i = 0; i < n; i++) {
1662 TypeHandler::Delete(cast<TypeHandler>(elements[i]), NULL);
1663 }
1664 #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
1665 const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
1666 ::operator delete(static_cast<void*>(rep_), size);
1667 #else
1668 ::operator delete(static_cast<void*>(rep_));
1669 #endif
1670 }
1671 rep_ = NULL;
1672 }
1673
1674 template <typename TypeHandler>
1675 inline void RepeatedPtrFieldBase::Swap(RepeatedPtrFieldBase* other) {
1676 if (other->GetArena() == GetArena()) {
1677 InternalSwap(other);
1678 } else {
1679 SwapFallback<TypeHandler>(other);
1680 }
1681 }
1682
1683 template <typename TypeHandler>
1684 void RepeatedPtrFieldBase::SwapFallback(RepeatedPtrFieldBase* other) {
1685 GOOGLE_DCHECK(other->GetArena() != GetArena());
1686
1687 // Copy semantics in this case. We try to improve efficiency by placing the
1688 // temporary on |other|'s arena so that messages are copied twice rather than
1689 // three times.
1690 RepeatedPtrFieldBase temp(other->GetArena());
1691 temp.MergeFrom<TypeHandler>(*this);
1692 this->Clear<TypeHandler>();
1693 this->MergeFrom<TypeHandler>(*other);
1694 other->InternalSwap(&temp);
1695 temp.Destroy<TypeHandler>(); // Frees rep_ if `other` had no arena.
1696 }
1697
1698 inline bool RepeatedPtrFieldBase::empty() const { return current_size_ == 0; }
1699
1700 inline int RepeatedPtrFieldBase::size() const { return current_size_; }
1701
1702 template <typename TypeHandler>
1703 inline const typename TypeHandler::Type& RepeatedPtrFieldBase::Get(
1704 int index) const {
1705 GOOGLE_DCHECK_GE(index, 0);
1706 GOOGLE_DCHECK_LT(index, current_size_);
1707 return *cast<TypeHandler>(rep_->elements[index]);
1708 }
1709
1710 template <typename TypeHandler>
1711 inline const typename TypeHandler::Type& RepeatedPtrFieldBase::at(
1712 int index) const {
1713 GOOGLE_CHECK_GE(index, 0);
1714 GOOGLE_CHECK_LT(index, current_size_);
1715 return *cast<TypeHandler>(rep_->elements[index]);
1716 }
1717
1718 template <typename TypeHandler>
1719 inline typename TypeHandler::Type& RepeatedPtrFieldBase::at(int index) {
1720 GOOGLE_CHECK_GE(index, 0);
1721 GOOGLE_CHECK_LT(index, current_size_);
1722 return *cast<TypeHandler>(rep_->elements[index]);
1723 }
1724
1725 template <typename TypeHandler>
1726 inline typename TypeHandler::Type* RepeatedPtrFieldBase::Mutable(int index) {
1727 GOOGLE_DCHECK_GE(index, 0);
1728 GOOGLE_DCHECK_LT(index, current_size_);
1729 return cast<TypeHandler>(rep_->elements[index]);
1730 }
1731
1732 template <typename TypeHandler>
1733 inline void RepeatedPtrFieldBase::Delete(int index) {
1734 GOOGLE_DCHECK_GE(index, 0);
1735 GOOGLE_DCHECK_LT(index, current_size_);
1736 TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
1737 }
1738
1739 template <typename TypeHandler>
1740 inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add(
1741 typename TypeHandler::Type* prototype) {
1742 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1743 return cast<TypeHandler>(rep_->elements[current_size_++]);
1744 }
1745 if (!rep_ || rep_->allocated_size == total_size_) {
1746 Reserve(total_size_ + 1);
1747 }
1748 ++rep_->allocated_size;
1749 typename TypeHandler::Type* result =
1750 TypeHandler::NewFromPrototype(prototype, arena_);
1751 rep_->elements[current_size_++] = result;
1752 return result;
1753 }
1754
1755 template <typename TypeHandler,
1756 typename std::enable_if<TypeHandler::Movable::value>::type*>
1757 inline void RepeatedPtrFieldBase::Add(typename TypeHandler::Type&& value) {
1758 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1759 *cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
1760 return;
1761 }
1762 if (!rep_ || rep_->allocated_size == total_size_) {
1763 Reserve(total_size_ + 1);
1764 }
1765 ++rep_->allocated_size;
1766 typename TypeHandler::Type* result =
1767 TypeHandler::New(arena_, std::move(value));
1768 rep_->elements[current_size_++] = result;
1769 }
1770
1771 template <typename TypeHandler>
1772 inline void RepeatedPtrFieldBase::RemoveLast() {
1773 GOOGLE_DCHECK_GT(current_size_, 0);
1774 TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
1775 }
1776
1777 template <typename TypeHandler>
1778 void RepeatedPtrFieldBase::Clear() {
1779 const int n = current_size_;
1780 GOOGLE_DCHECK_GE(n, 0);
1781 if (n > 0) {
1782 void* const* elements = rep_->elements;
1783 int i = 0;
1784 do {
1785 TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
1786 } while (i < n);
1787 current_size_ = 0;
1788 }
1789 }
1790
1791 // To avoid unnecessary code duplication and reduce binary size, we use a
1792 // layered approach to implementing MergeFrom(). The toplevel method is
1793 // templated, so we get a small thunk per concrete message type in the binary.
