# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.pool = nn.LPPool1d(norm_type=1, kernel_size=3, stride=1) def construct(self, x): out = self.pool(x) return out @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_lppool1d_normal(mode): """ Feature: LPPool1d Description: Verify the result of LPPool1d Expectation: success """ ms.set_context(mode=mode) net = Net() x = ms.Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), dtype=ms.float32) y = ms.Tensor(np.arange(3 * 4).reshape((3, 4)), dtype=ms.float32) out = net(x) out2 = net(y) expect_out = np.array([[[3., 6.], [15., 18.], [27., 30.]], [[39., 42.], [51., 54.], [63., 66.]]]) expect_out2 = np.array([[3., 6.], [15., 18.], [27., 30.]]) assert np.allclose(out.asnumpy(), expect_out) assert np.allclose(out2.asnumpy(), expect_out2)