# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.pool = nn.LPPool2d(norm_type=1, kernel_size=3, stride=1) def construct(self, x): out = self.pool(x) return out @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_lppool2d_normal(mode): """ Feature: LPPool2d Description: Verify the result of LPPool2d Expectation: success """ ms.set_context(mode=mode) net = Net() x = ms.Tensor(np.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5)), dtype=ms.float32) out = net(x) expect_out = np.array([[[[54., 63., 72.], [99., 108., 117.]], [[234., 243., 252.], [279., 288., 297.]], [[414., 423., 432.], [459., 468., 477.]]], [[[594., 603., 612.], [639., 648., 657.]], [[774., 783., 792.], [819., 828., 837.]], [[954., 963., 972.], [999., 1008., 1017.]]]]) assert np.allclose(out.asnumpy(), expect_out)