1794 // This calls a shared implementation with most of the logic, passing a function
1795 // pointer to another type-specific piece of code that calls the object-allocate
1796 // and merge handlers.
1797 template <typename TypeHandler>
1798 inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
1799 GOOGLE_DCHECK_NE(&other, this);
1800 if (other.current_size_ == 0) return;
1801 MergeFromInternal(other,
1802 &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
1803 }
1804
1805 inline void RepeatedPtrFieldBase::MergeFromInternal(
1806 const RepeatedPtrFieldBase& other,
1807 void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) {
1808 // Note: wrapper has already guaranteed that other.rep_ != NULL here.
1809 int other_size = other.current_size_;
1810 void** other_elements = other.rep_->elements;
1811 void** new_elements = InternalExtend(other_size);
1812 int allocated_elems = rep_->allocated_size - current_size_;
1813 (this->*inner_loop)(new_elements, other_elements, other_size,
1814 allocated_elems);
1815 current_size_ += other_size;
1816 if (rep_->allocated_size < current_size_) {
1817 rep_->allocated_size = current_size_;
1818 }
1819 }
1820
1821 // Merges other_elems to our_elems.
1822 template <typename TypeHandler>
1823 void RepeatedPtrFieldBase::MergeFromInnerLoop(void** our_elems,
1824 void** other_elems, int length,
1825 int already_allocated) {
1826 // Split into two loops, over ranges [0, allocated) and [allocated, length),
1827 // to avoid a branch within the loop.
1828 for (int i = 0; i < already_allocated && i < length; i++) {
1829 // Already allocated: use existing element.
1830 typename TypeHandler::Type* other_elem =
1831 reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
1832 typename TypeHandler::Type* new_elem =
1833 reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
1834 TypeHandler::Merge(*other_elem, new_elem);
1835 }
1836 Arena* arena = GetArena();
1837 for (int i = already_allocated; i < length; i++) {
1838 // Not allocated: alloc a new element first, then merge it.
1839 typename TypeHandler::Type* other_elem =
1840 reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
1841 typename TypeHandler::Type* new_elem =
1842 TypeHandler::NewFromPrototype(other_elem, arena);
1843 TypeHandler::Merge(*other_elem, new_elem);
1844 our_elems[i] = new_elem;
1845 }
1846 }
1847
1848 template <typename TypeHandler>
1849 inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
1850 if (&other == this) return;
1851 RepeatedPtrFieldBase::Clear<TypeHandler>();
1852 RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
1853 }
1854
1855 inline int RepeatedPtrFieldBase::Capacity() const { return total_size_; }
1856
1857 inline void* const* RepeatedPtrFieldBase::raw_data() const {
1858 return rep_ ? rep_->elements : NULL;
1859 }
1860
1861 inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
1862 return rep_ ? const_cast<void**>(rep_->elements) : NULL;
1863 }
1864
1865 template <typename TypeHandler>
1866 inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
1867 // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
1868 // method entirely.
1869 return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
1870 }
1871
1872 template <typename TypeHandler>
1873 inline const typename TypeHandler::Type* const* RepeatedPtrFieldBase::data()
1874 const {
1875 // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
1876 // method entirely.
1877 return reinterpret_cast<const typename TypeHandler::Type* const*>(raw_data());
1878 }
1879
1880 inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
1881 using std::swap; // enable ADL with fallback
1882 swap(rep_->elements[index1], rep_->elements[index2]);
1883 }
1884
1885 template <typename TypeHandler>
1886 inline size_t RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong() const {
1887 size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
1888 if (rep_ != NULL) {
1889 for (int i = 0; i < rep_->allocated_size; ++i) {
1890 allocated_bytes +=
1891 TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
1892 }
1893 allocated_bytes += kRepHeaderSize;
1894 }
1895 return allocated_bytes;
1896 }
1897
1898 template <typename TypeHandler>
1899 inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
1900 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1901 return cast<TypeHandler>(rep_->elements[current_size_++]);
1902 } else {
1903 return NULL;
1904 }
1905 }
1906
1907 // AddAllocated version that implements arena-safe copying behavior.
1908 template <typename TypeHandler>
1909 void RepeatedPtrFieldBase::AddAllocatedInternal(
1910 typename TypeHandler::Type* value, std::true_type) {
1911 Arena* element_arena =
1912 reinterpret_cast<Arena*>(TypeHandler::GetMaybeArenaPointer(value));
1913 Arena* arena = GetArena();
1914 if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
1915 // Fast path: underlying arena representation (tagged pointer) is equal to
1916 // our arena pointer, and we can add to array without resizing it (at least
1917 // one slot that is not allocated).
1918 void** elems = rep_->elements;
1919 if (current_size_ < rep_->allocated_size) {
1920 // Make space at [current] by moving first allocated element to end of
1921 // allocated list.
1922 elems[rep_->allocated_size] = elems[current_size_];
1923 }
1924 elems[current_size_] = value;
1925 current_size_ = current_size_ + 1;
1926 rep_->allocated_size = rep_->allocated_size + 1;
1927 } else {
1928 AddAllocatedSlowWithCopy<TypeHandler>(value, TypeHandler::GetArena(value),
1929 arena);
1930 }
1931 }
1932
1933 // Slowpath handles all cases, copying if necessary.
