# \@AnimatableExtend Decorator: Defining Animatable Properties The @AnimatableExtend decorator enables animation capabilities for normally non-animatable component properties. During animation execution, frame-by-frame callbacks are executed to change the values of non-animatable properties to allow them to achieve animation effects. Additionally, you can implement frame-by-frame layout effects by changing the values of animatable properties in the per-frame callback function. - Animatable property: A property is considered animatable if, when its method is called before the **animation** attribute, changing its value triggers the animation effect specified by **animation**. Examples include **height**, **width**, **backgroundColor**, **translate**, and **fontSize** (of the **Text** component). - Non-animatable property: A property is non-animatable if, when its method is called before the **animation** attribute, changing its value does not trigger the animation effect specified by **animation**. For example, the **points** property of the **Polyline** component is a non-animatable. > **NOTE** > > This decorator is supported since API version 10. Updates will be marked with a superscript to indicate their earliest API version. > > This decorator can be used in atomic services since API version 11. ## Usage Rules ### Syntax ```ts @AnimatableExtend(UIComponentName) function functionName(value: typeName) { .propertyName(value) } ``` - \@AnimatableExtend can be defined only globally. - The parameter of the \@AnimatableExtend decorated function must be of the number type or a custom type that implements the **AnimatableArithmetic\** API. - The function body of an @AnimatableExtend decorated function can only access property methods of the component type specified within the parentheses of @AnimatableExtend. ### Available APIs The **AnimatableArithmetic\** API defines the animation operation rules for non-number data types. To animate non-number data (such as arrays, structs, and colors), implement the addition, subtraction, multiplication, and equality judgment functions in the **AnimatableArithmetic\** API. In this way, the data can be involved in an interpolation operation of the animation and identify whether the data changes, that is, the non-number data is defined as the types that implement the **AnimatableArithmetic\** API. | Name| Input Parameter Type| Return Value Type| Description | -------- | -------- |-------- |-------- | | plus | AnimatableArithmetic\ | AnimatableArithmetic\ | Defines the addition rule of the data type.| | subtract | AnimatableArithmetic\ | AnimatableArithmetic\ | Defines the subtraction rule of the data type.| | multiply | number | AnimatableArithmetic\ | Defines the multiplication rule of the data type.| | equals | AnimatableArithmetic\ | boolean | Defines the equality judgment rule of the data type.| ## Example The following example implements the frame-by-frame layout effects by changing the width of the **Text** component. ```ts @AnimatableExtend(Text) function animatableWidth(width: number) { .width(width) } @Entry @Component struct AnimatablePropertyExample { @State textWidth: number = 80; build() { Column() { Text("AnimatableProperty") .animatableWidth(this.textWidth) .animation({ duration: 2000, curve: Curve.Ease }) Button("Play") .onClick(() => { this.textWidth = this.textWidth == 80 ? 160 : 80; }) }.width("100%") .padding(10) } } ``` ![image](figures/AnimatableProperty.gif) The following example implements a polyline animation effect. ```ts class Point { x: number y: number constructor(x: number, y: number) { this.x = x this.y = y } plus(rhs: Point): Point { return new Point(this.x + rhs.x, this.y + rhs.y); } subtract(rhs: Point): Point { return new Point(this.x - rhs.x, this.y - rhs.y); } multiply(scale: number): Point { return new Point(this.x * scale, this.y * scale); } equals(rhs: Point): boolean { return this.x === rhs.x && this.y === rhs.y; } } // PointVector implements the AnimatableArithmetic API. class PointVector extends Array implements AnimatableArithmetic { constructor(value: Array) { super(); value.forEach(p => this.push(p)); } plus(rhs: PointVector): PointVector { let result = new PointVector([]); const len = Math.min(this.length, rhs.length); for (let i = 0; i < len; i++) { result.push((this as Array)[i].plus((rhs as Array)[i])); } return result; } subtract(rhs: PointVector): PointVector { let result = new PointVector([]); const len = Math.min(this.length, rhs.length); for (let i = 0; i < len; i++) { result.push((this as Array)[i].subtract((rhs as Array)[i])); } return result; } multiply(scale: number): PointVector { let result = new PointVector([]); for (let i = 0; i < this.length; i++) { result.push((this as Array)[i].multiply(scale)); } return result; } equals(rhs: PointVector): boolean { if (this.length != rhs.length) { return false; } for (let i = 0; i < this.length; i++) { if (!(this as Array)[i].equals((rhs as Array)[i])) { return false; } } return true; } get(): Array { let result: Array = []; this.forEach(p => result.push([p.x, p.y])); return result; } } @AnimatableExtend(Polyline) function animatablePoints(points: PointVector) { .points(points.get()) } @Entry @Component struct AnimatablePropertyExample { @State points: PointVector = new PointVector([ new Point(50, Math.random() * 200), new Point(100, Math.random() * 200), new Point(150, Math.random() * 200), new Point(200, Math.random() * 200), new Point(250, Math.random() * 200), ]) build() { Column() { Polyline() .animatablePoints(this.points) .animation({ duration: 1000, curve: Curve.Ease })// Set animation parameters. .size({ height: 220, width: 300 }) .fill(Color.Green) .stroke(Color.Red) .backgroundColor('#eeaacc') Button("Play") .onClick(() => { // points is a data type that implements the animation protocol. During the animation, points can be changed from the previous PointVector data to the new one based on the defined operation rules and animation parameters to generate the PointVector data of each frame and then generate an animation. this.points = new PointVector([ new Point(50, Math.random() * 200), new Point(100, Math.random() * 200), new Point(150, Math.random() * 200), new Point(200, Math.random() * 200), new Point(250, Math.random() * 200), ]); }) }.width("100%") .padding(10) } } ``` ![image](figures/animatable-points.gif)