# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor import mindspore.common.dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.unique = P.Unique() def construct(self, x): x = self.unique(x) return (x[0], x[1]) def test_unique(): """ Feature: for Unique op Description: inputs are integers Expectation: the result is correct """ x = Tensor(np.array([1, 1, 2, 3, 3, 3]), mstype.int32) unique = Net() output = unique(x) expect1 = np.array([1, 2, 3]) expect2 = np.array([0, 0, 1, 2, 2, 2]) assert (output[0].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect2).all() if __name__ == "__main__": test_unique()