1934 template <typename TypeHandler>
1935 void RepeatedPtrFieldBase::AddAllocatedSlowWithCopy(
1936 // Pass value_arena and my_arena to avoid duplicate virtual call (value) or
1937 // load (mine).
1938 typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
1939 // Ensure that either the value is in the same arena, or if not, we do the
1940 // appropriate thing: Own() it (if it's on heap and we're in an arena) or copy
1941 // it to our arena/heap (otherwise).
1942 if (my_arena != NULL && value_arena == NULL) {
1943 my_arena->Own(value);
1944 } else if (my_arena != value_arena) {
1945 typename TypeHandler::Type* new_value =
1946 TypeHandler::NewFromPrototype(value, my_arena);
1947 TypeHandler::Merge(*value, new_value);
1948 TypeHandler::Delete(value, value_arena);
1949 value = new_value;
1950 }
1951
1952 UnsafeArenaAddAllocated<TypeHandler>(value);
1953 }
1954
1955 // AddAllocated version that does not implement arena-safe copying behavior.
1956 template <typename TypeHandler>
1957 void RepeatedPtrFieldBase::AddAllocatedInternal(
1958 typename TypeHandler::Type* value, std::false_type) {
1959 if (rep_ && rep_->allocated_size < total_size_) {
1960 // Fast path: underlying arena representation (tagged pointer) is equal to
1961 // our arena pointer, and we can add to array without resizing it (at least
1962 // one slot that is not allocated).
1963 void** elems = rep_->elements;
1964 if (current_size_ < rep_->allocated_size) {
1965 // Make space at [current] by moving first allocated element to end of
1966 // allocated list.
1967 elems[rep_->allocated_size] = elems[current_size_];
1968 }
1969 elems[current_size_] = value;
1970 current_size_ = current_size_ + 1;
1971 ++rep_->allocated_size;
1972 } else {
1973 UnsafeArenaAddAllocated<TypeHandler>(value);
1974 }
1975 }
1976
1977 template <typename TypeHandler>
1978 void RepeatedPtrFieldBase::UnsafeArenaAddAllocated(
1979 typename TypeHandler::Type* value) {
1980 // Make room for the new pointer.
1981 if (!rep_ || current_size_ == total_size_) {
1982 // The array is completely full with no cleared objects, so grow it.
1983 Reserve(total_size_ + 1);
1984 ++rep_->allocated_size;
1985 } else if (rep_->allocated_size == total_size_) {
1986 // There is no more space in the pointer array because it contains some
1987 // cleared objects awaiting reuse. We don't want to grow the array in this
1988 // case because otherwise a loop calling AddAllocated() followed by Clear()
1989 // would leak memory.
1990 TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
1991 arena_);
1992 } else if (current_size_ < rep_->allocated_size) {
1993 // We have some cleared objects. We don't care about their order, so we
1994 // can just move the first one to the end to make space.
1995 rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
1996 ++rep_->allocated_size;
1997 } else {
1998 // There are no cleared objects.
1999 ++rep_->allocated_size;
2000 }
2001
2002 rep_->elements[current_size_++] = value;
2003 }
2004
2005 // ReleaseLast() for types that implement merge/copy behavior.
2006 template <typename TypeHandler>
2007 inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
2008 std::true_type) {
2009 // First, release an element.
2010 typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
2011 // Now perform a copy if we're on an arena.
2012 Arena* arena = GetArena();
2013 if (arena == NULL) {
2014 return result;
2015 } else {
2016 typename TypeHandler::Type* new_result =
2017 TypeHandler::NewFromPrototype(result, NULL);
2018 TypeHandler::Merge(*result, new_result);
2019 return new_result;
2020 }
2021 }
2022
2023 // ReleaseLast() for types that *do not* implement merge/copy behavior -- this
2024 // is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if we're on
2025 // an arena, since the user really should implement the copy operation in this
2026 // case.
2027 template <typename TypeHandler>
2028 inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
2029 std::false_type) {
2030 GOOGLE_DCHECK(GetArena() == NULL)
2031 << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
2032 << "with a type that does not implement MergeFrom. This is unsafe; "
2033 << "please implement MergeFrom for your type.";
2034 return UnsafeArenaReleaseLast<TypeHandler>();
2035 }
2036
2037 template <typename TypeHandler>
2038 inline typename TypeHandler::Type*
2039 RepeatedPtrFieldBase::UnsafeArenaReleaseLast() {
2040 GOOGLE_DCHECK_GT(current_size_, 0);
2041 typename TypeHandler::Type* result =
2042 cast<TypeHandler>(rep_->elements[--current_size_]);
2043 --rep_->allocated_size;
2044 if (current_size_ < rep_->allocated_size) {
2045 // There are cleared elements on the end; replace the removed element
2046 // with the last allocated element.
