# Copyright 2023 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bidense = nn.BiDense(20, 30, 40, dtype=ms.float16) def construct(self, x, y): out = self.bidense(x, y) return out @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_bidense_para_customed_dtype(mode): """ Feature: BiDense Description: Verify the result of BiDense specifying customed para dtype. Expectation: success """ ms.set_context(mode=mode) net = Net() x1 = Tensor(np.random.randn(128, 20), ms.float16) x2 = Tensor(np.random.randn(128, 30), ms.float16) output = net(x1, x2) expect_output_shape = (128, 40) assert np.allclose(expect_output_shape, output.shape)