# Copyright 2023 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.multifieldembeddinglookup = nn.MultiFieldEmbeddingLookup(10, 2, field_size=2, operator='SUM', target='DEVICE', dtype=ms.float16) def construct(self, x, y, z): out = self.multifieldembeddinglookup(x, y, z) return out @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_multifieldembeddinglookup_para_customed_dtype(mode): """ Feature: MultiFieldEmbeddingLookup Description: Verify the result of MultiFieldEmbeddingLookup specifying customed para dtype. Expectation: success """ ms.set_context(mode=mode) net = Net() input_indices = Tensor([[2, 4, 6, 0, 0], [1, 3, 5, 0, 0]], ms.int32) input_values = Tensor([[1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], ms.float32) field_ids = Tensor([[0, 1, 1, 0, 0], [0, 0, 1, 0, 0]], ms.int32) output = net(input_indices, input_values, field_ids) expect_output_shape = (2, 2, 2) assert np.allclose(expect_output_shape, output.shape)