2047 rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
2048 }
2049 return result;
2050 }
2051
2052 inline int RepeatedPtrFieldBase::ClearedCount() const {
2053 return rep_ ? (rep_->allocated_size - current_size_) : 0;
2054 }
2055
2056 template <typename TypeHandler>
2057 inline void RepeatedPtrFieldBase::AddCleared(
2058 typename TypeHandler::Type* value) {
2059 GOOGLE_DCHECK(GetArena() == NULL)
2060 << "AddCleared() can only be used on a RepeatedPtrField not on an arena.";
2061 GOOGLE_DCHECK(TypeHandler::GetArena(value) == NULL)
2062 << "AddCleared() can only accept values not on an arena.";
2063 if (!rep_ || rep_->allocated_size == total_size_) {
2064 Reserve(total_size_ + 1);
2065 }
2066 rep_->elements[rep_->allocated_size++] = value;
2067 }
2068
2069 template <typename TypeHandler>
2070 inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
2071 GOOGLE_DCHECK(GetArena() == NULL)
2072 << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
2073 << "an arena.";
2074 GOOGLE_DCHECK(GetArena() == NULL);
2075 GOOGLE_DCHECK(rep_ != NULL);
2076 GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
2077 return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
2078 }
2079
2080 } // namespace internal
2081
2082 // -------------------------------------------------------------------
2083
2084 template <typename Element>
2085 class RepeatedPtrField<Element>::TypeHandler
2086 : public internal::GenericTypeHandler<Element> {};
2087
2088 template <>
2089 class RepeatedPtrField<std::string>::TypeHandler
2090 : public internal::StringTypeHandler {};
2091
2092 template <typename Element>
2093 constexpr RepeatedPtrField<Element>::RepeatedPtrField()
2094 : RepeatedPtrFieldBase() {}
2095
2096 template <typename Element>
2097 inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
2098 : RepeatedPtrFieldBase(arena) {}
2099
2100 template <typename Element>
2101 inline RepeatedPtrField<Element>::RepeatedPtrField(
2102 const RepeatedPtrField& other)
2103 : RepeatedPtrFieldBase() {
2104 MergeFrom(other);
2105 }
2106
2107 template <typename Element>
2108 template <typename Iter>
2109 inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin,
2110 const Iter& end) {
2111 int reserve = internal::CalculateReserve(begin, end);
2112 if (reserve != -1) {
2113 Reserve(reserve);
2114 }
2115 for (; begin != end; ++begin) {
2116 *Add() = *begin;
2117 }
2118 }
2119
2120 template <typename Element>
2121 RepeatedPtrField<Element>::~RepeatedPtrField() {
2122 Destroy<TypeHandler>();
2123 }
2124
2125 template <typename Element>
2126 inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
2127 const RepeatedPtrField& other) {
2128 if (this != &other) CopyFrom(other);
2129 return *this;
2130 }
2131
2132 template <typename Element>
2133 inline RepeatedPtrField<Element>::RepeatedPtrField(
2134 RepeatedPtrField&& other) noexcept
2135 : RepeatedPtrField() {
2136 // We don't just call Swap(&other) here because it would perform 3 copies if
2137 // other is on an arena. This field can't be on an arena because arena
2138 // construction always uses the Arena* accepting constructor.
2139 if (other.GetArena()) {
2140 CopyFrom(other);
2141 } else {
2142 InternalSwap(&other);
2143 }
2144 }
2145
2146 template <typename Element>
2147 inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
2148 RepeatedPtrField&& other) noexcept {
2149 // We don't just call Swap(&other) here because it would perform 3 copies if
2150 // the two fields are on different arenas.
2151 if (this != &other) {
2152 if (this->GetArena() != other.GetArena()) {
2153 CopyFrom(other);
2154 } else {
2155 InternalSwap(&other);
2156 }
2157 }
2158 return *this;
2159 }
2160
2161 template <typename Element>
2162 inline bool RepeatedPtrField<Element>::empty() const {
2163 return RepeatedPtrFieldBase::empty();
2164 }
2165
2166 template <typename Element>
2167 inline int RepeatedPtrField<Element>::size() const {
2168 return RepeatedPtrFieldBase::size();
2169 }
2170
2171 template <typename Element>
2172 inline const Element& RepeatedPtrField<Element>::Get(int index) const {
2173 return RepeatedPtrFieldBase::Get<TypeHandler>(index);
2174 }
2175
2176 template <typename Element>
2177 inline const Element& RepeatedPtrField<Element>::at(int index) const {
2178 return RepeatedPtrFieldBase::at<TypeHandler>(index);
2179 }
2180
2181 template <typename Element>
2182 inline Element& RepeatedPtrField<Element>::at(int index) {
2183 return RepeatedPtrFieldBase::at<TypeHandler>(index);
2184 }
2185
2186
2187 template <typename Element>
2188 inline Element* RepeatedPtrField<Element>::Mutable(int index) {
2189 return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
2190 }
2191
2192 template <typename Element>
2193 inline Element* RepeatedPtrField<Element>::Add() {
2194 return RepeatedPtrFieldBase::Add<TypeHandler>();
2195 }
2196
2197 template <typename Element>
2198 inline void RepeatedPtrField<Element>::Add(Element&& value) {
2199 RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
2200 }
2201
2202 template <typename Element>
2203 inline void RepeatedPtrField<Element>::RemoveLast() {
2204 RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
2205 }
2206
2207 template <typename Element>
2208 inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
2209 GOOGLE_DCHECK_GE(start, 0);
2210 GOOGLE_DCHECK_GE(num, 0);
2211 GOOGLE_DCHECK_LE(start + num, size());
2212 for (int i = 0; i < num; ++i) {
2213 RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
2214 }
2215 ExtractSubrange(start, num, NULL);
2216 }
2217
2218 template <typename Element>
2219 inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
2220 Element** elements) {
2221 typename internal::TypeImplementsMergeBehavior<
2222 typename TypeHandler::Type>::type t;
2223 ExtractSubrangeInternal(start, num, elements, t);
2224 }
2225
2226 // ExtractSubrange() implementation for types that implement merge/copy
2227 // behavior.
2228 template <typename Element>
2229 inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
2230 int start, int num, Element** elements, std::true_type) {
2231 GOOGLE_DCHECK_GE(start, 0);
2232 GOOGLE_DCHECK_GE(num, 0);
2233 GOOGLE_DCHECK_LE(start + num, size());
2234
2235 if (num > 0) {
2236 // Save the values of the removed elements if requested.
2237 if (elements != NULL) {
2238 if (GetArena() != NULL) {
2239 // If we're on an arena, we perform a copy for each element so that the
2240 // returned elements are heap-allocated.
2241 for (int i = 0; i < num; ++i) {
2242 Element* element =
2243 RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
2244 typename TypeHandler::Type* new_value =
2245 TypeHandler::NewFromPrototype(element, NULL);
2246 TypeHandler::Merge(*element, new_value);
2247 elements[i] = new_value;
2248 }
2249 } else {
2250 for (int i = 0; i < num; ++i) {
2251 elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
2252 }
2253 }
2254 }
2255 CloseGap(start, num);
2256 }
2257 }
2258
2259 // ExtractSubrange() implementation for types that do not implement merge/copy
2260 // behavior.
2261 template <typename Element>
2262 inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
2263 int start, int num, Element** elements, std::false_type) {
2264 // This case is identical to UnsafeArenaExtractSubrange(). However, since
2265 // ExtractSubrange() must return heap-allocated objects by contract, and we
2266 // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
2267 // we are not on an arena.
2268 GOOGLE_DCHECK(GetArena() == NULL)
2269 << "ExtractSubrange() when arena is non-NULL is only supported when "
2270 << "the Element type supplies a MergeFrom() operation to make copies.";
2271 UnsafeArenaExtractSubrange(start, num, elements);
2272 }
2273
2274 template <typename Element>
2275 inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
2276 int start, int num, Element** elements) {
2277 GOOGLE_DCHECK_GE(start, 0);
2278 GOOGLE_DCHECK_GE(num, 0);
2279 GOOGLE_DCHECK_LE(start + num, size());
2280
2281 if (num > 0) {
2282 // Save the values of the removed elements if requested.
2283 if (elements != NULL) {
2284 for (int i = 0; i < num; ++i) {
2285 elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
2286 }
2287 }
2288 CloseGap(start, num);
2289 }
2290 }
2291
2292 template <typename Element>
2293 inline void RepeatedPtrField<Element>::Clear() {
2294 RepeatedPtrFieldBase::Clear<TypeHandler>();
2295 }
2296
2297 template <typename Element>
2298 inline void RepeatedPtrField<Element>::MergeFrom(
2299 const RepeatedPtrField& other) {
2300 RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
2301 }
2302
2303 template <typename Element>
2304 inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
2305 RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
2306 }
2307
2308 template <typename Element>
2309 inline typename RepeatedPtrField<Element>::iterator
2310 RepeatedPtrField<Element>::erase(const_iterator position) {
2311 return erase(position, position + 1);
2312 }
2313
2314 template <typename Element>
2315 inline typename RepeatedPtrField<Element>::iterator
2316 RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
2317 size_type pos_offset = std::distance(cbegin(), first);
2318 size_type last_offset = std::distance(cbegin(), last);
2319 DeleteSubrange(pos_offset, last_offset - pos_offset);
2320 return begin() + pos_offset;
2321 }
2322
2323 template <typename Element>
2324 inline Element** RepeatedPtrField<Element>::mutable_data() {
2325 return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
2326 }
2327
2328 template <typename Element>
2329 inline const Element* const* RepeatedPtrField<Element>::data() const {
2330 return RepeatedPtrFieldBase::data<TypeHandler>();
2331 }
2332
2333 template <typename Element>
2334 inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
2335 if (this == other) return;
2336 RepeatedPtrFieldBase::Swap<TypeHandler>(other);
2337 }
2338
2339 template <typename Element>
2340 inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
2341 RepeatedPtrField* other) {
2342 if (this == other) return;
2343 RepeatedPtrFieldBase::InternalSwap(other);
2344 }
2345
2346 template <typename Element>
2347 inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
2348 RepeatedPtrFieldBase::SwapElements(index1, index2);
2349 }
2350
2351 template <typename Element>
2352 inline Arena* RepeatedPtrField<Element>::GetArena() const {
2353 return RepeatedPtrFieldBase::GetArena();
2354 }
2355
2356 template <typename Element>
2357 inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
2358 return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
2359 }
2360
2361 template <typename Element>
2362 inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
2363 RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
2364 }
2365
2366 template <typename Element>
2367 inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
2368 RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
2369 }
2370
2371 template <typename Element>
2372 inline Element* RepeatedPtrField<Element>::ReleaseLast() {
2373 return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
2374 }
2375
2376 template <typename Element>
2377 inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
2378 return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
2379 }
2380
2381 template <typename Element>
2382 inline int RepeatedPtrField<Element>::ClearedCount() const {
2383 return RepeatedPtrFieldBase::ClearedCount();
2384 }
2385
2386 template <typename Element>
2387 inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
2388 return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
2389 }
2390
2391 template <typename Element>
2392 inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
2393 return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
2394 }
2395
2396 template <typename Element>
2397 inline void RepeatedPtrField<Element>::Reserve(int new_size) {
2398 return RepeatedPtrFieldBase::Reserve(new_size);
2399 }
2400
2401 template <typename Element>
2402 inline int RepeatedPtrField<Element>::Capacity() const {
2403 return RepeatedPtrFieldBase::Capacity();
2404 }
2405
2406 // -------------------------------------------------------------------
2407
2408 namespace internal {
2409
2410 // STL-like iterator implementation for RepeatedPtrField. You should not
2411 // refer to this class directly; use RepeatedPtrField<T>::iterator instead.
2412 //
2413 // The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
2414 // very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
2415 // but adds random-access operators and is modified to wrap a void** base
2416 // iterator (since RepeatedPtrField stores its array as a void* array and
2417 // casting void** to T** would violate C++ aliasing rules).
2418 //
2419 // This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
2420 // (jyasskin@google.com).
2421 template <typename Element>
2422 class RepeatedPtrIterator {
2423 public:
2424 using iterator = RepeatedPtrIterator<Element>;
2425 using iterator_category = std::random_access_iterator_tag;
2426 using value_type = typename std::remove_const<Element>::type;
2427 using difference_type = std::ptrdiff_t;
2428 using pointer = Element*;
2429 using reference = Element&;
2430
2431 RepeatedPtrIterator() : it_(NULL) {}
2432 explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
2433
2434 // Allow "upcasting" from RepeatedPtrIterator<T**> to
2435 // RepeatedPtrIterator<const T*const*>.
2436 template <typename OtherElement>
2437 RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
2438 : it_(other.it_) {
2439 // Force a compiler error if the other type is not convertible to ours.
2440 if (false) {
2441 implicit_cast<Element*>(static_cast<OtherElement*>(nullptr));
2442 }
2443 }
2444
2445 // dereferenceable
2446 reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
2447 pointer operator->() const { return &(operator*()); }
2448
2449 // {inc,dec}rementable
2450 iterator& operator++() {
2451 ++it_;
2452 return *this;
2453 }
2454 iterator operator++(int) { return iterator(it_++); }
2455 iterator& operator--() {
2456 --it_;
2457 return *this;
2458 }
2459 iterator operator--(int) { return iterator(it_--); }
2460
2461 // equality_comparable
2462 bool operator==(const iterator& x) const { return it_ == x.it_; }
2463 bool operator!=(const iterator& x) const { return it_ != x.it_; }
2464
2465 // less_than_comparable
2466 bool operator<(const iterator& x) const { return it_ < x.it_; }
2467 bool operator<=(const iterator& x) const { return it_ <= x.it_; }
2468 bool operator>(const iterator& x) const { return it_ > x.it_; }
2469 bool operator>=(const iterator& x) const { return it_ >= x.it_; }
2470
2471 // addable, subtractable
2472 iterator& operator+=(difference_type d) {
2473 it_ += d;
2474 return *this;
2475 }
2476 friend iterator operator+(iterator it, const difference_type d) {
2477 it += d;
2478 return it;
2479 }
2480 friend iterator operator+(const difference_type d, iterator it) {
2481 it += d;
2482 return it;
2483 }
2484 iterator& operator-=(difference_type d) {
2485 it_ -= d;
2486 return *this;
2487 }
2488 friend iterator operator-(iterator it, difference_type d) {
2489 it -= d;
2490 return it;
2491 }
2492
2493 // indexable
2494 reference operator[](difference_type d) const { return *(*this + d); }
2495
2496 // random access iterator
2497 difference_type operator-(const iterator& x) const { return it_ - x.it_; }
2498
2499 private:
2500 template <typename OtherElement>
2501 friend class RepeatedPtrIterator;
2502
2503 // The internal iterator.
2504 void* const* it_;
2505 };
2506
2507 // Provide an iterator that operates on pointers to the underlying objects
2508 // rather than the objects themselves as RepeatedPtrIterator does.
2509 // Consider using this when working with stl algorithms that change
2510 // the array.
2511 // The VoidPtr template parameter holds the type-agnostic pointer value
2512 // referenced by the iterator. It should either be "void *" for a mutable
2513 // iterator, or "const void* const" for a constant iterator.
2514 template <typename Element, typename VoidPtr>
2515 class RepeatedPtrOverPtrsIterator {
2516 public:
2517 using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
2518 using iterator_category = std::random_access_iterator_tag;
2519 using value_type = typename std::remove_const<Element>::type;
2520 using difference_type = std::ptrdiff_t;
2521 using pointer = Element*;
2522 using reference = Element&;
2523
2524 RepeatedPtrOverPtrsIterator() : it_(NULL) {}
2525 explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
2526
2527 // dereferenceable
2528 reference operator*() const { return *reinterpret_cast<Element*>(it_); }
2529 pointer operator->() const { return &(operator*()); }
2530
2531 // {inc,dec}rementable
2532 iterator& operator++() {
2533 ++it_;
2534 return *this;
2535 }
2536 iterator operator++(int) { return iterator(it_++); }
2537 iterator& operator--() {
2538 --it_;
2539 return *this;
2540 }
2541 iterator operator--(int) { return iterator(it_--); }
2542
2543 // equality_comparable
2544 bool operator==(const iterator& x) const { return it_ == x.it_; }
2545 bool operator!=(const iterator& x) const { return it_ != x.it_; }
2546
2547 // less_than_comparable
2548 bool operator<(const iterator& x) const { return it_ < x.it_; }
2549 bool operator<=(const iterator& x) const { return it_ <= x.it_; }
2550 bool operator>(const iterator& x) const { return it_ > x.it_; }
2551 bool operator>=(const iterator& x) const { return it_ >= x.it_; }
2552
2553 // addable, subtractable
2554 iterator& operator+=(difference_type d) {
2555 it_ += d;
2556 return *this;
2557 }
2558 friend iterator operator+(iterator it, difference_type d) {
2559 it += d;
2560 return it;
2561 }
2562 friend iterator operator+(difference_type d, iterator it) {
2563 it += d;
2564 return it;
2565 }
2566 iterator& operator-=(difference_type d) {
2567 it_ -= d;
2568 return *this;
2569 }
2570 friend iterator operator-(iterator it, difference_type d) {
2571 it -= d;
2572 return it;
2573 }
2574
2575 // indexable
2576 reference operator[](difference_type d) const { return *(*this + d); }
2577
2578 // random access iterator
2579 difference_type operator-(const iterator& x) const { return it_ - x.it_; }
2580
2581 private:
2582 template <typename OtherElement>
2583 friend class RepeatedPtrIterator;
2584
2585 // The internal iterator.
2586 VoidPtr* it_;
2587 };
2588
2589 void RepeatedPtrFieldBase::InternalSwap(RepeatedPtrFieldBase* other) {
2590 GOOGLE_DCHECK(this != other);
2591 GOOGLE_DCHECK(GetArena() == other->GetArena());
2592
2593 // Swap all fields at once.
2594 static_assert(std::is_standard_layout<RepeatedPtrFieldBase>::value,
2595 "offsetof() requires standard layout before c++17");
2596 internal::memswap<offsetof(RepeatedPtrFieldBase, rep_) + sizeof(this->rep_) -
2597 offsetof(RepeatedPtrFieldBase, current_size_)>(
2598 reinterpret_cast<char*>(this) +
2599 offsetof(RepeatedPtrFieldBase, current_size_),
2600 reinterpret_cast<char*>(other) +
2601 offsetof(RepeatedPtrFieldBase, current_size_));
2602 }
2603
2604 } // namespace internal
2605
2606 template <typename Element>
2607 inline typename RepeatedPtrField<Element>::iterator
2608 RepeatedPtrField<Element>::begin() {
2609 return iterator(raw_data());
2610 }
2611 template <typename Element>
2612 inline typename RepeatedPtrField<Element>::const_iterator
2613 RepeatedPtrField<Element>::begin() const {
2614 return iterator(raw_data());
2615 }
2616 template <typename Element>
2617 inline typename RepeatedPtrField<Element>::const_iterator
2618 RepeatedPtrField<Element>::cbegin() const {
2619 return begin();
2620 }
2621 template <typename Element>
2622 inline typename RepeatedPtrField<Element>::iterator
2623 RepeatedPtrField<Element>::end() {
2624 return iterator(raw_data() + size());
2625 }
2626 template <typename Element>
2627 inline typename RepeatedPtrField<Element>::const_iterator
2628 RepeatedPtrField<Element>::end() const {
2629 return iterator(raw_data() + size());
2630 }
2631 template <typename Element>
2632 inline typename RepeatedPtrField<Element>::const_iterator
2633 RepeatedPtrField<Element>::cend() const {
2634 return end();
2635 }
2636
2637 template <typename Element>
2638 inline typename RepeatedPtrField<Element>::pointer_iterator
2639 RepeatedPtrField<Element>::pointer_begin() {
2640 return pointer_iterator(raw_mutable_data());
2641 }
2642 template <typename Element>
2643 inline typename RepeatedPtrField<Element>::const_pointer_iterator
2644 RepeatedPtrField<Element>::pointer_begin() const {
2645 return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
2646 }
2647 template <typename Element>
2648 inline typename RepeatedPtrField<Element>::pointer_iterator
2649 RepeatedPtrField<Element>::pointer_end() {
2650 return pointer_iterator(raw_mutable_data() + size());
2651 }
2652 template <typename Element>
2653 inline typename RepeatedPtrField<Element>::const_pointer_iterator
2654 RepeatedPtrField<Element>::pointer_end() const {
2655 return const_pointer_iterator(
2656 const_cast<const void* const*>(raw_data() + size()));
2657 }
2658
2659 // Iterators and helper functions that follow the spirit of the STL
2660 // std::back_insert_iterator and std::back_inserter but are tailor-made
2661 // for RepeatedField and RepeatedPtrField. Typical usage would be:
2662 //
2663 // std::copy(some_sequence.begin(), some_sequence.end(),
2664 // RepeatedFieldBackInserter(proto.mutable_sequence()));
2665 //
2666 // Ported by johannes from util/gtl/proto-array-iterators.h
2667
2668 namespace internal {
2669 // A back inserter for RepeatedField objects.
2670 template <typename T>
2671 class RepeatedFieldBackInsertIterator
2672 : public std::iterator<std::output_iterator_tag, T> {
2673 public:
2674 explicit RepeatedFieldBackInsertIterator(
2675 RepeatedField<T>* const mutable_field)
2676 : field_(mutable_field) {}
2677 RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
2678 field_->Add(value);
2679 return *this;
2680 }
2681 RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
2682 RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
2683 RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
2684 return *this;
2685 }
2686
2687 private:
2688 RepeatedField<T>* field_;
2689 };
2690
2691 // A back inserter for RepeatedPtrField objects.
2692 template <typename T>
2693 class RepeatedPtrFieldBackInsertIterator
2694 : public std::iterator<std::output_iterator_tag, T> {
2695 public:
2696 RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
2697 : field_(mutable_field) {}
2698 RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
2699 *field_->Add() = value;
2700 return *this;
2701 }
2702 RepeatedPtrFieldBackInsertIterator<T>& operator=(
2703 const T* const ptr_to_value) {
2704 *field_->Add() = *ptr_to_value;
2705 return *this;
2706 }
2707 RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
2708 *field_->Add() = std::move(value);
2709 return *this;
2710 }
2711 RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
2712 RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
2713 RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
2714 return *this;
2715 }
2716
2717 private:
2718 RepeatedPtrField<T>* field_;
2719 };
2720
2721 // A back inserter for RepeatedPtrFields that inserts by transferring ownership
2722 // of a pointer.
2723 template <typename T>
2724 class AllocatedRepeatedPtrFieldBackInsertIterator
2725 : public std::iterator<std::output_iterator_tag, T> {
2726 public:
2727 explicit AllocatedRepeatedPtrFieldBackInsertIterator(
2728 RepeatedPtrField<T>* const mutable_field)
2729 : field_(mutable_field) {}
2730 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
2731 T* const ptr_to_value) {
2732 field_->AddAllocated(ptr_to_value);
2733 return *this;
2734 }
2735 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
2736 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
2737 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
2738 return *this;
2739 }
2740
2741 private:
2742 RepeatedPtrField<T>* field_;
2743 };
2744
2745 // Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
2746 // uses the UnsafeArenaAddAllocated instead.
2747 template <typename T>
2748 class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator
2749 : public std::iterator<std::output_iterator_tag, T> {
2750 public:
2751 explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
2752 RepeatedPtrField<T>* const mutable_field)
2753 : field_(mutable_field) {}
2754 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
2755 T const* const ptr_to_value) {
2756 field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
2757 return *this;
2758 }
2759 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
2760 return *this;
2761 }
2762 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
2763 return *this;
2764 }
2765 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
2766 int /* unused */) {
2767 return *this;
2768 }
2769
2770 private:
2771 RepeatedPtrField<T>* field_;
2772 };
2773
2774 } // namespace internal
2775
2776 // Provides a back insert iterator for RepeatedField instances,
2777 // similar to std::back_inserter().
2778 template <typename T>
2779 internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
2780 RepeatedField<T>* const mutable_field) {
2781 return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
2782 }
2783
2784 // Provides a back insert iterator for RepeatedPtrField instances,
2785 // similar to std::back_inserter().
2786 template <typename T>
2787 internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
2788 RepeatedPtrField<T>* const mutable_field) {
2789 return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
2790 }
2791
2792 // Special back insert iterator for RepeatedPtrField instances, just in
2793 // case someone wants to write generic template code that can access both
2794 // RepeatedFields and RepeatedPtrFields using a common name.
2795 template <typename T>
2796 internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
2797 RepeatedPtrField<T>* const mutable_field) {
2798 return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
2799 }
2800
2801 // Provides a back insert iterator for RepeatedPtrField instances
2802 // similar to std::back_inserter() which transfers the ownership while
2803 // copying elements.
2804 template <typename T>
2805 internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
2806 AllocatedRepeatedPtrFieldBackInserter(
2807 RepeatedPtrField<T>* const mutable_field) {
2808 return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
2809 mutable_field);
2810 }
2811
2812 // Similar to AllocatedRepeatedPtrFieldBackInserter, using
2813 // UnsafeArenaAddAllocated instead of AddAllocated.
2814 // This is slightly faster if that matters. It is also useful in legacy code
2815 // that uses temporary ownership to avoid copies. Example:
2816 // RepeatedPtrField<T> temp_field;
2817 // temp_field.AddAllocated(new T);
2818 // ... // Do something with temp_field
2819 // temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
2820 // If you put temp_field on the arena this fails, because the ownership
2821 // transfers to the arena at the "AddAllocated" call and is not released anymore
2822 // causing a double delete. Using UnsafeArenaAddAllocated prevents this.
2823 template <typename T>
2824 internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
2825 UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
2826 RepeatedPtrField<T>* const mutable_field) {
2827 return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
2828 mutable_field);
2829 }
2830
2831 // Extern declarations of common instantiations to reduce library bloat.
2832 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
2833 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32>;
2834 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32>;
2835 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64>;
2836 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64>;
2837 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
2838 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;
2839 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
2840 RepeatedPtrField<std::string>;
2841
2842 } // namespace protobuf
2843 } // namespace google
2844
2845 #include <google/protobuf/port_undef.inc>
2846
2847 #endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__
2848